Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Haptic Edge Detection Through Shear

Identifieur interne : 000651 ( Pmc/Curation ); précédent : 000650; suivant : 000652

Haptic Edge Detection Through Shear

Auteurs : Jonathan Platkiewicz [États-Unis] ; Hod Lipson [États-Unis] ; Vincent Hayward [France]

Source :

RBID : PMC:4806378

Abstract

Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals.


Url:
DOI: 10.1038/srep23551
PubMed: 27009331
PubMed Central: 4806378

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:4806378

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Haptic Edge Detection Through Shear</title>
<author>
<name sortKey="Platkiewicz, Jonathan" sort="Platkiewicz, Jonathan" uniqKey="Platkiewicz J" first="Jonathan" last="Platkiewicz">Jonathan Platkiewicz</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>The City College of New York, The City University of New York, Department of Mathematics</institution>
, New York, NY 10031,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Lipson, Hod" sort="Lipson, Hod" uniqKey="Lipson H" first="Hod" last="Lipson">Hod Lipson</name>
<affiliation wicri:level="1">
<nlm:aff id="a2">
<institution>Columbia University, Department of Mechanical Engineering</institution>
, New York, NY 10027,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hayward, Vincent" sort="Hayward, Vincent" uniqKey="Hayward V" first="Vincent" last="Hayward">Vincent Hayward</name>
<affiliation wicri:level="1">
<nlm:aff id="a3">
<institution>Sorbonne Universités, UPMC Univ Paris 06</institution>
, UMR 7222, ISIR, F-75005, Paris,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">27009331</idno>
<idno type="pmc">4806378</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4806378</idno>
<idno type="RBID">PMC:4806378</idno>
<idno type="doi">10.1038/srep23551</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">000651</idno>
<idno type="wicri:Area/Pmc/Curation">000651</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Haptic Edge Detection Through Shear</title>
<author>
<name sortKey="Platkiewicz, Jonathan" sort="Platkiewicz, Jonathan" uniqKey="Platkiewicz J" first="Jonathan" last="Platkiewicz">Jonathan Platkiewicz</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>The City College of New York, The City University of New York, Department of Mathematics</institution>
, New York, NY 10031,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Lipson, Hod" sort="Lipson, Hod" uniqKey="Lipson H" first="Hod" last="Lipson">Hod Lipson</name>
<affiliation wicri:level="1">
<nlm:aff id="a2">
<institution>Columbia University, Department of Mechanical Engineering</institution>
, New York, NY 10027,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hayward, Vincent" sort="Hayward, Vincent" uniqKey="Hayward V" first="Vincent" last="Hayward">Vincent Hayward</name>
<affiliation wicri:level="1">
<nlm:aff id="a3">
<institution>Sorbonne Universités, UPMC Univ Paris 06</institution>
, UMR 7222, ISIR, F-75005, Paris,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific Reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Koenderink, J J" uniqKey="Koenderink J">J. J. Koenderink</name>
</author>
<author>
<name sortKey="Van Doorn, A J" uniqKey="Van Doorn A">A. J. van Doorn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Adelson, E H" uniqKey="Adelson E">E. H. Adelson</name>
</author>
<author>
<name sortKey="Bergen, J R" uniqKey="Bergen J">J. R. Bergen</name>
</author>
<author>
<name sortKey="Landy, M" uniqKey="Landy M">M. Landy</name>
</author>
<author>
<name sortKey="Movshon, J A" uniqKey="Movshon J">J. A. Movshon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Howe, C Q" uniqKey="Howe C">C. Q. Howe</name>
</author>
<author>
<name sortKey="Purves, D" uniqKey="Purves D">D. Purves</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Horn, B" uniqKey="Horn B">B. Horn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Connor, C E" uniqKey="Connor C">C. E. Connor</name>
</author>
<author>
<name sortKey="Brincat, S L" uniqKey="Brincat S">S. L. Brincat</name>
</author>
<author>
<name sortKey="Pasupathy, A" uniqKey="Pasupathy A">A. Pasupathy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Orban, G A" uniqKey="Orban G">G. A. Orban</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hayward, V" uniqKey="Hayward V">V. Hayward</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marr, D" uniqKey="Marr D">D. Marr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koenderink, J J" uniqKey="Koenderink J">J. J. Koenderink</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lindeberg, T" uniqKey="Lindeberg T">T. Lindeberg</name>
</author>
<author>
<name sortKey="Wah, B" uniqKey="Wah B">B. Wah</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Palmer, S" uniqKey="Palmer S">S. Palmer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rolls, E T" uniqKey="Rolls E">E. T. Rolls</name>
</author>
<author>
<name sortKey="Deco, G" uniqKey="Deco G">G. Deco</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lowe, D G" uniqKey="Lowe D">D. G. Lowe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bensmaia, S J" uniqKey="Bensmaia S">S. J. Bensmaia</name>
</author>
<author>
<name sortKey="Denchev, P V" uniqKey="Denchev P">P. V. Denchev</name>
</author>
<author>
<name sortKey="Dammann, J F" uniqKey="Dammann J">J. F. Dammann</name>
</author>
<author>
<name sortKey="Craig, J C" uniqKey="Craig J">J. C. Craig</name>
</author>
<author>
<name sortKey="Hsiao, S S" uniqKey="Hsiao S">S. S. Hsiao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Plaisier, M A" uniqKey="Plaisier M">M. A. Plaisier</name>
</author>
<author>
<name sortKey="Bergmann Tiest, W M" uniqKey="Bergmann Tiest W">W. M. Bergmann Tiest</name>
</author>
<author>
<name sortKey="Kappers, A M" uniqKey="Kappers A">A. M. Kappers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Briot, M" uniqKey="Briot M">M. Briot</name>
</author>
<author>
<name sortKey="Renaud, M" uniqKey="Renaud M">M. Renaud</name>
</author>
<author>
<name sortKey="Stojilkovic, Z" uniqKey="Stojilkovic Z">Z. Stojilkovic</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hillis, W D" uniqKey="Hillis W">W. D. Hillis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harmon, L R" uniqKey="Harmon L">L. R. Harmon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nicholls, H R" uniqKey="Nicholls H">H. R. Nicholls</name>
</author>
<author>
<name sortKey="Lee, M H" uniqKey="Lee M">M. H. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, M H" uniqKey="Lee M">M. H. Lee</name>
</author>
<author>
<name sortKey="Nicholls, H R" uniqKey="Nicholls H">H. R. Nicholls</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cutkosky, M R" uniqKey="Cutkosky M">M. R. Cutkosky</name>
</author>
<author>
<name sortKey="Howe, R D" uniqKey="Howe R">R. D. Howe</name>
</author>
<author>
<name sortKey="Provancher, W R" uniqKey="Provancher W">W. R. Provancher</name>
</author>
<author>
<name sortKey="Siciliano, B" uniqKey="Siciliano B">B. Siciliano</name>
</author>
<author>
<name sortKey="Kathib, O" uniqKey="Kathib O">O. Kathib</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dahiya, R S" uniqKey="Dahiya R">R. S. Dahiya</name>
</author>
<author>
<name sortKey="Metta, G" uniqKey="Metta G">G. Metta</name>
</author>
<author>
<name sortKey="Valle, M" uniqKey="Valle M">M. Valle</name>
</author>
<author>
<name sortKey="Sandini, G" uniqKey="Sandini G">G. Sandini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lucarotti, C" uniqKey="Lucarotti C">C. Lucarotti</name>
</author>
<author>
<name sortKey="Oddo, C M" uniqKey="Oddo C">C. M. Oddo</name>
</author>
<author>
<name sortKey="Vitiello, N" uniqKey="Vitiello N">N. Vitiello</name>
</author>
<author>
<name sortKey="Carrozza, M C" uniqKey="Carrozza M">M. C. Carrozza</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hammock, M L" uniqKey="Hammock M">M. L. Hammock</name>
</author>
<author>
<name sortKey="Chortos, A" uniqKey="Chortos A">A. Chortos</name>
</author>
<author>
<name sortKey="Tee, B C K" uniqKey="Tee B">B. C. K. Tee</name>
</author>
<author>
<name sortKey="Tok, J B H" uniqKey="Tok J">J. B. H. Tok</name>
</author>
<author>
<name sortKey="Bao, Z" uniqKey="Bao Z">Z. Bao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Phillips, J R" uniqKey="Phillips J">J. R. Phillips</name>
</author>
<author>
<name sortKey="Johnson, K O" uniqKey="Johnson K">K. O. Johnson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Phillips, J R" uniqKey="Phillips J">J. R. Phillips</name>
</author>
<author>
<name sortKey="Johnson, K O" uniqKey="Johnson K">K. O. Johnson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sripati, A P" uniqKey="Sripati A">A. P. Sripati</name>
</author>
<author>
<name sortKey="Bensmaia, S J" uniqKey="Bensmaia S">S. J. Bensmaia</name>
</author>
<author>
<name sortKey="Johnson, K O" uniqKey="Johnson K">K. O. Johnson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gerling, G J" uniqKey="Gerling G">G. J. Gerling</name>
</author>
<author>
<name sortKey="Rivest, I I" uniqKey="Rivest I">I. I. Rivest</name>
</author>
<author>
<name sortKey="Lesniak, D R" uniqKey="Lesniak D">D. R. Lesniak</name>
</author>
<author>
<name sortKey="Scanlon, J R" uniqKey="Scanlon J">J. R. Scanlon</name>
</author>
<author>
<name sortKey="Wan, L" uniqKey="Wan L">L. Wan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brown, E" uniqKey="Brown E">E. Brown</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Amend, J" uniqKey="Amend J">J. Amend</name>
</author>
<author>
<name sortKey="Brown, E" uniqKey="Brown E">E. Brown</name>
</author>
<author>
<name sortKey="Rodenberg, N" uniqKey="Rodenberg N">N. Rodenberg</name>
</author>
<author>
<name sortKey="Jaeger, H" uniqKey="Jaeger H">H. Jaeger</name>
</author>
<author>
<name sortKey="Lipson, H" uniqKey="Lipson H">H. Lipson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Howe, R" uniqKey="Howe R">R. Howe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ricker, S L" uniqKey="Ricker S">S. L. Ricker</name>
</author>
<author>
<name sortKey="Ellis, R E" uniqKey="Ellis R">R. E. Ellis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Q" uniqKey="Wang Q">Q. Wang</name>
</author>
<author>
<name sortKey="Hayward, V" uniqKey="Hayward V">V. Hayward</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Witkin, A P" uniqKey="Witkin A">A. P. Witkin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hayward, V" uniqKey="Hayward V">V. Hayward</name>
</author>
<author>
<name sortKey="Grunwald, M" uniqKey="Grunwald M">M. Grunwald</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, R" uniqKey="Li R">R. Li</name>
</author>
<author>
<name sortKey="Adelson, E H" uniqKey="Adelson E">E. H. Adelson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marr, D" uniqKey="Marr D">D. Marr</name>
</author>
<author>
<name sortKey="Hildreth, E" uniqKey="Hildreth E">E. Hildreth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johnson, K L" uniqKey="Johnson K">K. L. Johnson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yuille, A L" uniqKey="Yuille A">A. L. Yuille</name>
</author>
<author>
<name sortKey="Poggio, T A" uniqKey="Poggio T">T. A. Poggio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fearing, R S" uniqKey="Fearing R">R. S. Fearing</name>
</author>
<author>
<name sortKey="Hollerbach, J M" uniqKey="Hollerbach J">J. M. Hollerbach</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ferrier, N J" uniqKey="Ferrier N">N. J. Ferrier</name>
</author>
<author>
<name sortKey="Brockett, R W" uniqKey="Brockett R">R. W. Brockett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chorley, C" uniqKey="Chorley C">C. Chorley</name>
</author>
<author>
<name sortKey="Melhuish, C" uniqKey="Melhuish C">C. Melhuish</name>
</author>
<author>
<name sortKey="Pipe, T" uniqKey="Pipe T">T. Pipe</name>
</author>
<author>
<name sortKey="Rossiter, J" uniqKey="Rossiter J">J. Rossiter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sato, K" uniqKey="Sato K">K. Sato</name>
</author>
<author>
<name sortKey="Kamiyama, K" uniqKey="Kamiyama K">K. Kamiyama</name>
</author>
<author>
<name sortKey="Kawakami, N" uniqKey="Kawakami N">N. Kawakami</name>
</author>
<author>
<name sortKey="Tachi, S" uniqKey="Tachi S">S. Tachi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johnson, M K" uniqKey="Johnson M">M. K. Johnson</name>
</author>
<author>
<name sortKey="Adelson, E H" uniqKey="Adelson E">E. H. Adelson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hayward, V" uniqKey="Hayward V">V. Hayward</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Levesque, V" uniqKey="Levesque V">V. Levesque</name>
</author>
<author>
<name sortKey="Pasquero, J" uniqKey="Pasquero J">J. Pasquero</name>
</author>
<author>
<name sortKey="Hayward, V" uniqKey="Hayward V">V. Hayward</name>
</author>
<author>
<name sortKey="Legault, M" uniqKey="Legault M">M. Legault</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hayward, V" uniqKey="Hayward V">V. Hayward</name>
</author>
<author>
<name sortKey="Cruz Hernandez, M" uniqKey="Cruz Hernandez M">M. Cruz-Hernandez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nakatani, M" uniqKey="Nakatani M">M. Nakatani</name>
</author>
<author>
<name sortKey="Howe, R D" uniqKey="Howe R">R. D. Howe</name>
</author>
<author>
<name sortKey="Tachi, S" uniqKey="Tachi S">S. Tachi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nakatani, M" uniqKey="Nakatani M">M. Nakatani</name>
</author>
<author>
<name sortKey="Howe, R D" uniqKey="Howe R">R. D. Howe</name>
</author>
<author>
<name sortKey="Tachi, S" uniqKey="Tachi S">S. Tachi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nakatani, M" uniqKey="Nakatani M">M. Nakatani</name>
</author>
<author>
<name sortKey="Sato, A" uniqKey="Sato A">A. Sato</name>
</author>
<author>
<name sortKey="Tachi, S" uniqKey="Tachi S">S. Tachi</name>
</author>
<author>
<name sortKey="Hayward, V" uniqKey="Hayward V">V. Hayward</name>
</author>
<author>
<name sortKey="Ferre, M" uniqKey="Ferre M">M. Ferre</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kikkuwe, R" uniqKey="Kikkuwe R">R. Kikkuwe</name>
</author>
<author>
<name sortKey="Sano, A" uniqKey="Sano A">A. Sano</name>
</author>
<author>
<name sortKey="Mochiyama, H" uniqKey="Mochiyama H">H. Mochiyama</name>
</author>
<author>
<name sortKey="Takesue, N" uniqKey="Takesue N">N. Takesue</name>
</author>
<author>
<name sortKey="Fujimoto, H" uniqKey="Fujimoto H">H. Fujimoto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Handzic, I" uniqKey="Handzic I">I. Handzic</name>
</author>
<author>
<name sortKey="Reed, K B" uniqKey="Reed K">K. B. Reed</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hsiao, S" uniqKey="Hsiao S">S. Hsiao</name>
</author>
<author>
<name sortKey="Johnson, K O" uniqKey="Johnson K">K. O. Johnson</name>
</author>
<author>
<name sortKey="Yoshioka, T" uniqKey="Yoshioka T">T. Yoshioka</name>
</author>
<author>
<name sortKey="Weiner, I B" uniqKey="Weiner I">I. B. Weiner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pruszynski, J A" uniqKey="Pruszynski J">J. A. Pruszynski</name>
</author>
<author>
<name sortKey="Johansson, R S" uniqKey="Johansson R">R. S. Johansson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jorntell, H" uniqKey="Jorntell H">H. Jörntell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Torre, V" uniqKey="Torre V">V. Torre</name>
</author>
<author>
<name sortKey="Poggio, T A" uniqKey="Poggio T">T. A. Poggio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Argatov, I I" uniqKey="Argatov I">I. I. Argatov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Estrada, R" uniqKey="Estrada R">R. Estrada</name>
</author>
<author>
<name sortKey="Kanwal, R P" uniqKey="Kanwal R">R. P. Kanwal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lindell, I V" uniqKey="Lindell I">I. V. Lindell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hsiao, S" uniqKey="Hsiao S">S. Hsiao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Speeter, T H" uniqKey="Speeter T">T. H. Speeter</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Sci Rep</journal-id>
<journal-id journal-id-type="iso-abbrev">Sci Rep</journal-id>
<journal-title-group>
<journal-title>Scientific Reports</journal-title>
</journal-title-group>
<issn pub-type="epub">2045-2322</issn>
<publisher>
<publisher-name>Nature Publishing Group</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">27009331</article-id>
<article-id pub-id-type="pmc">4806378</article-id>
<article-id pub-id-type="pii">srep23551</article-id>
<article-id pub-id-type="doi">10.1038/srep23551</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Haptic Edge Detection Through Shear</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Platkiewicz</surname>
<given-names>Jonathan</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lipson</surname>
<given-names>Hod</given-names>
</name>
<xref ref-type="aff" rid="a2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hayward</surname>
<given-names>Vincent</given-names>
</name>
<xref ref-type="corresp" rid="c1">a</xref>
<xref ref-type="aff" rid="a3">3</xref>
</contrib>
<aff id="a1">
<label>1</label>
<institution>The City College of New York, The City University of New York, Department of Mathematics</institution>
, New York, NY 10031,
<country>USA</country>
</aff>
<aff id="a2">
<label>2</label>
<institution>Columbia University, Department of Mechanical Engineering</institution>
, New York, NY 10027,
<country>USA</country>
</aff>
<aff id="a3">
<label>3</label>
<institution>Sorbonne Universités, UPMC Univ Paris 06</institution>
, UMR 7222, ISIR, F-75005, Paris,
<country>France</country>
</aff>
</contrib-group>
<author-notes>
<corresp id="c1">
<label>a</label>
<email>jonathan.platkiewicz@gmail.com</email>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>24</day>
<month>03</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="collection">
<year>2016</year>
</pub-date>
<volume>6</volume>
<elocation-id>23551</elocation-id>
<history>
<date date-type="received">
<day>13</day>
<month>11</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>02</day>
<month>03</month>
<year>2016</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2016, Macmillan Publishers Limited</copyright-statement>
<copyright-year>2016</copyright-year>
<copyright-holder>Macmillan Publishers Limited</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/4.0/">
<pmc-comment>author-paid</pmc-comment>
<license-p>This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
</license-p>
</license>
</permissions>
<abstract>
<p>Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals.</p>
</abstract>
</article-meta>
</front>
<body>
<p>A reliable mapping between the physical world and the acquired data is a basic issue faced by any artificial or natural sensory system. For instance, in vision, a fundamental challenge is to access robustly the geometry of a body from the structure of the captured light intensity, despite variations in the viewing conditions. This task is difficult because the intrinsic geometry of a body is not mapped one-to-one to the geometry of images
<xref ref-type="bibr" rid="b1">1</xref>
<xref ref-type="bibr" rid="b2">2</xref>
<xref ref-type="bibr" rid="b3">3</xref>
. Solutions to this problem have many applications, chief among them is computer vision
<xref ref-type="bibr" rid="b4">4</xref>
. Insights into this process also have important consequences for our understanding of the neurophysiology of visual perception
<xref ref-type="bibr" rid="b5">5</xref>
<xref ref-type="bibr" rid="b6">6</xref>
. In haptics, an analogous problem arises when attempting to access shape information from the deformation of a sensing probe in contact with an unknown rigid object
<xref ref-type="bibr" rid="b7">7</xref>
. In vision, analysis of the variations in distribution of light intensity enables the projected image to be decomposed into a set of primitives—edges, bars, blobs, and terminations—giving rise to the so-called ‘raw primal sketch’
<xref ref-type="bibr" rid="b8">8</xref>
. This decomposition leads to the notion of scale-space, where an image is analyzed at different resolutions since similar structures may occur at different scales
<xref ref-type="bibr" rid="b9">9</xref>
<xref ref-type="bibr" rid="b10">10</xref>
<xref ref-type="bibr" rid="b11">11</xref>
<xref ref-type="bibr" rid="b12">12</xref>
, thus enabling scale-invariant feature detection and analysis
<xref ref-type="bibr" rid="b13">13</xref>
. Given appropriate constraints, the primal sketch makes the identification of key aspects of the three-dimensional structure of a scene not only possible, but robust and efficient.</p>
<p>Here, it is proposed that a similar concept is applicable to touch, subject to the differences in the type of available sensory data in the two modalities. The regions of high strain caused by the protruding, low curvature features of a touched solid are undoubtedly of key relevance to haptic perception at different stages of somatosensory processing
<xref ref-type="bibr" rid="b14">14</xref>
<xref ref-type="bibr" rid="b15">15</xref>
. The robust detection of regions of high strain is thus of fundamental importance in the elaboration of any intermediate shape representation. In this study, we highlight an intriguing similarity between the inverse problems that must be solved in haptic shape processing and in visual shape processing when considering the mechanical behavior of an elastic medium deformed by an unknown object.</p>
<p>Artificial tactile sensors are typically comprised of an elastic sheet set against a rigid foundation in which mechanically sensitive elements are embedded
<xref ref-type="bibr" rid="b16">16</xref>
<xref ref-type="bibr" rid="b17">17</xref>
<xref ref-type="bibr" rid="b18">18</xref>
<xref ref-type="bibr" rid="b19">19</xref>
<xref ref-type="bibr" rid="b20">20</xref>
<xref ref-type="bibr" rid="b21">21</xref>
<xref ref-type="bibr" rid="b22">22</xref>
<xref ref-type="bibr" rid="b23">23</xref>
. Several mechanical parameters have been proposed for being tactually relevant: surface deformation, normal strain or stress, shear strain or stress, principal strains or axial strains, or a combination of these parameters. Currently, there is no consensus as to which of these parameters the sensors should detect (see a recent review
<xref ref-type="bibr" rid="b24">24</xref>
).</p>
<p>In primate fingers, which are very soft, the assumption that a high firing rate of the afferents innervating a given region of skin is a sufficient representation of an edge is rarely questioned
<xref ref-type="bibr" rid="b25">25</xref>
. However, the match with
<italic>in vivo</italic>
data has generally required the fit of models associated to numerous assumptions and parameters; and has been achieved for only certain contact conditions
<xref ref-type="bibr" rid="b26">26</xref>
<xref ref-type="bibr" rid="b27">27</xref>
<xref ref-type="bibr" rid="b28">28</xref>
. These discrepancies, often attributed to the complexities of skin mechanics, may also be a reflection of the fact that at the length-scale of the mechanoreceptors, the macroscopic laws of continuum mechanics do not apply, and the receptors exhibit sensitivity to privileged modes of deformation
<xref ref-type="bibr" rid="b7">7</xref>
.</p>
<p>In the present study, we propose that shear strain is a highly informative quantity to be extracted from a sensing sheet because the information that it contains is largely invariant to contact conditions. This hypothesis is justified by a mechanical analysis of the contact between an object and an elastic medium. The theory was tested using the universal jamming gripper
<xref ref-type="bibr" rid="b29">29</xref>
<xref ref-type="bibr" rid="b30">30</xref>
. Taking advantage of its shape-memory property, this device was employed as a tactile sensor by imaging its surface after contact with an object.</p>
<sec disp-level="1">
<title>Results</title>
<sec disp-level="2">
<title>Why shear?</title>
<p>The shear sensing hypothesis has been advanced by several authors
<xref ref-type="bibr" rid="b31">31</xref>
<xref ref-type="bibr" rid="b32">32</xref>
<xref ref-type="bibr" rid="b33">33</xref>
. Using the finite-element method, Ricker and Ellis pointed out that shear strain enables one to distinguish contacts causing similar normal strain profiles. Using a contact mechanics analysis, Wang and Hayward suggested that the shear strain distribution resulting from a line load resembles the derivative of a Gaussian function. In effect, line loads induce shear strain distributions that exhibit local maxima on each side of a narrow contact while going through zero where the edge impinges on the surface (
<xref ref-type="fig" rid="f1">Fig. 1a,b</xref>
), irrespective of the magnitude of the pressure.</p>
<p>When a rigid object with protruding edges comes in contact with an elastic half-space, the contacts can be modeled in first approximation as a line load or punch indentation according to the magnitude of the principal curvatures in the local region of contact. For instance, in human fingers, ‘quasi infinite edges’ arise if one curvature of the object is greater than that of the finger and if the other curvature is much smaller. Curved or short edges with high and low principal curvatures,
<xref ref-type="fig" rid="f1">Fig. 1c</xref>
, like those of a small coin (or of the tip of a screwdriver), will create deformation fields that resemble those shown in
<xref ref-type="fig" rid="f1">Fig. 1d</xref>
. These edges create contact conditions where the magnitude of the shear has local maxima in two regions, indicating the presence of an edge where shear crosses zero, see
<xref ref-type="fig" rid="f1">Fig. 1f</xref>
. Another frequent case is that of the punch indentation, such as a protruding corner or a Braille dot (high local principal curvatures), see
<xref ref-type="fig" rid="f1">Fig. 1e</xref>
. These cases correspond to the formation of an annulus of shear around the point of contact. Shear strain crosses zero along all radial directions, see
<xref ref-type="fig" rid="f1">Fig. 1g</xref>
.</p>
<p>These local extrema and zero crossings can serve as descriptive primitives of the underlying signal in a very general way
<xref ref-type="bibr" rid="b34">34</xref>
. In haptic processing we propose that the local extrema of the distribution of shear can be robust descriptors of the local topography of a touched object. In a given domain, pairs of extrema of shear strain would reveal the presence of an edge and its orientation under the condition that local shear crosses zero. A detection method based on such generic features would be invariant to surface pressure, making the detection robust to contact conditions.</p>
</sec>
<sec disp-level="2">
<title>Edges in vision and touch</title>
<p>In vision, edges correspond to discontinuities in the light intensity. These discontinuities can arise from the occlusion of an object by another, discontinuities in surface orientation or reflectance, or cast shadows. These circumstances create edges in a great variety of cases. In touch, edges primarily indicate discontinuities in surface orientation, and only if these discontinuities are protruding. They are rarely caused by other contact instances. Notably, sharp concave edges cannot be touched and must be inferred
<xref ref-type="bibr" rid="b35">35</xref>
. As a result, the principal curvatures must always be of the same sign. Flush surfaces with discontinuous frictional properties, such as different materials assembled edge-to-edge, are not typically classified as tactile edges (see later a discussion about their illusory occurrence), while their putative visual equivalents—illumination discontinuities on a uniform surface—are certainly classified as genuine edges.</p>
<p>Beyond the greater variety of situations corresponding to visual edges compared to tactile edges, the notion of edge differs more profoundly in the two modalities. Discontinuities in a light field are primarily described by step discontinuities, that is, when the light intensity differs in magnitude on each side of an edge. While roof discontinuities can occasionally arise in vision, in touch, edges are always roof discontinuities in sensor surface displacement (
<xref ref-type="fig" rid="f2">Fig. 2b</xref>
). Even in the limit case of a knife-edge or sharp punch indentation, the surface displacement must remain continuous, lest the sensor be damaged; it is the surface orientation that is discontinuous and differs on each side of an edge. Because mechanical sensing cannot be performed at the probe’s surface, contact mechanics dictates that what can be sensed must be a blurred transformation of surface displacement (an exception must be made for optically-based tactile sensors that convert mechanical roof discontinuities into optical step discontinuities
<xref ref-type="bibr" rid="b36">36</xref>
).</p>
<p>In vision, it is well accepted that edges can be extracted from an image by filtering it with a Laplacian of Gaussian function (
<xref ref-type="fig" rid="f2">Fig. 2a</xref>
)
<xref ref-type="bibr" rid="b10">10</xref>
<xref ref-type="bibr" rid="b37">37</xref>
. We propose that tactile edges can be extracted by a similar process, but the implementation of this process must differ fundamentally in the two modalities. Mechanically, it is possible to express shear strain,
<italic>γ</italic>
, in terms of the Laplacian of Gaussian filters (
<italic>Methods</italic>
). Thus, whenever a narrow contact impinges on the surface of a tactile probe, the condition,
<italic>γ</italic>
 = 0, must be satisfied just below the surface. This result can be seen by locating a narrow contact at the origin,
<italic>x</italic>
 = 0, and expressing the shear field,
<italic>γ</italic>
(
<italic>x</italic>
,
<italic>z</italic>
), as the convolution of the surface pressure,
<italic>p</italic>
(
<italic>x</italic>
), by a Gaussian of width
<italic>ε</italic>
,
<italic>ϕ</italic>
<sub>
<italic>ε</italic>
</sub>
(
<italic>x</italic>
), differentiated along the spatial variable,
<italic>x</italic>
, scaled by depth,
<italic>z</italic>
, and by the inverse of the elastic modulus of the medium,
<italic>E</italic>
, (
<italic>Methods</italic>
),</p>
<p>
<disp-formula id="eq1">
<inline-graphic id="d33e330" xlink:href="srep23551-m1.jpg"></inline-graphic>
</disp-formula>
</p>
<p>It implies that in terms of displacements, if
<italic>w</italic>
(
<italic>x</italic>
) is the surface displacement normal to the contact plane, the condition,</p>
<p>
<disp-formula id="eq2">
<inline-graphic id="d33e341" xlink:href="srep23551-m2.jpg"></inline-graphic>
</disp-formula>
</p>
<p>must hold for an incompressible elastic medium. The function,
<italic>ϕ</italic>
<sub>
<italic>ε</italic>
</sub>
(
<italic>x</italic>
), acts like ‘spread function’ from the view point of sensing units embedded in the surrounding elastic medium. From the limit case of a knife edge, and the Taylor expansion of the solution of the Boussinesq-Flamant’s problem
<xref ref-type="bibr" rid="b38">38</xref>
(
<italic>Methods</italic>
), we can deduce that the blurring width is
<inline-formula id="d33e358">
<inline-graphic id="d33e359" xlink:href="srep23551-m3.jpg"></inline-graphic>
</inline-formula>
, which thus scales with depth in the medium. Finite angle roof edges, blunt edges, and round edges will generally give rise to the same blurring property as sharp edges provided that the local details of high curvature are smoothed by the mechanics. For example, in the case of roof edges of support 2
<italic>a</italic>
in contact with the surface,
<xref ref-type="fig" rid="f2">Fig. 2b</xref>
, the equivalent blur width is
<inline-formula id="d33e368">
<inline-graphic id="d33e369" xlink:href="srep23551-m4.jpg"></inline-graphic>
</inline-formula>
. Thus, the dullness of the edge operates as a correction term (
<italic>Methods</italic>
). An edge with an obtuse angle will appear more blurred than a sharp edge. In all cases, the deeper the mechanoreceptors are located, the blurrier is their vision of the surface.</p>
<p>Expression (1) considers the ideal case of a frictionless surface, but realistic interactions generally also include a tangential component, the traction,
<italic>q</italic>
(
<italic>x</italic>
). Considering the contributions of both pressure and traction gives (
<italic>Methods</italic>
),</p>
<p>
<disp-formula id="eq5">
<inline-graphic id="d33e387" xlink:href="srep23551-m5.jpg"></inline-graphic>
</disp-formula>
</p>
<p>which shows that certain types of interactions other than edges can create shear zero-crossings, further suggesting that tactile sensing, as noted earlier, is inherently ambiguous.</p>
<p>Despite these ambiguities, in typical cases, shear analysis enables the robust detection of the presence and the localization of an edge, whereas normal strain measurement leads to solving an ill-posed problem (
<xref ref-type="fig" rid="f3">Fig. 3a–d</xref>
). The complexity of the mechanical equations enables the existence of ambiguous contact conditions that cannot be resolved by normal strain or shear strain sensing, see
<xref ref-type="fig" rid="f3">Fig. 3e,f</xref>
.</p>
</sec>
<sec disp-level="2">
<title>Predictions relative to haptic sensing</title>
<p>The application of contact mechanics theory to the interaction of a soft probe with a rigid object, (3), allows us to draw important conclusions regarding the haptic sensing of shape:
<list id="l1" list-type="bullet">
<list-item>
<p>The elasticity of the probe creates a Gaussian filter of scale,
<inline-formula id="d33e407">
<inline-graphic id="d33e408" xlink:href="srep23551-m6.jpg"></inline-graphic>
</inline-formula>
, with this quantity receiving a correction term dependent on the edge sharpness. This implies that the deeper the sensors, the more blurred the effects of surface deflection; the zero-crossings are preserved at all depths just below the surface.</p>
</list-item>
<list-item>
<p>Stiffer medium decreases tactile sensitivity; resolution is independent of the stiffness of the medium. Protecting the sensing units from damage limits how close they can be to the surface, which can be compensated by a softer material.</p>
</list-item>
<list-item>
<p>In the absence of friction, the elastic behavior of a probe can give rise to a Laplacian of Gaussian filter of the surface displacement normal to the contact plane. It follows that, according to the fingerprint theorem
<xref ref-type="bibr" rid="b39">39</xref>
, this displacement can be recovered if the shear strain is known at different depths below the surface of the probe.</p>
</list-item>
<list-item>
<p>Tangential displacements and normal indentation can cause similar sensory inputs. For example, if
<inline-formula id="d33e418">
<inline-graphic id="d33e419" xlink:href="srep23551-m7.jpg"></inline-graphic>
</inline-formula>
(
<italic>Methods</italic>
), certain pressure distributions and tangential tractions distributions give rise to the same shear magnitudes. The same is true of normal strain.</p>
</list-item>
</list>
</p>
</sec>
<sec disp-level="2">
<title>Experimental detection of an edge</title>
<p>We took advantage of the high conformability capability of the ‘universal jamming gripper’ to make a sensing probe
<xref ref-type="bibr" rid="b29">29</xref>
. This device is comprised of an elastic bag filled with a granular material,
<xref ref-type="fig" rid="f4">Fig. 4a</xref>
. The bag was attached to a rigid base communicating to an air conduit connected to a pressure source, see
<xref ref-type="fig" rid="f4">Fig. 4b</xref>
. When the pressure inside the bag was lowered, the particles jammed and the system underwent a phase transition from an elastic state to a solid state. The device in its elastic state was pressed against a target object, a close approximation to a line load. When the device conformed tightly with the target,
<xref ref-type="fig" rid="f4">Fig. 4c</xref>
, pressure was lowered and an imprint of the object was memorized,
<xref ref-type="fig" rid="f4">Fig. 4d</xref>
. The surface of the probe had 80 optical markers that could be imaged in three dimensions. The shear strain map and the locus of zero-crossing could then be computed by finite differences from successive incremental indentations, as exemplified in
<xref ref-type="fig" rid="f4">Fig. 4e</xref>
, (
<italic>Methods</italic>
). The shear strain map would typically have the form shown in
<xref ref-type="fig" rid="f4">Fig. 4f</xref>
, where the locus of the zero-crossing is shown by a black line (
<italic>Methods</italic>
).</p>
<p>To test invariance with respect to pressure, the process was repeated for different depths of indentation,
<xref ref-type="fig" rid="f4">Fig. 4g</xref>
. Over all indentations, the quality of a straight-line regression (Deming method) applied to the zero-crossing points was 0.2 ± 0.1 mm (average ± standard-deviation). The distance of each zero-crossing point to the actual edge was 1.1 ± 1.1 mm and the angular difference between the regressed line and the actual edge was 1.6 ± 1.0 degrees. The locus and the orientation of the edge were recovered regardless of indentation.</p>
</sec>
</sec>
<sec disp-level="1">
<title>Discussion</title>
<p>Access to the topography of a touched object should be immune to sensing conditions and sensor noise. It should be robust but also efficient. In quasi-static touch, the sources of variability include the contact conditions, the pressure applied, and the sharpness of protruding features. The commonly adopted method of detection of regions of maximal strain by differentiation is inherently unstable because it is sensitive to contact conditions, pressure applied, and sensor noise. The measurement of shear strain rather than normal strain naturally creates a Laplacian of Gaussian-type filter (“Mexican hat” filter) on the spatial distribution of the surface tangential and normal displacements. In other words, shear sensing in an elastic probe provides a scale-space analysis where the detection of zero-crossing makes it possible to reconstruct the topography of a touched object robustly and at different scales.</p>
<sec disp-level="2">
<title>Implications for conventional artificial tactile sensing</title>
<p>A tactile sensing principle based on shear strain detection could be applied to artificial tactile sensing with the benefit of invariance to contact conditions, which previous techniques did not afford. Following the approach of previous designs, arrays of shear-sensitive micro-sensors could be embedded within an elastic membrane to detect mechanical stimuli by any known sensing principle (e.g. electrical, optical, or fluidic). Our theory suggests that these individual sensing units ought to be sensitive to shear deformation and relatively insensitive to normal strain.</p>
<p>Tactile sensors often leverage the piezoresistive effect by using arrays of thin conductive elastomer wires or beads that exhibit a variation of conductance under compression
<xref ref-type="bibr" rid="b16">16</xref>
<xref ref-type="bibr" rid="b17">17</xref>
<xref ref-type="bibr" rid="b18">18</xref>
<xref ref-type="bibr" rid="b19">19</xref>
<xref ref-type="bibr" rid="b20">20</xref>
<xref ref-type="bibr" rid="b21">21</xref>
<xref ref-type="bibr" rid="b22">22</xref>
<xref ref-type="bibr" rid="b23">23</xref>
. Such reliance on normal strain renders these devices overly dependent on how an object is pressed upon their surface which introduces noise and ambiguity (see
<xref ref-type="fig" rid="f3">Fig. 3a–d</xref>
). By contrast, the detection of the zero-crossing of the shear strain would remain invariant under a wide range of sensing conditions. One such important and common case arises when the sensor surface does not conform with an object. Under this scenario, the zero-crossing of the shearing strain would not be different from the case of perfect conformation (see
<xref ref-type="fig" rid="f3">Fig. 3c,d</xref>
).</p>
</sec>
<sec disp-level="2">
<title>Beyond normal strain</title>
<p>Tactile sensing based on the measurement of parameters beyond just normal strain were considered by Fearing and Hollerbach: “Sensors that combine surface shear sensors, depth strain sensors, and surface deflection sensing would simplify the problem considerably”
<xref ref-type="bibr" rid="b40">40</xref>
; see also the discussion by Ricker and Ellis
<xref ref-type="bibr" rid="b32">32</xref>
. Tactile sensors that directly detect the displacements of the sensing membrane by optical projection benefit from having direct access to shear strain
<xref ref-type="bibr" rid="b41">41</xref>
<xref ref-type="bibr" rid="b42">42</xref>
. Optics also provides access to shear strain in the bulk, by imaging the relative displacement of two layers
<xref ref-type="bibr" rid="b43">43</xref>
. Photogrammic analysis of the light reflected by a surface of constant albedo, can provide detailed topography of a contacted object, and thus shear near the surface
<xref ref-type="bibr" rid="b44">44</xref>
. However, to our knowledge, no study has considered the option of detecting the zero-crossing of shear strain, nor explicitly formulated the natural processing performed by mechanical blurring.</p>
</sec>
<sec disp-level="2">
<title>Tactile illusions</title>
<p>In several reported haptic illusions, a sensation of shape can be elicited from distributed cutaneous lateral deformation
<xref ref-type="bibr" rid="b45">45</xref>
. For instance, in the “comb illusion”, the sensation of a raised dot traveling on the finger is experienced when a progressive wave of shearing deformation is produced on the fingerpad
<xref ref-type="bibr" rid="b33">33</xref>
<xref ref-type="bibr" rid="b46">46</xref>
<xref ref-type="bibr" rid="b47">47</xref>
. In the “fishbone illusion” and its variants, a sensation of a raised shape is induced when rubbing one’s finger on surfaces divided into strips made of different materials and/or textures
<xref ref-type="bibr" rid="b48">48</xref>
<xref ref-type="bibr" rid="b49">49</xref>
<xref ref-type="bibr" rid="b50">50</xref>
. The undulations of a surface can be magnified when a brush-like structure, the “tactile contact lens”, is interposed between the surface and the skin
<xref ref-type="bibr" rid="b51">51</xref>
. The recently described “chop-stick illusion” could be similarly explained
<xref ref-type="bibr" rid="b52">52</xref>
. All these illusions are based on the principle that certain surface tractions and pressure distributions can produce similar strains. If the surface pressure and traction are such that
<inline-formula id="d33e512">
<inline-graphic id="d33e513" xlink:href="srep23551-m8.jpg"></inline-graphic>
</inline-formula>
and
<italic>p</italic>
<sub>illusion</sub>
 = cst, where
<italic>p</italic>
<sub>real</sub>
is the pressure applied by a fingertip pressed against a raised surface, the shearing strain beneath the surface,
<italic>γ</italic>
<sub>illusion</sub>
(
<italic>x</italic>
,
<italic>z</italic>
), will be indistinguishable from the shear strain observed in normal conditions,
<italic>γ</italic>
<sub>real</sub>
(
<italic>x</italic>
,
<italic>z</italic>
).</p>
</sec>
<sec disp-level="2">
<title>Neurophysiology of edge detection</title>
<p>During static touch, the geometric features of haptic shapes are thought to be encoded by a population of slowly adapting mechanoreceptors
<xref ref-type="bibr" rid="b53">53</xref>
. Yet, the computational mechanism accounting for the detection of such features remains obscure. Recently, Pruszynski and Johansson proposed that these computations could be mediated by the combined activity of tactile afferents in the glabrous skin
<xref ref-type="bibr" rid="b54">54</xref>
. The authors propose a model based on the convolution of an afferent receptive field map with a spatially-filtered version of the presented stimuli. Under the assumption that slowly adapting mechanoreceptors encode shear strain, our framework suggests that second-order somatosensory neurons could detect the zero-crossing of the sensory input
<xref ref-type="bibr" rid="b55">55</xref>
. Thus, geometric haptic feature detection could be performed by a combination of pre-neural and early neural processing. A similar computational mechanism was proposed in vision
<xref ref-type="bibr" rid="b9">9</xref>
<xref ref-type="bibr" rid="b10">10</xref>
<xref ref-type="bibr" rid="b11">11</xref>
<xref ref-type="bibr" rid="b37">37</xref>
<xref ref-type="bibr" rid="b56">56</xref>
, with Laplacian of Gaussian filtering assumed to begin in the neural interaction of ganglion cells of the retina. By contrast, if mechanoreceptors indeed encode shear strain, this filtering process in touch may be directly mediated by the skin deformation. Here, we propose that a simple way for biologic and artificial tactile devices to realize robust edge detection is through shear strain sensing.</p>
</sec>
</sec>
<sec disp-level="1">
<title>Methods</title>
<sec disp-level="2">
<title>Experimental details</title>
<p>It was assumed that the curvature of the probe was much smaller than that of the object, thus approximating the case of a semi-infinite half-space indented by a line load. It was further assumed that the contribution of the tangential displacement to shear was negligible and that the contribution from normal displacement varied little with depth (for validity of these assuptions, see
<xref ref-type="supplementary-material" rid="S1">Supplementary Information</xref>
). Under these approximations, the measurement of the normal displacement gradient at the surface provides an estimate of the shear in the medium close to the surface. We ensured that the edge passed by the center of the probe. We tested nine levels of indentation, the relative distance by which the edge moved after the initial contact with the probe. Indentation was varied by increments of +2.5 mm within a range of 20 mm. The measurements were repeated three times for each level of indentation. From the 3D scans, we computed the shear strain map and its zero-crossing by tracking the markers from two frames incrementally distant from each other. The incremental components, (
<italic>u</italic>
,
<italic>v</italic>
,
<italic>w</italic>
), were then computed over the whole scan area using thin-plate spline interpolation. The shear strain was then estimated by differentiating the interpolated profile.</p>
</sec>
<sec disp-level="2">
<title>Mechanical blurring</title>
<p>The shear stresses caused by concentrated pressure
<italic>P</italic>
 = 1 and concentrated traction
<italic>Q</italic>
 = 1 constant along
<italic>y</italic>
and applied at
<italic>x</italic>
 = 0 on a linear elastic half space, with
<italic>z</italic>
pointing inside it, are
<xref ref-type="bibr" rid="b38">38</xref>
,</p>
<p>
<disp-formula id="eq9">
<inline-graphic id="d33e606" xlink:href="srep23551-m9.jpg"></inline-graphic>
</disp-formula>
</p>
<p>A contact with distributed pressure
<italic>p</italic>
(
<italic>x</italic>
) and traction
<italic>q</italic>
(
<italic>x</italic>
) can be viewed as an infinite sum of concentrated contacts
<xref ref-type="bibr" rid="b38">38</xref>
,</p>
<p>
<disp-formula id="eq10">
<inline-graphic id="d33e625" xlink:href="srep23551-m10.jpg"></inline-graphic>
</disp-formula>
</p>
<p>which can be rewritten using the convolution symbol,</p>
<p>
<disp-formula id="eq11">
<inline-graphic id="d33e630" xlink:href="srep23551-m11.jpg"></inline-graphic>
</disp-formula>
</p>
<p>Since we are interested in the character of shearing stress near the contact surface, we can expand the components of shear stress as ‘moment asymptotic expansion’ in the limit 1/
<italic>z</italic>
 → ∞ up to the first order
<xref ref-type="bibr" rid="b57">57</xref>
<xref ref-type="bibr" rid="b58">58</xref>
<xref ref-type="bibr" rid="b59">59</xref>
. Posing
<inline-formula id="d33e638">
<inline-graphic id="d33e639" xlink:href="srep23551-m12.jpg"></inline-graphic>
</inline-formula>
,</p>
<p>
<disp-formula id="eq13">
<inline-graphic id="d33e643" xlink:href="srep23551-m13.jpg"></inline-graphic>
</disp-formula>
</p>
<p>where</p>
<p>
<disp-formula id="eq14">
<inline-graphic id="d33e648" xlink:href="srep23551-m14.jpg"></inline-graphic>
</disp-formula>
</p>
<p>Since the integrands of
<italic>M</italic>
<sub>0</sub>
and
<italic>M</italic>
<sub>2</sub>
are odd functions, these moments are equal to zero. Thus, in the limit when
<italic>z</italic>
 → 0,</p>
<p>
<disp-formula id="eq15">
<inline-graphic id="d33e667" xlink:href="srep23551-m15.jpg"></inline-graphic>
</disp-formula>
</p>
<p>
<disp-formula id="eq16">
<inline-graphic id="d33e670" xlink:href="srep23551-m16.jpg"></inline-graphic>
</disp-formula>
</p>
<p>since
<italic>M</italic>
<sub>1</sub>
 = −1. Note that
<inline-formula id="d33e678">
<inline-graphic id="d33e679" xlink:href="srep23551-m17.jpg"></inline-graphic>
</inline-formula>
is the function
<inline-formula id="d33e681">
<inline-graphic id="d33e682" xlink:href="srep23551-m18.jpg"></inline-graphic>
</inline-formula>
and
<inline-formula id="d33e684">
<inline-graphic id="d33e685" xlink:href="srep23551-m19.jpg"></inline-graphic>
</inline-formula>
the function
<inline-formula id="d33e687">
<inline-graphic id="d33e688" xlink:href="srep23551-m20.jpg"></inline-graphic>
</inline-formula>
, where
<italic>L</italic>
<sub>
<italic>z</italic>
</sub>
is the Lorentzian function of scale parameter
<italic>z</italic>
that converges to the delta function as
<italic>z</italic>
 → 0. To make the blurring nature of contact mechanics explicit, take the case of Gaussian pressure and traction of the form
<inline-formula id="d33e703">
<inline-graphic id="d33e704" xlink:href="srep23551-m21.jpg"></inline-graphic>
</inline-formula>
, where
<italic>ε</italic>
is the width of the Gaussians,</p>
<p>
<disp-formula id="eq22">
<inline-graphic id="d33e711" xlink:href="srep23551-m22.jpg"></inline-graphic>
</disp-formula>
</p>
<p>thus,</p>
<p>
<disp-formula id="eq23">
<inline-graphic id="d33e716" xlink:href="srep23551-m23.jpg"></inline-graphic>
</disp-formula>
</p>
<p>and by the convolution sifting property,</p>
<p>
<disp-formula id="eq24">
<inline-graphic id="d33e721" xlink:href="srep23551-m24.jpg"></inline-graphic>
</disp-formula>
</p>
<p>
<disp-formula id="eq25">
<inline-graphic id="d33e724" xlink:href="srep23551-m25.jpg"></inline-graphic>
</disp-formula>
</p>
<p>since
<inline-formula id="d33e727">
<inline-graphic id="d33e728" xlink:href="srep23551-m26.jpg"></inline-graphic>
</inline-formula>
and
<inline-formula id="d33e730">
<inline-graphic id="d33e731" xlink:href="srep23551-m27.jpg"></inline-graphic>
</inline-formula>
when
<italic>ε</italic>
 → 0, then from (5), we can express shear stress in terms of Gaussian functions,</p>
<p>
<disp-formula id="eq28">
<inline-graphic id="d33e739" xlink:href="srep23551-m28.jpg"></inline-graphic>
</disp-formula>
</p>
<p>From Hooke’s law applied to an incompressible medium, when
<italic>z</italic>
is small the shear strain is,</p>
<p>
<disp-formula id="eq29">
<inline-graphic id="d33e747" xlink:href="srep23551-m29.jpg"></inline-graphic>
</disp-formula>
</p>
</sec>
<sec disp-level="2">
<title>Blur Size</title>
<p>To evaluate the size of the spread function in the case of a concentrated load as a function of the depth,
<italic>z</italic>
, we compare the Taylor series expansions of the exact expression of shear stress in the limit when
<italic>x</italic>
 ≪ 
<italic>z</italic>
. From (4),</p>
<p>
<disp-formula id="eq30">
<inline-graphic id="d33e764" xlink:href="srep23551-m30.jpg"></inline-graphic>
</disp-formula>
</p>
<p>with its blurring counterpart (6),</p>
<p>
<disp-formula id="eq31">
<inline-graphic id="d33e769" xlink:href="srep23551-m31.jpg"></inline-graphic>
</disp-formula>
</p>
<p>which gives by identification,
<inline-formula id="d33e772">
<inline-graphic id="d33e773" xlink:href="srep23551-m32.jpg"></inline-graphic>
</inline-formula>
. Similarly, the scale of the Gaussian blurring due to a sharp corner can be found by the Taylor expansion of the shear stress expression of a triangularly distributed pressure,
<inline-formula id="d33e775">
<inline-graphic id="d33e776" xlink:href="srep23551-m33.jpg"></inline-graphic>
</inline-formula>
, for −
<italic>a</italic>
 ≤ 
<italic>x</italic>
 ≤ 
<italic>a</italic>
and
<italic>p</italic>
(
<italic>x</italic>
) = 0 elsewhere,</p>
<p>
<disp-formula id="eq34">
<inline-graphic id="d33e796" xlink:href="srep23551-m34.jpg"></inline-graphic>
</disp-formula>
</p>
<p>which indicates that blur is both a function of
<italic>z</italic>
and
<italic>a</italic>
:
<inline-formula id="d33e805">
<inline-graphic id="d33e806" xlink:href="srep23551-m35.jpg"></inline-graphic>
</inline-formula>
, when
<italic>a</italic>
 ≪ 
<italic>z</italic>
.</p>
</sec>
<sec disp-level="2">
<title>Pressure-traction equivalence</title>
<p>From (6), there is a relationship between pressure and traction,</p>
<p>
<disp-formula id="eq36">
<inline-graphic id="d33e821" xlink:href="srep23551-m36.jpg"></inline-graphic>
</disp-formula>
</p>
</sec>
<sec disp-level="2">
<title>Displacements</title>
<p>We can express the contact mechanics in terms of displacements since, during interaction with solids, tactile stimuli are specified this way. From elasticity theory
<xref ref-type="bibr" rid="b38">38</xref>
, with incompressible media of elastic modulus,
<italic>E</italic>
, surface pressure and tractions are related to tangential,
<italic>u</italic>
, and normal,
<italic>w</italic>
, surface displacements by,</p>
<p>
<disp-formula id="eq37">
<inline-graphic id="d33e840" xlink:href="srep23551-m37.jpg"></inline-graphic>
</disp-formula>
</p>
<p>with
<italic>k</italic>
 = 2
<italic>πE</italic>
/3. Introducing the reciprocal function,
<italic>r</italic>
(
<italic>s</italic>
) = 1/
<italic>s</italic>
, these equations can be rewritten as,</p>
<p>
<disp-formula id="eq38">
<inline-graphic id="d33e860" xlink:href="srep23551-m38.jpg"></inline-graphic>
</disp-formula>
</p>
<p>The convolution inverse of the reciprocal function being
<inline-formula id="d33e863">
<inline-graphic id="d33e864" xlink:href="srep23551-m39.jpg"></inline-graphic>
</inline-formula>
, we can write,</p>
<p>
<disp-formula id="eq40">
<inline-graphic id="d33e868" xlink:href="srep23551-m40.jpg"></inline-graphic>
</disp-formula>
</p>
<p>From (6), we have as
<italic>z</italic>
 → 0,</p>
<p>
<disp-formula id="eq41">
<inline-graphic id="d33e876" xlink:href="srep23551-m41.jpg"></inline-graphic>
</disp-formula>
</p>
<p>from the differentiation property of convolution. We note that for a uniform tangential displacement,
<italic>u</italic>
′(
<italic>x</italic>
) = 0, the zero-crossing of the shear stress,
<inline-formula id="d33e885">
<inline-graphic id="d33e886" xlink:href="srep23551-m42.jpg"></inline-graphic>
</inline-formula>
, is given at a given depth,
<italic>z</italic>
, by the solution of</p>
<p>
<disp-formula id="eq43">
<inline-graphic id="d33e893" xlink:href="srep23551-m43.jpg"></inline-graphic>
</disp-formula>
</p>
<p>This condition resembles the computation performs in classic visual edge detection techniques, where an edge is detected by computing the zero-crossing of the Laplacian of Gaussian of an image intensity
<xref ref-type="bibr" rid="b37">37</xref>
.</p>
</sec>
</sec>
<sec disp-level="1">
<title>Additional Information</title>
<p>
<bold>How to cite this article</bold>
: Platkiewicz, J.
<italic>et al</italic>
. Haptic Edge Detection Through Shear.
<italic>Sci. Rep</italic>
.
<bold>6</bold>
, 23551; doi: 10.1038/srep23551 (2016).</p>
</sec>
<sec sec-type="supplementary-material" id="S1">
<title>Supplementary Material</title>
<supplementary-material id="d33e70" content-type="local-data">
<caption>
<title>Supplementary Information</title>
</caption>
<media xlink:href="srep23551-s1.pdf"></media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<p>We thank Masashi Nakatani, Abhishek Srivastava, Arthur Szlam, Tiberiu Tesileanu, and the members of the Cornell Creative Machines Lab for insightful discussions. We thank Sam McKenzie for helpful comments on earlier versions of the manuscript. This work was supported by the European Research Council (FP7 Program) ERC Advanced Grant (PATCH) to V.H. (No. 247300) and a Core Fulbright Visiting Scholar Program fellowship to J.P.</p>
</ack>
<ref-list>
<ref id="b1">
<mixed-citation publication-type="journal">
<name>
<surname>Koenderink</surname>
<given-names>J. J.</given-names>
</name>
&
<name>
<surname>van Doorn</surname>
<given-names>A. J.</given-names>
</name>
<article-title>Representation of local geometry in the visual system</article-title>
.
<source>Biol. Cybern.</source>
<volume>55</volume>
,
<fpage>367</fpage>
<lpage>375</lpage>
(
<year>1987</year>
).
<pub-id pub-id-type="pmid">3567240</pub-id>
</mixed-citation>
</ref>
<ref id="b2">
<mixed-citation publication-type="book">
<name>
<surname>Adelson</surname>
<given-names>E. H.</given-names>
</name>
&
<name>
<surname>Bergen</surname>
<given-names>J. R.</given-names>
</name>
<article-title>The plenoptic function and the elements of early vision</article-title>
in
<source>Computational Models of Visual Processing</source>
(eds.
<name>
<surname>Landy</surname>
<given-names>M.</given-names>
</name>
&
<name>
<surname>Movshon</surname>
<given-names>J. A.</given-names>
</name>
)
<fpage>3</fpage>
<lpage>20</lpage>
(MIT Press, Cambridge, MA,
<year>1991</year>
).</mixed-citation>
</ref>
<ref id="b3">
<mixed-citation publication-type="journal">
<name>
<surname>Howe</surname>
<given-names>C. Q.</given-names>
</name>
&
<name>
<surname>Purves</surname>
<given-names>D.</given-names>
</name>
In
<source>Perceiving Geometry: Geometrical Illusions Explained by Natural Scene Statistics</source>
<fpage>1</fpage>
<lpage>14</lpage>
(Springer, New York,
<year>2005</year>
).</mixed-citation>
</ref>
<ref id="b4">
<mixed-citation publication-type="journal">
<name>
<surname>Horn</surname>
<given-names>B.</given-names>
</name>
In
<source>Robot Vision</source>
<fpage>1</fpage>
<lpage>17</lpage>
(MIT press, Cambridge, MA,
<year>1986</year>
).</mixed-citation>
</ref>
<ref id="b5">
<mixed-citation publication-type="journal">
<name>
<surname>Connor</surname>
<given-names>C. E.</given-names>
</name>
,
<name>
<surname>Brincat</surname>
<given-names>S. L.</given-names>
</name>
&
<name>
<surname>Pasupathy</surname>
<given-names>A.</given-names>
</name>
<article-title>Transformation of shape information in the ventral pathway</article-title>
.
<source>Curr. Opin. Neurobiol.</source>
<volume>17</volume>
,
<fpage>140</fpage>
<lpage>147</lpage>
(
<year>2007</year>
).
<pub-id pub-id-type="pmid">17369035</pub-id>
</mixed-citation>
</ref>
<ref id="b6">
<mixed-citation publication-type="journal">
<name>
<surname>Orban</surname>
<given-names>G. A.</given-names>
</name>
<article-title>The extraction of 3d shape in the visual system of human and nonhuman primates</article-title>
.
<source>Annu. Rev. Neurosci.</source>
<volume>34</volume>
,
<fpage>361</fpage>
<lpage>388</lpage>
(
<year>2011</year>
).
<pub-id pub-id-type="pmid">21456959</pub-id>
</mixed-citation>
</ref>
<ref id="b7">
<mixed-citation publication-type="journal">
<name>
<surname>Hayward</surname>
<given-names>V.</given-names>
</name>
<article-title>Is there a plenhaptic function?</article-title>
<source>Phil. Trans. R. Soc. B</source>
<volume>366</volume>
,
<fpage>3115</fpage>
<lpage>3122</lpage>
(
<year>2011</year>
).
<pub-id pub-id-type="pmid">21969693</pub-id>
</mixed-citation>
</ref>
<ref id="b8">
<mixed-citation publication-type="book">
<name>
<surname>Marr</surname>
<given-names>D.</given-names>
</name>
In
<source>Vision: A Computational Investigation into the Human Representation and Processing of Visual Information</source>
<fpage>41</fpage>
<lpage>98</lpage>
(Freeman, San Francisco,
<year>1982</year>
).</mixed-citation>
</ref>
<ref id="b9">
<mixed-citation publication-type="journal">
<name>
<surname>Koenderink</surname>
<given-names>J. J.</given-names>
</name>
<article-title>The structure of images</article-title>
.
<source>Biol. Cybern.</source>
<volume>50</volume>
,
<fpage>363</fpage>
<lpage>370</lpage>
(
<year>1984</year>
).
<pub-id pub-id-type="pmid">6477978</pub-id>
</mixed-citation>
</ref>
<ref id="b10">
<mixed-citation publication-type="journal">
<name>
<surname>Lindeberg</surname>
<given-names>T.</given-names>
</name>
<article-title>Scale-space</article-title>
in
<source>Encyclopedia of Computer Science and Engineering</source>
(ed.
<name>
<surname>Wah</surname>
<given-names>B.</given-names>
</name>
)
<fpage>2495</fpage>
<lpage>2504</lpage>
(Wiley, Hoboken,
<year>2009</year>
).</mixed-citation>
</ref>
<ref id="b11">
<mixed-citation publication-type="journal">
<name>
<surname>Palmer</surname>
<given-names>S.</given-names>
</name>
In
<source>Vision Science: Photons to Phenomenology</source>
<fpage>180</fpage>
<lpage>181</lpage>
(MIT press, Cambridge, MA,
<year>1999</year>
).</mixed-citation>
</ref>
<ref id="b12">
<mixed-citation publication-type="journal">
<name>
<surname>Rolls</surname>
<given-names>E. T.</given-names>
</name>
&
<name>
<surname>Deco</surname>
<given-names>G.</given-names>
</name>
In
<source>Computational Neuroscience of Vision.</source>
<fpage>21</fpage>
<lpage>28</lpage>
(Oxford university press, Oxford,
<year>2002</year>
).</mixed-citation>
</ref>
<ref id="b13">
<mixed-citation publication-type="journal">
<name>
<surname>Lowe</surname>
<given-names>D. G.</given-names>
</name>
<article-title>Object recognition from local scale-invariant features</article-title>
.
<source>Proc. IEEE ICCV</source>
<volume>2</volume>
,
<fpage>1150</fpage>
<lpage>1157</lpage>
(
<year>1999</year>
).</mixed-citation>
</ref>
<ref id="b14">
<mixed-citation publication-type="journal">
<name>
<surname>Bensmaia</surname>
<given-names>S. J.</given-names>
</name>
,
<name>
<surname>Denchev</surname>
<given-names>P. V.</given-names>
</name>
,
<name>
<surname>Dammann</surname>
<given-names>J. F.</given-names>
</name>
,
<name>
<surname>Craig</surname>
<given-names>J. C.</given-names>
</name>
&
<name>
<surname>Hsiao</surname>
<given-names>S. S.</given-names>
</name>
<article-title>The representation of stimulus orientation in the early stages of somatosensory processing</article-title>
.
<source>J. Neurosci.</source>
<volume>28</volume>
,
<fpage>776</fpage>
<lpage>786</lpage>
(
<year>2008</year>
).
<pub-id pub-id-type="pmid">18199777</pub-id>
</mixed-citation>
</ref>
<ref id="b15">
<mixed-citation publication-type="journal">
<name>
<surname>Plaisier</surname>
<given-names>M. A.</given-names>
</name>
,
<name>
<surname>Bergmann Tiest</surname>
<given-names>W. M.</given-names>
</name>
&
<name>
<surname>Kappers</surname>
<given-names>A. M.</given-names>
</name>
<article-title>Salient features in 3-d haptic shape perception</article-title>
.
<source>Atten. Percept. Psychophys.</source>
<volume>71</volume>
,
<fpage>421</fpage>
<lpage>430</lpage>
(
<year>2009</year>
).
<pub-id pub-id-type="pmid">19304631</pub-id>
</mixed-citation>
</ref>
<ref id="b16">
<mixed-citation publication-type="journal">
<name>
<surname>Briot</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Renaud</surname>
<given-names>M.</given-names>
</name>
&
<name>
<surname>Stojilkovic</surname>
<given-names>Z.</given-names>
</name>
<article-title>Approach to spatial pattern-recognition of solid objects</article-title>
.
<source>IEEE Trans. Syst., Man, Cybern.</source>
<volume>8</volume>
,
<fpage>690</fpage>
<lpage>694</lpage>
(
<year>1978</year>
).</mixed-citation>
</ref>
<ref id="b17">
<mixed-citation publication-type="journal">
<name>
<surname>Hillis</surname>
<given-names>W. D.</given-names>
</name>
<article-title>A high-resolution imaging touch sensor</article-title>
.
<source>Int. J. Robot. Res.</source>
<volume>1</volume>
,
<fpage>33</fpage>
<lpage>44</lpage>
(
<year>1982</year>
).</mixed-citation>
</ref>
<ref id="b18">
<mixed-citation publication-type="journal">
<name>
<surname>Harmon</surname>
<given-names>L. R.</given-names>
</name>
<article-title>Automated tactile sensing</article-title>
.
<source>Int. J. Robot. Res.</source>
<volume>1</volume>
,
<fpage>3</fpage>
<lpage>32</lpage>
(
<year>1982</year>
).</mixed-citation>
</ref>
<ref id="b19">
<mixed-citation publication-type="journal">
<name>
<surname>Nicholls</surname>
<given-names>H. R.</given-names>
</name>
&
<name>
<surname>Lee</surname>
<given-names>M. H.</given-names>
</name>
<article-title>A survey of robot tactile sensing technology</article-title>
.
<source>Int. J. Robot. Res.</source>
<volume>8</volume>
,
<fpage>3</fpage>
<lpage>30</lpage>
(
<year>1989</year>
).</mixed-citation>
</ref>
<ref id="b20">
<mixed-citation publication-type="journal">
<name>
<surname>Lee</surname>
<given-names>M. H.</given-names>
</name>
&
<name>
<surname>Nicholls</surname>
<given-names>H. R.</given-names>
</name>
<article-title>Tactile sensing for mechatronics-a state of the art survey</article-title>
.
<source>Mechatronics</source>
<volume>9</volume>
,
<fpage>1</fpage>
<lpage>31</lpage>
(
<year>1999</year>
).</mixed-citation>
</ref>
<ref id="b21">
<mixed-citation publication-type="journal">
<name>
<surname>Cutkosky</surname>
<given-names>M. R.</given-names>
</name>
,
<name>
<surname>Howe</surname>
<given-names>R. D.</given-names>
</name>
&
<name>
<surname>Provancher</surname>
<given-names>W. R.</given-names>
</name>
<article-title>Force and tactile sensors</article-title>
in
<source>Springer Handbook of Robotics</source>
Part C.19 (eds.
<name>
<surname>Siciliano</surname>
<given-names>B.</given-names>
</name>
&
<name>
<surname>Kathib</surname>
<given-names>O.</given-names>
</name>
)
<fpage>455</fpage>
<lpage>476</lpage>
(Springer, Heidelberg,
<year>2008</year>
).</mixed-citation>
</ref>
<ref id="b22">
<mixed-citation publication-type="journal">
<name>
<surname>Dahiya</surname>
<given-names>R. S.</given-names>
</name>
,
<name>
<surname>Metta</surname>
<given-names>G.</given-names>
</name>
,
<name>
<surname>Valle</surname>
<given-names>M.</given-names>
</name>
&
<name>
<surname>Sandini</surname>
<given-names>G.</given-names>
</name>
<article-title>Tactile sensing-from humans to humanoids</article-title>
.
<source>IEEE Trans. Robot.</source>
<volume>26</volume>
,
<fpage>1</fpage>
<lpage>20</lpage>
(
<year>2010</year>
).</mixed-citation>
</ref>
<ref id="b23">
<mixed-citation publication-type="journal">
<name>
<surname>Lucarotti</surname>
<given-names>C.</given-names>
</name>
,
<name>
<surname>Oddo</surname>
<given-names>C. M.</given-names>
</name>
,
<name>
<surname>Vitiello</surname>
<given-names>N.</given-names>
</name>
&
<name>
<surname>Carrozza</surname>
<given-names>M. C.</given-names>
</name>
<article-title>Synthetic and bio-artificial tactile sensing: a review</article-title>
.
<source>Sensors</source>
<volume>13</volume>
,
<fpage>1435</fpage>
<lpage>1466</lpage>
(
<year>2013</year>
).
<pub-id pub-id-type="pmid">23348032</pub-id>
</mixed-citation>
</ref>
<ref id="b24">
<mixed-citation publication-type="journal">
<name>
<surname>Hammock</surname>
<given-names>M. L.</given-names>
</name>
,
<name>
<surname>Chortos</surname>
<given-names>A.</given-names>
</name>
,
<name>
<surname>Tee</surname>
<given-names>B. C. K.</given-names>
</name>
,
<name>
<surname>Tok</surname>
<given-names>J. B. H.</given-names>
</name>
&
<name>
<surname>Bao</surname>
<given-names>Z.</given-names>
</name>
<article-title>25th Anniversary Article: The Evolution of Electronic Skin (E-Skin): A Brief History, Design Considerations, and Recent Progress</article-title>
.
<source>Adv. Mater.</source>
<volume>25</volume>
,
<fpage>5997</fpage>
<lpage>6038</lpage>
(
<year>2013</year>
).
<pub-id pub-id-type="pmid">24151185</pub-id>
</mixed-citation>
</ref>
<ref id="b25">
<mixed-citation publication-type="journal">
<name>
<surname>Phillips</surname>
<given-names>J. R.</given-names>
</name>
&
<name>
<surname>Johnson</surname>
<given-names>K. O.</given-names>
</name>
<article-title>Tactile spatial resolution. II A continuum mechanics model of skin predicting mechanoreceptor responses to bars, edges, and gratings</article-title>
.
<source>J. Neurophysiol.</source>
<volume>46</volume>
,
<fpage>1204</fpage>
<lpage>1225</lpage>
(
<year>1981</year>
).
<pub-id pub-id-type="pmid">7320743</pub-id>
</mixed-citation>
</ref>
<ref id="b26">
<mixed-citation publication-type="journal">
<name>
<surname>Phillips</surname>
<given-names>J. R.</given-names>
</name>
&
<name>
<surname>Johnson</surname>
<given-names>K. O.</given-names>
</name>
<article-title>Tactile spatial resolution. III A continuum mechanics model of skin predicting mechanoreceptor responses to bars, edges, and gratings</article-title>
.
<source>J. Neurophysiol.</source>
<volume>46</volume>
,
<fpage>1204</fpage>
<lpage>1225</lpage>
(
<year>1981</year>
).
<pub-id pub-id-type="pmid">7320743</pub-id>
</mixed-citation>
</ref>
<ref id="b27">
<mixed-citation publication-type="journal">
<name>
<surname>Sripati</surname>
<given-names>A. P.</given-names>
</name>
,
<name>
<surname>Bensmaia</surname>
<given-names>S. J.</given-names>
</name>
&
<name>
<surname>Johnson</surname>
<given-names>K. O.</given-names>
</name>
<article-title>A continuum mechanical model of mechanoreceptive afferent responses to indented spatial patterns</article-title>
.
<source>J. Neurophysiol.</source>
<volume>95</volume>
,
<fpage>3852</fpage>
<lpage>3864</lpage>
(
<year>2006</year>
).
<pub-id pub-id-type="pmid">16481453</pub-id>
</mixed-citation>
</ref>
<ref id="b28">
<mixed-citation publication-type="journal">
<name>
<surname>Gerling</surname>
<given-names>G. J.</given-names>
</name>
,
<name>
<surname>Rivest</surname>
<given-names>I. I.</given-names>
</name>
,
<name>
<surname>Lesniak</surname>
<given-names>D. R.</given-names>
</name>
,
<name>
<surname>Scanlon</surname>
<given-names>J. R.</given-names>
</name>
&
<name>
<surname>Wan</surname>
<given-names>L.</given-names>
</name>
<article-title>Validating a population model of tactile mechanotransduction of slowly adapting type I afferents at levels of skin mechanics, single-unit response and psychophysics</article-title>
.
<source>IEEE Trans. Haptics</source>
<volume>7</volume>
,
<fpage>216</fpage>
<lpage>228</lpage>
(
<year>2014</year>
).
<pub-id pub-id-type="pmid">24960553</pub-id>
</mixed-citation>
</ref>
<ref id="b29">
<mixed-citation publication-type="journal">
<name>
<surname>Brown</surname>
<given-names>E.</given-names>
</name>
<etal></etal>
.
<article-title>Universal robotic gripper based on the jamming of granular material</article-title>
.
<source>Proc. Natl. Acad. Sci. USA</source>
<volume>107</volume>
,
<fpage>18809</fpage>
<lpage>18814</lpage>
(
<year>2010</year>
).</mixed-citation>
</ref>
<ref id="b30">
<mixed-citation publication-type="journal">
<name>
<surname>Amend</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Brown</surname>
<given-names>E.</given-names>
</name>
,
<name>
<surname>Rodenberg</surname>
<given-names>N.</given-names>
</name>
,
<name>
<surname>Jaeger</surname>
<given-names>H.</given-names>
</name>
&
<name>
<surname>Lipson</surname>
<given-names>H.</given-names>
</name>
<article-title>A positive pressure universal gripper based on the jamming of granular material</article-title>
.
<source>IEEE Trans. Robot.</source>
<volume>28</volume>
,
<fpage>341</fpage>
<lpage>350</lpage>
(
<year>2012</year>
).</mixed-citation>
</ref>
<ref id="b31">
<mixed-citation publication-type="journal">
<name>
<surname>Howe</surname>
<given-names>R.</given-names>
</name>
<article-title>Tactile sensing and control of robotic manipulation</article-title>
.
<source>Adv. Robot.</source>
<volume>8</volume>
,
<fpage>245</fpage>
<lpage>261</lpage>
(
<year>1993</year>
).</mixed-citation>
</ref>
<ref id="b32">
<mixed-citation publication-type="journal">
<name>
<surname>Ricker</surname>
<given-names>S. L.</given-names>
</name>
&
<name>
<surname>Ellis</surname>
<given-names>R. E.</given-names>
</name>
<article-title>2-d finite-element models of tactile sensors</article-title>
.
<source>Proc. IEEE ICRA</source>
<fpage>941</fpage>
<lpage>947</lpage>
(
<year>1993</year>
).</mixed-citation>
</ref>
<ref id="b33">
<mixed-citation publication-type="journal">
<name>
<surname>Wang</surname>
<given-names>Q.</given-names>
</name>
&
<name>
<surname>Hayward</surname>
<given-names>V.</given-names>
</name>
<article-title>Tactile synthesis and perceptual inverse problems seen from the viewpoint of contact mechanics</article-title>
.
<source>ACM Trans. Appl. Percept.</source>
<volume>5</volume>
,
<fpage>1</fpage>
<lpage>19</lpage>
(
<year>2008</year>
).</mixed-citation>
</ref>
<ref id="b34">
<mixed-citation publication-type="journal">
<name>
<surname>Witkin</surname>
<given-names>A. P.</given-names>
</name>
<article-title>Scale-space filtering: A new approach to multi-scale description</article-title>
.
<source>Proc. IEEE ICASSP</source>
<volume>9</volume>
,
<fpage>150</fpage>
<lpage>153</lpage>
(
<year>1984</year>
).</mixed-citation>
</ref>
<ref id="b35">
<mixed-citation publication-type="book">
<name>
<surname>Hayward</surname>
<given-names>V.</given-names>
</name>
<article-title>Haptic shape cues, invariants, priors and interface design</article-title>
in
<source>Human Haptic Perception: Basics and Applications</source>
(ed.
<name>
<surname>Grunwald</surname>
<given-names>M.</given-names>
</name>
)
<fpage>381</fpage>
<lpage>392</lpage>
(Birkhäuser, Basel,
<year>2008</year>
).</mixed-citation>
</ref>
<ref id="b36">
<mixed-citation publication-type="journal">
<name>
<surname>Li</surname>
<given-names>R.</given-names>
</name>
&
<name>
<surname>Adelson</surname>
<given-names>E. H.</given-names>
</name>
<article-title>Sensing and recognizing surface textures using a gelsight sensor</article-title>
.
<source>Proc. IEEE CVPR</source>
<fpage>1241</fpage>
<lpage>1247</lpage>
(
<year>2013</year>
).</mixed-citation>
</ref>
<ref id="b37">
<mixed-citation publication-type="journal">
<name>
<surname>Marr</surname>
<given-names>D.</given-names>
</name>
&
<name>
<surname>Hildreth</surname>
<given-names>E.</given-names>
</name>
<article-title>Theory of edge detection</article-title>
.
<source>Proc. R. Soc. Lond. B</source>
<volume>207</volume>
,
<fpage>187</fpage>
<lpage>217</lpage>
(
<year>1980</year>
).
<pub-id pub-id-type="pmid">6102765</pub-id>
</mixed-citation>
</ref>
<ref id="b38">
<mixed-citation publication-type="journal">
<name>
<surname>Johnson</surname>
<given-names>K. L.</given-names>
</name>
In
<source>Contact Mechanics</source>
<fpage>11</fpage>
<lpage>29</lpage>
(Cambridge University Press, Cambridge,
<year>1985</year>
).</mixed-citation>
</ref>
<ref id="b39">
<mixed-citation publication-type="journal">
<name>
<surname>Yuille</surname>
<given-names>A. L.</given-names>
</name>
&
<name>
<surname>Poggio</surname>
<given-names>T. A.</given-names>
</name>
<article-title>Fingerprints theorems for zero crossings</article-title>
.
<source>J. Opt. Soc. Am.</source>
<volume>2</volume>
,
<fpage>683</fpage>
<lpage>692</lpage>
(
<year>1985</year>
).</mixed-citation>
</ref>
<ref id="b40">
<mixed-citation publication-type="journal">
<name>
<surname>Fearing</surname>
<given-names>R. S.</given-names>
</name>
&
<name>
<surname>Hollerbach</surname>
<given-names>J. M.</given-names>
</name>
<article-title>Basic solid mechanics for tactile sensing</article-title>
.
<source>Int. J. Robot. Res.</source>
<volume>4</volume>
,
<fpage>40</fpage>
<lpage>54</lpage>
(
<year>1985</year>
).</mixed-citation>
</ref>
<ref id="b41">
<mixed-citation publication-type="journal">
<name>
<surname>Ferrier</surname>
<given-names>N. J.</given-names>
</name>
&
<name>
<surname>Brockett</surname>
<given-names>R. W.</given-names>
</name>
<article-title>Reconstructing the shape of a deformable membrane from image data</article-title>
.
<source>Int. J. Robot. Res.</source>
<volume>19</volume>
,
<fpage>795</fpage>
<lpage>816</lpage>
(
<year>2000</year>
).</mixed-citation>
</ref>
<ref id="b42">
<mixed-citation publication-type="journal">
<name>
<surname>Chorley</surname>
<given-names>C.</given-names>
</name>
,
<name>
<surname>Melhuish</surname>
<given-names>C.</given-names>
</name>
,
<name>
<surname>Pipe</surname>
<given-names>T.</given-names>
</name>
&
<name>
<surname>Rossiter</surname>
<given-names>J.</given-names>
</name>
<article-title>Tactile edge detection</article-title>
.
<source>IEEE Sensors</source>
<fpage>2593</fpage>
<lpage>2598</lpage>
(
<year>2010</year>
).</mixed-citation>
</ref>
<ref id="b43">
<mixed-citation publication-type="journal">
<name>
<surname>Sato</surname>
<given-names>K.</given-names>
</name>
,
<name>
<surname>Kamiyama</surname>
<given-names>K.</given-names>
</name>
,
<name>
<surname>Kawakami</surname>
<given-names>N.</given-names>
</name>
&
<name>
<surname>Tachi</surname>
<given-names>S.</given-names>
</name>
<article-title>Finger-shaped gelforce: sensor for measuring surface traction fields for robotic hand</article-title>
.
<source>IEEE Trans. Haptics</source>
<volume>3</volume>
,
<fpage>37</fpage>
<lpage>47</lpage>
(
<year>2010</year>
).</mixed-citation>
</ref>
<ref id="b44">
<mixed-citation publication-type="journal">
<name>
<surname>Johnson</surname>
<given-names>M. K.</given-names>
</name>
&
<name>
<surname>Adelson</surname>
<given-names>E. H.</given-names>
</name>
<article-title>Retrographic sensing for the measurement of surface texture and shape</article-title>
.
<source>Proc. IEEE CVPR</source>
<fpage>1070</fpage>
<lpage>1077</lpage>
(
<year>2009</year>
).</mixed-citation>
</ref>
<ref id="b45">
<mixed-citation publication-type="journal">
<name>
<surname>Hayward</surname>
<given-names>V.</given-names>
</name>
<article-title>A brief taxonomy of tactile illusions and demonstrations that can be done in a hardware store</article-title>
.
<source>Brain Res. Bull.</source>
<volume>75</volume>
,
<fpage>742</fpage>
<lpage>752</lpage>
(
<year>2008</year>
).
<pub-id pub-id-type="pmid">18394520</pub-id>
</mixed-citation>
</ref>
<ref id="b46">
<mixed-citation publication-type="journal">
<name>
<surname>Levesque</surname>
<given-names>V.</given-names>
</name>
,
<name>
<surname>Pasquero</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Hayward</surname>
<given-names>V.</given-names>
</name>
&
<name>
<surname>Legault</surname>
<given-names>M.</given-names>
</name>
<article-title>Display of virtual Braille dots by lateral skin deformation: Feasibility study</article-title>
.
<source>ACM Trans. Appl. Percept.</source>
<volume>2</volume>
,
<fpage>132</fpage>
<lpage>149</lpage>
(
<year>2005</year>
).</mixed-citation>
</ref>
<ref id="b47">
<mixed-citation publication-type="journal">
<name>
<surname>Hayward</surname>
<given-names>V.</given-names>
</name>
&
<name>
<surname>Cruz-Hernandez</surname>
<given-names>M.</given-names>
</name>
<article-title>Tactile display device using distributed lateral skin stretch</article-title>
.
<source>Proc. HAPTICS</source>
<volume>69</volume>
,
<fpage>1309</fpage>
<lpage>1314</lpage>
(
<year>2000</year>
).</mixed-citation>
</ref>
<ref id="b48">
<mixed-citation publication-type="journal">
<name>
<surname>Nakatani</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Howe</surname>
<given-names>R. D.</given-names>
</name>
&
<name>
<surname>Tachi</surname>
<given-names>S.</given-names>
</name>
<article-title>Surface texture can bias tactile form perception</article-title>
.
<source>Exp. Brain Res.</source>
<volume>208</volume>
,
<fpage>151</fpage>
<lpage>156</lpage>
(
<year>2011</year>
).
<pub-id pub-id-type="pmid">20981539</pub-id>
</mixed-citation>
</ref>
<ref id="b49">
<mixed-citation publication-type="journal">
<name>
<surname>Nakatani</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Howe</surname>
<given-names>R. D.</given-names>
</name>
&
<name>
<surname>Tachi</surname>
<given-names>S.</given-names>
</name>
<article-title>The fishbone tactile illusion</article-title>
.
<source>Eurohaptics.</source>
<fpage>69</fpage>
<lpage>73</lpage>
(
<year>2006</year>
).</mixed-citation>
</ref>
<ref id="b50">
<mixed-citation publication-type="journal">
<name>
<surname>Nakatani</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Sato</surname>
<given-names>A.</given-names>
</name>
,
<name>
<surname>Tachi</surname>
<given-names>S.</given-names>
</name>
&
<name>
<surname>Hayward</surname>
<given-names>V.</given-names>
</name>
<article-title>Tactile illusion caused by tangential skin strain and analysis in terms of skin deformation</article-title>
in
<source>Haptics: Perception, Devices and Scenarios</source>
<volume>Vol. 5024</volume>
(ed.
<name>
<surname>Ferre</surname>
<given-names>M.</given-names>
</name>
)
<fpage>229</fpage>
<lpage>237</lpage>
(Springer, Heidelberg,
<year>2008</year>
).</mixed-citation>
</ref>
<ref id="b51">
<mixed-citation publication-type="journal">
<name>
<surname>Kikkuwe</surname>
<given-names>R.</given-names>
</name>
,
<name>
<surname>Sano</surname>
<given-names>A.</given-names>
</name>
,
<name>
<surname>Mochiyama</surname>
<given-names>H.</given-names>
</name>
,
<name>
<surname>Takesue</surname>
<given-names>N.</given-names>
</name>
&
<name>
<surname>Fujimoto</surname>
<given-names>H.</given-names>
</name>
<article-title>Enhancing haptic detection of surface undulation</article-title>
.
<source>ACM Trans. Appl. Percept.</source>
<volume>2</volume>
,
<fpage>46</fpage>
<lpage>67</lpage>
(
<year>2005</year>
).</mixed-citation>
</ref>
<ref id="b52">
<mixed-citation publication-type="journal">
<name>
<surname>Handzic</surname>
<given-names>I.</given-names>
</name>
&
<name>
<surname>Reed</surname>
<given-names>K. B.</given-names>
</name>
<article-title>The ‘chopstick’ illusion: A simply demonstrated tactile illusion</article-title>
.
<source>Proc. HAPTICS</source>
<fpage>551</fpage>
<lpage>555</lpage>
(
<year>2014</year>
).</mixed-citation>
</ref>
<ref id="b53">
<mixed-citation publication-type="journal">
<name>
<surname>Hsiao</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Johnson</surname>
<given-names>K. O.</given-names>
</name>
&
<name>
<surname>Yoshioka</surname>
<given-names>T.</given-names>
</name>
<article-title>Processing of tactile information in the primate brain</article-title>
in
<source>Handbook of Psychology</source>
(ed.
<name>
<surname>Weiner</surname>
<given-names>I. B.</given-names>
</name>
) Ch. 8,
<fpage>211</fpage>
<lpage>236</lpage>
(Wiley,
<year>2003</year>
).</mixed-citation>
</ref>
<ref id="b54">
<mixed-citation publication-type="journal">
<name>
<surname>Pruszynski</surname>
<given-names>J. A.</given-names>
</name>
&
<name>
<surname>Johansson</surname>
<given-names>R. S.</given-names>
</name>
<article-title>Edge-orientation processing in first-order tactile neurons</article-title>
.
<source>Nat. Neurosci.</source>
<volume>17</volume>
,
<fpage>1404</fpage>
<lpage>1409</lpage>
(
<year>2014</year>
).
<pub-id pub-id-type="pmid">25174006</pub-id>
</mixed-citation>
</ref>
<ref id="b55">
<mixed-citation publication-type="journal">
<name>
<surname>Jörntell</surname>
<given-names>H.</given-names>
</name>
<etal></etal>
.
<article-title>Segregation of tactile input features in neurons of the cuneate nucleus</article-title>
.
<source>Neuron</source>
<volume>83</volume>
,
<fpage>1</fpage>
<lpage>9</lpage>
(
<year>2014</year>
).
<pub-id pub-id-type="pmid">24991948</pub-id>
</mixed-citation>
</ref>
<ref id="b56">
<mixed-citation publication-type="journal">
<name>
<surname>Torre</surname>
<given-names>V.</given-names>
</name>
&
<name>
<surname>Poggio</surname>
<given-names>T. A.</given-names>
</name>
<article-title>On edge detection</article-title>
.
<source>IEEE Trans. Pattern Anal. Mach. Intell.</source>
<volume>3</volume>
,
<fpage>147</fpage>
<lpage>163</lpage>
(
<year>1986</year>
).
<pub-id pub-id-type="pmid">21869334</pub-id>
</mixed-citation>
</ref>
<ref id="b57">
<mixed-citation publication-type="journal">
<name>
<surname>Argatov</surname>
<given-names>I. I.</given-names>
</name>
<article-title>The pressure of a punch in the form of an elliptic paraboloid on a thin elastic layer</article-title>
.
<source>Acta Mech.</source>
<volume>180</volume>
,
<fpage>221</fpage>
<lpage>232</lpage>
(
<year>2005</year>
).</mixed-citation>
</ref>
<ref id="b58">
<mixed-citation publication-type="journal">
<name>
<surname>Estrada</surname>
<given-names>R.</given-names>
</name>
&
<name>
<surname>Kanwal</surname>
<given-names>R. P.</given-names>
</name>
<article-title>A distributional theory for asymptotic expansions</article-title>
.
<source>Proc. R. Soc. Lond. A</source>
<volume>428</volume>
,
<fpage>399</fpage>
<lpage>430</lpage>
(
<year>1990</year>
).</mixed-citation>
</ref>
<ref id="b59">
<mixed-citation publication-type="journal">
<name>
<surname>Lindell</surname>
<given-names>I. V.</given-names>
</name>
<article-title>Delta function expansions, complex delta functions and the steepest descent method</article-title>
.
<source>Am. J. Phys.</source>
<volume>61</volume>
,
<fpage>438</fpage>
<lpage>442</lpage>
(
<year>1992</year>
).</mixed-citation>
</ref>
<ref id="b60">
<mixed-citation publication-type="journal">
<name>
<surname>Hsiao</surname>
<given-names>S.</given-names>
</name>
<article-title>Central mechanisms of tactile shape perception</article-title>
.
<source>Curr. Opin. Neurobiol.</source>
<volume>18</volume>
,
<fpage>418</fpage>
<lpage>424</lpage>
(
<year>2008</year>
).
<pub-id pub-id-type="pmid">18809491</pub-id>
</mixed-citation>
</ref>
<ref id="b61">
<mixed-citation publication-type="journal">
<name>
<surname>Speeter</surname>
<given-names>T. H.</given-names>
</name>
<article-title>Three-dimensional finite element analysis of elastic continua for tactile sensing</article-title>
.
<source>Int. J. Robot. Res.</source>
<volume>11</volume>
,
<fpage>1</fpage>
<lpage>19</lpage>
(
<year>1992</year>
).</mixed-citation>
</ref>
</ref-list>
<fn-group>
<fn>
<p>
<bold>Author Contributions</bold>
J.P. and V.H. developed the theory. J.P., H.L. and V.H. conceived the experiment. J.P. conducted the experiment and analysed the results. J.P. and V.H. prepared the manuscript. All authors discussed the results and reviewed the manuscript.</p>
</fn>
</fn-group>
</back>
<floats-group>
<fig id="f1">
<label>Figure 1</label>
<caption>
<title>Shear sensing hypothesis.</title>
<p>(
<bold>a</bold>
) First consider an elastic half-space indented by a line load (knife-edge). The black line shows surface displacement according to the classical theory
<xref ref-type="bibr" rid="b38">38</xref>
. Surface displacement is undefined at
<italic>x</italic>
 = 0 in the case of an infinitely narrow edge. A deformation field develops inside the elastic body. The gray and black blocks respectively represent undeformed and deformed cubic elements. Shear strain corresponds to the angular deformation of these elements. (
<bold>b</bold>
) The graph shows the evolution of shear along the
<italic>x</italic>
direction. (
<bold>c</bold>
) Generic contact patch with the axes aligned with the principal curvatures,
<italic>k</italic>
<sub>
<italic>x</italic>
</sub>
and
<italic>k</italic>
<sub>
<italic>y</italic>
</sub>
, the inverses of the radii of the osculating circles. Surface displacement caused (
<bold>d</bold>
) by an edge of finite extent, such as the edge of a coin where
<italic>k</italic>
<sub>
<italic>x</italic>
</sub>
is large and
<italic>k</italic>
<sub>
<italic>y</italic>
</sub>
small, and (
<bold>e</bold>
) by a small axi-symmetric punch where
<italic>k</italic>
<sub>
<italic>x</italic>
</sub>
and
<italic>k</italic>
<sub>
<italic>y</italic>
</sub>
are both high. (
<bold>f</bold>
) Regions of shear develop on each side of the impinging edge. (
<bold>g</bold>
) For a small punch, the region of shear deformation forms an annulus centered where it is zero. If the curvature of the indenting object becomes small, the magnitude plot of the shear morphs into the case of the punch.</p>
</caption>
<graphic xlink:href="srep23551-f1"></graphic>
</fig>
<fig id="f2">
<label>Figure 2</label>
<caption>
<title>Visual edges compared to tactile edges.</title>
<p>The detection of a step cannot be performed by direct differentiation because it is an ill-posed problem
<xref ref-type="bibr" rid="b56">56</xref>
. Sensor signals being invariably corrupted by noise, including sampling noise, differentiation is inherently unstable. (
<bold>a</bold>
) In machines and animals it is well accepted that edge detection must begin by a smoothing operation (convolution, ‘*’, by a Gaussian) to set the scale,
<italic>σ</italic>
, at which the signal ought to be processed according to contrast and width. The ability to handle multiple scales is a fundamental requirement to achieve invariance with respect to distance and illumination. This step is followed by double differentiation to locate the edge by detection of local extrema and zero crossings. In animals, this process begins in the retinal cells and is distributed in the visual pathway and the cortical primary visual areas. (
<bold>b</bold>
) In touch, since individual sensing units are set at a distance,
<italic>z</italic>
, from the surface, the detection of a roof begins by blurring owing to the elastic mechanics of the sensor. If, according to our hypothesis, shear deformation is sensed then edges can be located robustly, like in vision, by the detection of local extrema and zero crossings, without the need to differentiate twice. The mechanical processing scale is determined by the depth of the receptors and the depth of indentation. Scale invariance should apply to indentation depth since the same edge must be detected regardless of how much pressure is applied. In mammals, this process could begin in tactile afferents
<xref ref-type="bibr" rid="b54">54</xref>
, continue in the dorsal column nuclei
<xref ref-type="bibr" rid="b55">55</xref>
, and terminate in the cortical somatosensory areas
<xref ref-type="bibr" rid="b60">60</xref>
.</p>
</caption>
<graphic xlink:href="srep23551-f2"></graphic>
</fig>
<fig id="f3">
<label>Figure 3</label>
<caption>
<title>Comparison of the information provided by normal vs. shear strain sensing.</title>
<p>(
<bold>a</bold>
) The common roof edge does correspond to a extremum in normal strain. The detection of this extremum, however, is mathematically equivalent to the computation of the point where its derivative is zero, the computation of which is an ill-posed problem
<xref ref-type="bibr" rid="b56">56</xref>
. The value of its maximum increases with indentation and thus lacks an important invariant property. In contrast, shear strain crosses zero for any indentation depth at the edge location. (
<bold>b</bold>
) A smooth edge corresponds to a weak, undetectable variation of normal strain. The zero-crossing of shear strain is conserved regardless of the local geometry of the edge. (
<bold>c</bold>
) A raised edge has a sufficiently small curvature such that, once blurred, it is detected like a sharp edge despite lack of conformability. (
<bold>d</bold>
) A bar, or double edge, corresponds to two maxima in an appropriate range of scales. Shear strain preserves the zero crossings for a wide range of bar geometries and sensor depths. Cases (
<bold>a</bold>
,
<bold>b</bold>
,
<bold>d</bold>
) were considered in
<xref ref-type="bibr" rid="b32">32</xref>
<xref ref-type="bibr" rid="b40">40</xref>
<xref ref-type="bibr" rid="b61">61</xref>
. The first term of (3) suggests that if pressure is an even function then shear strain is an odd function as in cases (
<bold>a</bold>
<bold>d</bold>
). For pure differential traction, case (
<bold>e</bold>
) could be confused with (
<bold>a</bold>
) owing to the second term yielding the same profile of shear as the first term in case (
<bold>a</bold>
) for appropriate values of the spacing and up to a 90° rotation
<xref ref-type="bibr" rid="b33">33</xref>
. The two cases are felt similarly
<xref ref-type="bibr" rid="b47">47</xref>
. (
<bold>f</bold>
) Strips imposing alternating tractions produce below the surface normal strains and shear strains that vary similarly since the first term is zero in this case
<xref ref-type="bibr" rid="b50">50</xref>
. The central strip is felt as protruding (or recessing) from the surface as in case (
<bold>d</bold>
)
<xref ref-type="bibr" rid="b49">49</xref>
<xref ref-type="bibr" rid="b50">50</xref>
.</p>
</caption>
<graphic xlink:href="srep23551-f3"></graphic>
</fig>
<fig id="f4">
<label>Figure 4</label>
<caption>
<title>The universal jamming gripper as a tactile sensor.</title>
<p>(
<bold>a</bold>
) Illustrated. (
<bold>b</bold>
) The gripper membrane was initially in its rest configuration and faced the stimulus straight edge. (
<bold>c</bold>
) The edge indented the gripper in its elastic state at a given depth. (
<bold>d</bold>
) Negative pressure rigidified the gripper, the stimulus was removed and its surface scanned in 3D. (
<bold>e</bold>
) Incremental indentations made it possible to estimate the shear component of the surface deformation by finite differences (black circles of one frame and white circles of the next frame projected on the
<italic>x</italic>
-
<italic>y</italic>
plane). (
<bold>f</bold>
) Shear strain map in gray scale—white for the most negative value and black for the most positive one—with the locus of zero crossing marked by a black line for a single indentation value. Arrows indicate the position of the true edge. (
<bold>g</bold>
) Shear map averaged over all tested indentations. The average zero crossing locus is indicated by a solid line and the errors (average ± standard-deviation) by dashed lines.</p>
</caption>
<graphic xlink:href="srep23551-f4"></graphic>
</fig>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000651 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 000651 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:4806378
   |texte=   Haptic Edge Detection Through Shear
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:27009331" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024