Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Decentralized Multisensory Information Integration in Neural Systems

Identifieur interne : 000121 ( Pmc/Curation ); précédent : 000120; suivant : 000122

Decentralized Multisensory Information Integration in Neural Systems

Auteurs : Wen-Hao Zhang [République populaire de Chine] ; Aihua Chen [République populaire de Chine] ; Malte J. Rasch [République populaire de Chine] ; Si Wu [République populaire de Chine]

Source :

RBID : PMC:4710773

Abstract

How multiple sensory cues are integrated in neural circuitry remains a challenge. The common hypothesis is that information integration might be accomplished in a dedicated multisensory integration area receiving feedforward inputs from the modalities. However, recent experimental evidence suggests that it is not a single multisensory brain area, but rather many multisensory brain areas that are simultaneously involved in the integration of information. Why many mutually connected areas should be needed for information integration is puzzling. Here, we investigated theoretically how information integration could be achieved in a distributed fashion within a network of interconnected multisensory areas. Using biologically realistic neural network models, we developed a decentralized information integration system that comprises multiple interconnected integration areas. Studying an example of combining visual and vestibular cues to infer heading direction, we show that such a decentralized system is in good agreement with anatomical evidence and experimental observations. In particular, we show that this decentralized system can integrate information optimally. The decentralized system predicts that optimally integrated information should emerge locally from the dynamics of the communication between brain areas and sheds new light on the interpretation of the connectivity between multisensory brain areas.

SIGNIFICANCE STATEMENT To extract information reliably from ambiguous environments, the brain integrates multiple sensory cues, which provide different aspects of information about the same entity of interest. Here, we propose a decentralized architecture for multisensory integration. In such a system, no processor is in the center of the network topology and information integration is achieved in a distributed manner through reciprocally connected local processors. Through studying the inference of heading direction with visual and vestibular cues, we show that the decentralized system can integrate information optimally, with the reciprocal connections between processers determining the extent of cue integration. Our model reproduces known multisensory integration behaviors observed in experiments and sheds new light on our understanding of how information is integrated in the brain.


Url:
DOI: 10.1523/JNEUROSCI.0578-15.2016
PubMed: 26758843
PubMed Central: 4710773

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:4710773

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Decentralized Multisensory Information Integration in Neural Systems</title>
<author>
<name sortKey="Zhang, Wen Hao" sort="Zhang, Wen Hao" uniqKey="Zhang W" first="Wen-Hao" last="Zhang">Wen-Hao Zhang</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China,</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff wicri:cut=", and" id="aff2">State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Chen, Aihua" sort="Chen, Aihua" uniqKey="Chen A" first="Aihua" last="Chen">Aihua Chen</name>
<affiliation wicri:level="1">
<nlm:aff id="aff3">Key Laboratory of Brain Functional Genomics, Primate Research Center, East China Normal University, Shanghai 200062, China</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Brain Functional Genomics, Primate Research Center, East China Normal University, Shanghai 200062</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Rasch, Malte J" sort="Rasch, Malte J" uniqKey="Rasch M" first="Malte J." last="Rasch">Malte J. Rasch</name>
<affiliation wicri:level="1">
<nlm:aff wicri:cut=", and" id="aff2">State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wu, Si" sort="Wu, Si" uniqKey="Wu S" first="Si" last="Wu">Si Wu</name>
<affiliation wicri:level="1">
<nlm:aff wicri:cut=", and" id="aff2">State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26758843</idno>
<idno type="pmc">4710773</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4710773</idno>
<idno type="RBID">PMC:4710773</idno>
<idno type="doi">10.1523/JNEUROSCI.0578-15.2016</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">000121</idno>
<idno type="wicri:Area/Pmc/Curation">000121</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Decentralized Multisensory Information Integration in Neural Systems</title>
<author>
<name sortKey="Zhang, Wen Hao" sort="Zhang, Wen Hao" uniqKey="Zhang W" first="Wen-Hao" last="Zhang">Wen-Hao Zhang</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China,</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff wicri:cut=", and" id="aff2">State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Chen, Aihua" sort="Chen, Aihua" uniqKey="Chen A" first="Aihua" last="Chen">Aihua Chen</name>
<affiliation wicri:level="1">
<nlm:aff id="aff3">Key Laboratory of Brain Functional Genomics, Primate Research Center, East China Normal University, Shanghai 200062, China</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Brain Functional Genomics, Primate Research Center, East China Normal University, Shanghai 200062</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Rasch, Malte J" sort="Rasch, Malte J" uniqKey="Rasch M" first="Malte J." last="Rasch">Malte J. Rasch</name>
<affiliation wicri:level="1">
<nlm:aff wicri:cut=", and" id="aff2">State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wu, Si" sort="Wu, Si" uniqKey="Wu S" first="Si" last="Wu">Si Wu</name>
<affiliation wicri:level="1">
<nlm:aff wicri:cut=", and" id="aff2">State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of Neuroscience</title>
<idno type="ISSN">0270-6474</idno>
<idno type="eISSN">1529-2401</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>How multiple sensory cues are integrated in neural circuitry remains a challenge. The common hypothesis is that information integration might be accomplished in a dedicated multisensory integration area receiving feedforward inputs from the modalities. However, recent experimental evidence suggests that it is not a single multisensory brain area, but rather many multisensory brain areas that are simultaneously involved in the integration of information. Why many mutually connected areas should be needed for information integration is puzzling. Here, we investigated theoretically how information integration could be achieved in a distributed fashion within a network of interconnected multisensory areas. Using biologically realistic neural network models, we developed a decentralized information integration system that comprises multiple interconnected integration areas. Studying an example of combining visual and vestibular cues to infer heading direction, we show that such a decentralized system is in good agreement with anatomical evidence and experimental observations. In particular, we show that this decentralized system can integrate information optimally. The decentralized system predicts that optimally integrated information should emerge locally from the dynamics of the communication between brain areas and sheds new light on the interpretation of the connectivity between multisensory brain areas.</p>
<p>
<bold>SIGNIFICANCE STATEMENT</bold>
To extract information reliably from ambiguous environments, the brain integrates multiple sensory cues, which provide different aspects of information about the same entity of interest. Here, we propose a decentralized architecture for multisensory integration. In such a system, no processor is in the center of the network topology and information integration is achieved in a distributed manner through reciprocally connected local processors. Through studying the inference of heading direction with visual and vestibular cues, we show that the decentralized system can integrate information optimally, with the reciprocal connections between processers determining the extent of cue integration. Our model reproduces known multisensory integration behaviors observed in experiments and sheds new light on our understanding of how information is integrated in the brain.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Neurosci</journal-id>
<journal-id journal-id-type="iso-abbrev">J. Neurosci</journal-id>
<journal-id journal-id-type="hwp">jneuro</journal-id>
<journal-id journal-id-type="pmc">jneurosci</journal-id>
<journal-id journal-id-type="publisher-id">J. Neurosci</journal-id>
<journal-title-group>
<journal-title>The Journal of Neuroscience</journal-title>
</journal-title-group>
<issn pub-type="ppub">0270-6474</issn>
<issn pub-type="epub">1529-2401</issn>
<publisher>
<publisher-name>Society for Neuroscience</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26758843</article-id>
<article-id pub-id-type="pmc">4710773</article-id>
<article-id pub-id-type="publisher-id">0578-15</article-id>
<article-id pub-id-type="doi">10.1523/JNEUROSCI.0578-15.2016</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Articles</subject>
<subj-group>
<subject>Systems/Circuits</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Decentralized Multisensory Information Integration in Neural Systems</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Zhang</surname>
<given-names>Wen-hao</given-names>
</name>
<contrib-id contrib-id-type="orcid">http://orcid.org/0000-0001-7641-5024</contrib-id>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chen</surname>
<given-names>Aihua</given-names>
</name>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Rasch</surname>
<given-names>Malte J.</given-names>
</name>
<contrib-id contrib-id-type="orcid">http://orcid.org/0000-0002-7988-4624</contrib-id>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Wu</surname>
<given-names>Si</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<aff id="aff1">
<sup>1</sup>
Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China,</aff>
<aff id="aff2">
<sup>2</sup>
State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China, and</aff>
<aff id="aff3">
<sup>3</sup>
Key Laboratory of Brain Functional Genomics, Primate Research Center, East China Normal University, Shanghai 200062, China</aff>
</contrib-group>
<author-notes>
<corresp>Correspondence should be addressed to either Si Wu or Malte Rasch,
<addr-line>State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China,</addr-line>
<email>wusi@bnu.edu.cn</email>
or
<email>malte.rasch@bnu.edu.cn</email>
</corresp>
<fn fn-type="con">
<p>Author contributions: W.Z. and S.W. designed research; W.Z. and S.W. performed research; W.Z., A.C., M.J.R., and S.W. analyzed data; W.Z., M.J.R., and S.W. wrote the paper.</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<day>13</day>
<month>1</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>13</day>
<month>1</month>
<year>2016</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on the . </pmc-comment>
<volume>36</volume>
<issue>2</issue>
<fpage>532</fpage>
<lpage>547</lpage>
<history>
<date date-type="received">
<day>10</day>
<month>2</month>
<year>2015</year>
</date>
<date date-type="rev-recd">
<day>10</day>
<month>11</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>19</day>
<month>11</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2016 Zhang et al.</copyright-statement>
<copyright-year>2016</copyright-year>
<license license-type="open-access">
<license-p>This article is freely available online through the
<ext-link ext-link-type="uri" xlink:href="http://www.jneurosci.org/cgi/content/full/36/2/532">
<italic>J Neurosci</italic>
</ext-link>
Author Open Choice option.</license-p>
</license>
</permissions>
<self-uri xlink:title="pdf" xlink:type="simple" xlink:href="zns00216000532.pdf"></self-uri>
<abstract>
<p>How multiple sensory cues are integrated in neural circuitry remains a challenge. The common hypothesis is that information integration might be accomplished in a dedicated multisensory integration area receiving feedforward inputs from the modalities. However, recent experimental evidence suggests that it is not a single multisensory brain area, but rather many multisensory brain areas that are simultaneously involved in the integration of information. Why many mutually connected areas should be needed for information integration is puzzling. Here, we investigated theoretically how information integration could be achieved in a distributed fashion within a network of interconnected multisensory areas. Using biologically realistic neural network models, we developed a decentralized information integration system that comprises multiple interconnected integration areas. Studying an example of combining visual and vestibular cues to infer heading direction, we show that such a decentralized system is in good agreement with anatomical evidence and experimental observations. In particular, we show that this decentralized system can integrate information optimally. The decentralized system predicts that optimally integrated information should emerge locally from the dynamics of the communication between brain areas and sheds new light on the interpretation of the connectivity between multisensory brain areas.</p>
<p>
<bold>SIGNIFICANCE STATEMENT</bold>
To extract information reliably from ambiguous environments, the brain integrates multiple sensory cues, which provide different aspects of information about the same entity of interest. Here, we propose a decentralized architecture for multisensory integration. In such a system, no processor is in the center of the network topology and information integration is achieved in a distributed manner through reciprocally connected local processors. Through studying the inference of heading direction with visual and vestibular cues, we show that the decentralized system can integrate information optimally, with the reciprocal connections between processers determining the extent of cue integration. Our model reproduces known multisensory integration behaviors observed in experiments and sheds new light on our understanding of how information is integrated in the brain.</p>
</abstract>
<kwd-group>
<kwd>continuous attractor neural network</kwd>
<kwd>decentralized information integration</kwd>
</kwd-group>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000121 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 000121 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:4710773
   |texte=   Decentralized Multisensory Information Integration in Neural Systems
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:26758843" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024