Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The future of spine surgery: New horizons in the treatment of spinal disorders

Identifieur interne : 000E16 ( Pmc/Corpus ); précédent : 000E15; suivant : 000E17

The future of spine surgery: New horizons in the treatment of spinal disorders

Auteurs : Noojan Kazemi ; Laura K. Crew ; Trent L. Tredway

Source :

RBID : PMC:3642747

Abstract

Background and Methods:

As with any evolving surgical discipline, it is difficult to predict the future of the practice and science of spine surgery. In the last decade, there have been dramatic developments in both the techniques as well as the tools employed in the delivery of better outcomes to patients undergoing such surgery. In this article, we explore four specific areas in spine surgery: namely the role of minimally invasive spine surgery; motion preservation; robotic-aided surgery and neuro-navigation; and the use of biological substances to reduce the number of traditional and revision spine surgeries.

Results:

Minimally invasive spine surgery has flourished in the last decade with an increasing amount of surgeries being performed for a wide variety of degenerative, traumatic, and neoplastic processes. Particular progress in the development of a direct lateral approach as well as improvement of tubular retractors has been achieved. Improvements in motion preservation techniques have led to a significant number of patients achieving arthroplasty where fusion was the only option previously. Important caveats to the indications for arthroplasty are discussed. Both robotics and neuro-navigation have become further refined as tools to assist in spine surgery and have been demonstrated to increase accuracy in spinal instrumentation placement. There has much debate and refinement in the use of biologically active agents to aid and augment function in spine surgery. Biological agents targeted to the intervertebral disc space could increase function and halt degeneration in this anatomical region.

Conclusions:

Great improvements have been achieved in developing better techniques and tools in spine surgery. It is envisaged that progress in the four focus areas discussed will lead to better outcomes and reduced burdens on the future of both our patients and the health care system.


Url:
DOI: 10.4103/2152-7806.109186
PubMed: 23653885
PubMed Central: 3642747

Links to Exploration step

PMC:3642747***** Acces problem to record *****\

Le document en format XML


Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E16 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000E16 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:3642747
   |texte=   The future of spine surgery: New horizons in the treatment of spinal disorders
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:23653885" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024