Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Visual and non-visual contributions to 3D heading selectivity in area MSTd

Identifieur interne : 002498 ( Pmc/Checkpoint ); précédent : 002497; suivant : 002499

Visual and non-visual contributions to 3D heading selectivity in area MSTd

Auteurs : Yong Gu ; Paul V. Watkins ; Dora E. Angelaki ; Gregory C. Deangelis

Source :

RBID : PMC:1538979

Abstract

Robust perception of self-motion requires integration of visual motion signals with non-visual cues. Neurons in area MSTd may be involved in this sensory integration, as they respond selectively to global patterns of optic flow, as well as translational motion in darkness. Using a virtual reality system, we have characterized the three-dimensional (3D) tuning of MSTd neurons to heading directions defined by optic flow alone, inertial motion alone, and congruent combinations of the two cues. Among 255 MSTd neurons, 98% exhibited significant 3D heading tuning in response to optic flow, whereas 64% were selective for heading defined by inertial motion. Heading preferences for visual and inertial motion could be aligned, but were just as frequently opposite. Moreover, heading selectivity in response to congruent visual/vestibular stimulation was typically weaker than that obtained using optic flow alone, and heading preferences under congruent stimulation were dominated by the visual input. Thus, MSTd neurons did not integrate visual and non-visual cues to achieve better heading selectivity. A simple two-layer neural network, which received eye-centered visual inputs and head-centered vestibular inputs, reproduced the major features of the MSTd data. The network was trained to compute heading in a head-centered reference frame under all stimulus conditions, such that it performed a selective reference frame transformation of visual, but not vestibular, signals. The similarity between network hidden units and MSTd neurons suggests that MSTd is an early stage of sensory convergence involved in transforming optic flow information into a (head-centered) reference frame that facilitates integration with vestibular signals.


Url:
DOI: 10.1523/JNEUROSCI.2356-05.2006
PubMed: 16399674
PubMed Central: 1538979


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:1538979

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Visual and non-visual contributions to 3D heading selectivity in area MSTd</title>
<author>
<name sortKey="Gu, Yong" sort="Gu, Yong" uniqKey="Gu Y" first="Yong" last="Gu">Yong Gu</name>
</author>
<author>
<name sortKey="Watkins, Paul V" sort="Watkins, Paul V" uniqKey="Watkins P" first="Paul V." last="Watkins">Paul V. Watkins</name>
</author>
<author>
<name sortKey="Angelaki, Dora E" sort="Angelaki, Dora E" uniqKey="Angelaki D" first="Dora E." last="Angelaki">Dora E. Angelaki</name>
</author>
<author>
<name sortKey="Deangelis, Gregory C" sort="Deangelis, Gregory C" uniqKey="Deangelis G" first="Gregory C." last="Deangelis">Gregory C. Deangelis</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">16399674</idno>
<idno type="pmc">1538979</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1538979</idno>
<idno type="RBID">PMC:1538979</idno>
<idno type="doi">10.1523/JNEUROSCI.2356-05.2006</idno>
<date when="2006">2006</date>
<idno type="wicri:Area/Pmc/Corpus">000723</idno>
<idno type="wicri:Area/Pmc/Curation">000723</idno>
<idno type="wicri:Area/Pmc/Checkpoint">002498</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Visual and non-visual contributions to 3D heading selectivity in area MSTd</title>
<author>
<name sortKey="Gu, Yong" sort="Gu, Yong" uniqKey="Gu Y" first="Yong" last="Gu">Yong Gu</name>
</author>
<author>
<name sortKey="Watkins, Paul V" sort="Watkins, Paul V" uniqKey="Watkins P" first="Paul V." last="Watkins">Paul V. Watkins</name>
</author>
<author>
<name sortKey="Angelaki, Dora E" sort="Angelaki, Dora E" uniqKey="Angelaki D" first="Dora E." last="Angelaki">Dora E. Angelaki</name>
</author>
<author>
<name sortKey="Deangelis, Gregory C" sort="Deangelis, Gregory C" uniqKey="Deangelis G" first="Gregory C." last="Deangelis">Gregory C. Deangelis</name>
</author>
</analytic>
<series>
<title level="j">The Journal of neuroscience : the official journal of the Society for Neuroscience</title>
<idno type="ISSN">0270-6474</idno>
<idno type="eISSN">1529-2401</idno>
<imprint>
<date when="2006">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="P1">Robust perception of self-motion requires integration of visual motion signals with non-visual cues. Neurons in area MSTd may be involved in this sensory integration, as they respond selectively to global patterns of optic flow, as well as translational motion in darkness. Using a virtual reality system, we have characterized the three-dimensional (3D) tuning of MSTd neurons to heading directions defined by optic flow alone, inertial motion alone, and congruent combinations of the two cues. Among 255 MSTd neurons, 98% exhibited significant 3D heading tuning in response to optic flow, whereas 64% were selective for heading defined by inertial motion. Heading preferences for visual and inertial motion could be aligned, but were just as frequently opposite. Moreover, heading selectivity in response to congruent visual/vestibular stimulation was typically weaker than that obtained using optic flow alone, and heading preferences under congruent stimulation were dominated by the visual input. Thus, MSTd neurons did not integrate visual and non-visual cues to achieve better heading selectivity. A simple two-layer neural network, which received eye-centered visual inputs and head-centered vestibular inputs, reproduced the major features of the MSTd data. The network was trained to compute heading in a head-centered reference frame under all stimulus conditions, such that it performed a selective reference frame transformation of visual, but not vestibular, signals. The similarity between network hidden units and MSTd neurons suggests that MSTd is an early stage of sensory convergence involved in transforming optic flow information into a (head-centered) reference frame that facilitates integration with vestibular signals.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<pmc-dir>properties manuscript</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-journal-id">8102140</journal-id>
<journal-id journal-id-type="pubmed-jr-id">5035</journal-id>
<journal-id journal-id-type="nlm-ta">J Neurosci</journal-id>
<journal-title>The Journal of neuroscience : the official journal of the Society for Neuroscience</journal-title>
<issn pub-type="ppub">0270-6474</issn>
<issn pub-type="epub">1529-2401</issn>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">16399674</article-id>
<article-id pub-id-type="pmc">1538979</article-id>
<article-id pub-id-type="doi">10.1523/JNEUROSCI.2356-05.2006</article-id>
<article-id pub-id-type="manuscript">NIHMS10131</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Visual and non-visual contributions to 3D heading selectivity in area MSTd</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Gu</surname>
<given-names>Yong</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Watkins</surname>
<given-names>Paul V.</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Angelaki</surname>
<given-names>Dora E.</given-names>
</name>
<xref rid="FN2" ref-type="author-notes">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Deangelis</surname>
<given-names>Gregory C.</given-names>
</name>
<xref rid="FN1" ref-type="author-notes"></xref>
<xref rid="FN2" ref-type="author-notes">*</xref>
</contrib>
<aff id="A1">Depts. of Neurobiology and Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110</aff>
</contrib-group>
<author-notes>
<corresp id="FN1">†Address for correspondence: Dr. Gregory C. DeAngelis, Email:
<email>gregd@cabernet.wustl.edu</email>
, Dept. of Anatomy & Neurobiology - Box 8108, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis MO 63110, tel: 314-747-2253, fax: 314-747-4370</corresp>
<fn id="FN2" fn-type="equal">
<label>*</label>
<p>equal author contributions</p>
</fn>
</author-notes>
<pub-date pub-type="nihms-submitted">
<day>19</day>
<month>5</month>
<year>2006</year>
</pub-date>
<pub-date pub-type="ppub">
<day>4</day>
<month>1</month>
<year>2006</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>10</day>
<month>8</month>
<year>2006</year>
</pub-date>
<volume>26</volume>
<issue>1</issue>
<fpage>73</fpage>
<lpage>85</lpage>
<abstract>
<p id="P1">Robust perception of self-motion requires integration of visual motion signals with non-visual cues. Neurons in area MSTd may be involved in this sensory integration, as they respond selectively to global patterns of optic flow, as well as translational motion in darkness. Using a virtual reality system, we have characterized the three-dimensional (3D) tuning of MSTd neurons to heading directions defined by optic flow alone, inertial motion alone, and congruent combinations of the two cues. Among 255 MSTd neurons, 98% exhibited significant 3D heading tuning in response to optic flow, whereas 64% were selective for heading defined by inertial motion. Heading preferences for visual and inertial motion could be aligned, but were just as frequently opposite. Moreover, heading selectivity in response to congruent visual/vestibular stimulation was typically weaker than that obtained using optic flow alone, and heading preferences under congruent stimulation were dominated by the visual input. Thus, MSTd neurons did not integrate visual and non-visual cues to achieve better heading selectivity. A simple two-layer neural network, which received eye-centered visual inputs and head-centered vestibular inputs, reproduced the major features of the MSTd data. The network was trained to compute heading in a head-centered reference frame under all stimulus conditions, such that it performed a selective reference frame transformation of visual, but not vestibular, signals. The similarity between network hidden units and MSTd neurons suggests that MSTd is an early stage of sensory convergence involved in transforming optic flow information into a (head-centered) reference frame that facilitates integration with vestibular signals.</p>
</abstract>
<kwd-group>
<kwd>monkey</kwd>
<kwd>MST</kwd>
<kwd>optic flow</kwd>
<kwd>heading</kwd>
<kwd>visual</kwd>
<kwd>vestibular</kwd>
</kwd-group>
<contract-num rid="EY1">R01 EY016178-01A1</contract-num>
<contract-sponsor id="EY1">National Eye Institute : NEI</contract-sponsor>
</article-meta>
</front>
</pmc>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Angelaki, Dora E" sort="Angelaki, Dora E" uniqKey="Angelaki D" first="Dora E." last="Angelaki">Dora E. Angelaki</name>
<name sortKey="Deangelis, Gregory C" sort="Deangelis, Gregory C" uniqKey="Deangelis G" first="Gregory C." last="Deangelis">Gregory C. Deangelis</name>
<name sortKey="Gu, Yong" sort="Gu, Yong" uniqKey="Gu Y" first="Yong" last="Gu">Yong Gu</name>
<name sortKey="Watkins, Paul V" sort="Watkins, Paul V" uniqKey="Watkins P" first="Paul V." last="Watkins">Paul V. Watkins</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Pmc/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002498 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd -nk 002498 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Pmc
   |étape=   Checkpoint
   |type=    RBID
   |clé=     PMC:1538979
   |texte=   Visual and non-visual contributions to 3D heading selectivity in area MSTd
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/RBID.i   -Sk "pubmed:16399674" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024