Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Assessing and Compensating for Zero-lag Correlation Effects in Time-lagged Granger Causality Analysis of fMRI

Identifieur interne : 001F56 ( Pmc/Checkpoint ); précédent : 001F55; suivant : 001F57

Assessing and Compensating for Zero-lag Correlation Effects in Time-lagged Granger Causality Analysis of fMRI

Auteurs : Gopikrishna Deshpande [États-Unis] ; K. Sathian [États-Unis] ; Xiaoping Hu [États-Unis]

Source :

RBID : PMC:3063610

Abstract

Effective connectivity in brain networks can be studied using Granger causality analysis which is based on temporal precedence, while functional connectivity is usually derived using zero-lag correlation. Due to the smoothing of the neuronal activity by the hemodynamic response inherent in the functional magnetic resonance imaging (fMRI) acquisition process, Granger causality, as normally computed from fMRI data, may be contaminated by zero-lag correlation. Simulations performed in this work showed that the zero-lag correlation does “leak” into estimates of time-lagged causality. To eliminate this leak, we introduce a method in which the zero-lag influences are explicitly modeled in the vector autoregressive model but omitted while calculating Granger causality. The effectiveness of this method is demonstrated using fMRI data obtained from healthy humans performing a verbal working memory task.


Url:
DOI: 10.1109/TBME.2009.2037808
PubMed: 20659822
PubMed Central: 3063610


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:3063610

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Assessing and Compensating for Zero-lag Correlation Effects in Time-lagged Granger Causality Analysis of fMRI</title>
<author>
<name sortKey="Deshpande, Gopikrishna" sort="Deshpande, Gopikrishna" uniqKey="Deshpande G" first="Gopikrishna" last="Deshpande">Gopikrishna Deshpande</name>
<affiliation wicri:level="2">
<nlm:aff id="A1">Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sathian, K" sort="Sathian, K" uniqKey="Sathian K" first="K." last="Sathian">K. Sathian</name>
<affiliation wicri:level="2">
<nlm:aff id="A2">Departments of Neurology, Rehabilitation Medicine and Psychology, Emory University, Atlanta, GA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of Neurology, Rehabilitation Medicine and Psychology, Emory University, Atlanta, GA</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A3">Rehabilitation R&D Center of Excellence, Atlanta VAMC, Decatur, GA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Rehabilitation R&D Center of Excellence, Atlanta VAMC, Decatur, GA</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hu, Xiaoping" sort="Hu, Xiaoping" uniqKey="Hu X" first="Xiaoping" last="Hu">Xiaoping Hu</name>
<affiliation wicri:level="2">
<nlm:aff id="A1">Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">20659822</idno>
<idno type="pmc">3063610</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3063610</idno>
<idno type="RBID">PMC:3063610</idno>
<idno type="doi">10.1109/TBME.2009.2037808</idno>
<date when="2010">2010</date>
<idno type="wicri:Area/Pmc/Corpus">000E37</idno>
<idno type="wicri:Area/Pmc/Curation">000E37</idno>
<idno type="wicri:Area/Pmc/Checkpoint">001F56</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Assessing and Compensating for Zero-lag Correlation Effects in Time-lagged Granger Causality Analysis of fMRI</title>
<author>
<name sortKey="Deshpande, Gopikrishna" sort="Deshpande, Gopikrishna" uniqKey="Deshpande G" first="Gopikrishna" last="Deshpande">Gopikrishna Deshpande</name>
<affiliation wicri:level="2">
<nlm:aff id="A1">Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sathian, K" sort="Sathian, K" uniqKey="Sathian K" first="K." last="Sathian">K. Sathian</name>
<affiliation wicri:level="2">
<nlm:aff id="A2">Departments of Neurology, Rehabilitation Medicine and Psychology, Emory University, Atlanta, GA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of Neurology, Rehabilitation Medicine and Psychology, Emory University, Atlanta, GA</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A3">Rehabilitation R&D Center of Excellence, Atlanta VAMC, Decatur, GA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Rehabilitation R&D Center of Excellence, Atlanta VAMC, Decatur, GA</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hu, Xiaoping" sort="Hu, Xiaoping" uniqKey="Hu X" first="Xiaoping" last="Hu">Xiaoping Hu</name>
<affiliation wicri:level="2">
<nlm:aff id="A1">Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">IEEE transactions on bio-medical engineering</title>
<idno type="ISSN">0018-9294</idno>
<idno type="eISSN">1558-2531</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="P1">Effective connectivity in brain networks can be studied using Granger causality analysis which is based on temporal precedence, while functional connectivity is usually derived using zero-lag correlation. Due to the smoothing of the neuronal activity by the hemodynamic response inherent in the functional magnetic resonance imaging (fMRI) acquisition process, Granger causality, as normally computed from fMRI data, may be contaminated by zero-lag correlation. Simulations performed in this work showed that the zero-lag correlation does “leak” into estimates of time-lagged causality. To eliminate this leak, we introduce a method in which the zero-lag influences are explicitly modeled in the vector autoregressive model but omitted while calculating Granger causality. The effectiveness of this method is demonstrated using fMRI data obtained from healthy humans performing a verbal working memory task.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article" xml:lang="EN">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<pmc-dir>properties manuscript</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-journal-id">0012737</journal-id>
<journal-id journal-id-type="pubmed-jr-id">4157</journal-id>
<journal-id journal-id-type="nlm-ta">IEEE Trans Biomed Eng</journal-id>
<journal-title>IEEE transactions on bio-medical engineering</journal-title>
<issn pub-type="ppub">0018-9294</issn>
<issn pub-type="epub">1558-2531</issn>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">20659822</article-id>
<article-id pub-id-type="pmc">3063610</article-id>
<article-id pub-id-type="doi">10.1109/TBME.2009.2037808</article-id>
<article-id pub-id-type="manuscript">NIHMS278092</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Assessing and Compensating for Zero-lag Correlation Effects in Time-lagged Granger Causality Analysis of fMRI</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Deshpande</surname>
<given-names>Gopikrishna</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sathian</surname>
<given-names>K.</given-names>
</name>
<xref ref-type="aff" rid="A2">2</xref>
<xref ref-type="aff" rid="A3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hu</surname>
<given-names>Xiaoping</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
</contrib-group>
<aff id="A1">
<label>1</label>
Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA</aff>
<aff id="A2">
<label>2</label>
Departments of Neurology, Rehabilitation Medicine and Psychology, Emory University, Atlanta, GA, USA</aff>
<aff id="A3">
<label>3</label>
Rehabilitation R&D Center of Excellence, Atlanta VAMC, Decatur, GA, USA</aff>
<author-notes>
<corresp id="CR1">Corresponding Author: Xiaoping Hu, Ph.D. Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University 101 Woodruff Circle, Suite 2001 Atlanta, GA 30322, USA Phone- 404 712 2615 Fax- 404 712 2707
<email>xhu@bme.gatech.edu</email>
</corresp>
</author-notes>
<pub-date pub-type="nihms-submitted">
<day>16</day>
<month>3</month>
<year>2011</year>
</pub-date>
<pub-date pub-type="ppub">
<month>6</month>
<year>2010</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>24</day>
<month>3</month>
<year>2011</year>
</pub-date>
<volume>57</volume>
<issue>6</issue>
<fpage>1446</fpage>
<lpage>1456</lpage>
<abstract>
<p id="P1">Effective connectivity in brain networks can be studied using Granger causality analysis which is based on temporal precedence, while functional connectivity is usually derived using zero-lag correlation. Due to the smoothing of the neuronal activity by the hemodynamic response inherent in the functional magnetic resonance imaging (fMRI) acquisition process, Granger causality, as normally computed from fMRI data, may be contaminated by zero-lag correlation. Simulations performed in this work showed that the zero-lag correlation does “leak” into estimates of time-lagged causality. To eliminate this leak, we introduce a method in which the zero-lag influences are explicitly modeled in the vector autoregressive model but omitted while calculating Granger causality. The effectiveness of this method is demonstrated using fMRI data obtained from healthy humans performing a verbal working memory task.</p>
</abstract>
<kwd-group>
<kwd>Functional MRI</kwd>
<kwd>Granger Causality</kwd>
<kwd>Functional Connectivity</kwd>
<kwd>Effective Connectivity</kwd>
</kwd-group>
<contract-num rid="EY1">R01 EY012440-06 ||EY</contract-num>
<contract-num rid="EB1">R01 EB002009-08 ||EB</contract-num>
<contract-num rid="EY1">K24 EY017332-01 ||EY</contract-num>
<contract-sponsor id="EY1">National Eye Institute : NEI</contract-sponsor>
<contract-sponsor id="EB1">National Institute of Biomedical Imaging and Bioengineering : NIBIB</contract-sponsor>
</article-meta>
</front>
</pmc>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Géorgie (États-Unis)</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Géorgie (États-Unis)">
<name sortKey="Deshpande, Gopikrishna" sort="Deshpande, Gopikrishna" uniqKey="Deshpande G" first="Gopikrishna" last="Deshpande">Gopikrishna Deshpande</name>
</region>
<name sortKey="Hu, Xiaoping" sort="Hu, Xiaoping" uniqKey="Hu X" first="Xiaoping" last="Hu">Xiaoping Hu</name>
<name sortKey="Sathian, K" sort="Sathian, K" uniqKey="Sathian K" first="K." last="Sathian">K. Sathian</name>
<name sortKey="Sathian, K" sort="Sathian, K" uniqKey="Sathian K" first="K." last="Sathian">K. Sathian</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Pmc/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F56 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd -nk 001F56 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Pmc
   |étape=   Checkpoint
   |type=    RBID
   |clé=     PMC:3063610
   |texte=   Assessing and Compensating for Zero-lag Correlation Effects in Time-lagged Granger Causality Analysis of fMRI
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/RBID.i   -Sk "pubmed:20659822" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024