Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Probability Matching as a Computational Strategy Used in Perception

Identifieur interne : 001D86 ( Pmc/Checkpoint ); précédent : 001D85; suivant : 001D87

Probability Matching as a Computational Strategy Used in Perception

Auteurs : David R. Wozny [Allemagne, États-Unis] ; Ulrik R. Beierholm [Royaume-Uni] ; Ladan Shams [États-Unis]

Source :

RBID : PMC:2916852

Abstract

The question of which strategy is employed in human decision making has been studied extensively in the context of cognitive tasks; however, this question has not been investigated systematically in the context of perceptual tasks. The goal of this study was to gain insight into the decision-making strategy used by human observers in a low-level perceptual task. Data from more than 100 individuals who participated in an auditory-visual spatial localization task was evaluated to examine which of three plausible strategies could account for each observer's behavior the best. This task is very suitable for exploring this question because it involves an implicit inference about whether the auditory and visual stimuli were caused by the same object or independent objects, and provides different strategies of how using the inference about causes can lead to distinctly different spatial estimates and response patterns. For example, employing the commonly used cost function of minimizing the mean squared error of spatial estimates would result in a weighted averaging of estimates corresponding to different causal structures. A strategy that would minimize the error in the inferred causal structure would result in the selection of the most likely causal structure and sticking with it in the subsequent inference of location—“model selection.” A third strategy is one that selects a causal structure in proportion to its probability, thus attempting to match the probability of the inferred causal structure. This type of probability matching strategy has been reported to be used by participants predominantly in cognitive tasks. Comparing these three strategies, the behavior of the vast majority of observers in this perceptual task was most consistent with probability matching. While this appears to be a suboptimal strategy and hence a surprising choice for the perceptual system to adopt, we discuss potential advantages of such a strategy for perception.


Url:
DOI: 10.1371/journal.pcbi.1000871
PubMed: 20700493
PubMed Central: 2916852


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:2916852

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Probability Matching as a Computational Strategy Used in Perception</title>
<author>
<name sortKey="Wozny, David R" sort="Wozny, David R" uniqKey="Wozny D" first="David R." last="Wozny">David R. Wozny</name>
<affiliation wicri:level="3">
<nlm:aff id="aff1">
<addr-line>Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany</addr-line>
</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Saxe (Land)</region>
<region type="district" nuts="2">District de Leipzig</region>
<settlement type="city">Leipzig</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="aff2">
<addr-line>Biomedical Engineering IDP, University of California Los Angeles, Los Angeles, California, United States of America</addr-line>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biomedical Engineering IDP, University of California Los Angeles, Los Angeles, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Beierholm, Ulrik R" sort="Beierholm, Ulrik R" uniqKey="Beierholm U" first="Ulrik R." last="Beierholm">Ulrik R. Beierholm</name>
<affiliation wicri:level="3">
<nlm:aff id="aff3">
<addr-line>Gatsby Computational Neuroscience Unit, University College London, London, United Kingdom</addr-line>
</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Gatsby Computational Neuroscience Unit, University College London, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shams, Ladan" sort="Shams, Ladan" uniqKey="Shams L" first="Ladan" last="Shams">Ladan Shams</name>
<affiliation wicri:level="2">
<nlm:aff id="aff2">
<addr-line>Biomedical Engineering IDP, University of California Los Angeles, Los Angeles, California, United States of America</addr-line>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biomedical Engineering IDP, University of California Los Angeles, Los Angeles, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="aff4">
<addr-line>Department of Psychology, University of California Los Angeles, Los Angeles, California, United States of America</addr-line>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Psychology, University of California Los Angeles, Los Angeles, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">20700493</idno>
<idno type="pmc">2916852</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2916852</idno>
<idno type="RBID">PMC:2916852</idno>
<idno type="doi">10.1371/journal.pcbi.1000871</idno>
<date when="2010">2010</date>
<idno type="wicri:Area/Pmc/Corpus">002172</idno>
<idno type="wicri:Area/Pmc/Curation">002172</idno>
<idno type="wicri:Area/Pmc/Checkpoint">001D86</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Probability Matching as a Computational Strategy Used in Perception</title>
<author>
<name sortKey="Wozny, David R" sort="Wozny, David R" uniqKey="Wozny D" first="David R." last="Wozny">David R. Wozny</name>
<affiliation wicri:level="3">
<nlm:aff id="aff1">
<addr-line>Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany</addr-line>
</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Saxe (Land)</region>
<region type="district" nuts="2">District de Leipzig</region>
<settlement type="city">Leipzig</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="aff2">
<addr-line>Biomedical Engineering IDP, University of California Los Angeles, Los Angeles, California, United States of America</addr-line>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biomedical Engineering IDP, University of California Los Angeles, Los Angeles, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Beierholm, Ulrik R" sort="Beierholm, Ulrik R" uniqKey="Beierholm U" first="Ulrik R." last="Beierholm">Ulrik R. Beierholm</name>
<affiliation wicri:level="3">
<nlm:aff id="aff3">
<addr-line>Gatsby Computational Neuroscience Unit, University College London, London, United Kingdom</addr-line>
</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Gatsby Computational Neuroscience Unit, University College London, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shams, Ladan" sort="Shams, Ladan" uniqKey="Shams L" first="Ladan" last="Shams">Ladan Shams</name>
<affiliation wicri:level="2">
<nlm:aff id="aff2">
<addr-line>Biomedical Engineering IDP, University of California Los Angeles, Los Angeles, California, United States of America</addr-line>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biomedical Engineering IDP, University of California Los Angeles, Los Angeles, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="aff4">
<addr-line>Department of Psychology, University of California Los Angeles, Los Angeles, California, United States of America</addr-line>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Psychology, University of California Los Angeles, Los Angeles, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS Computational Biology</title>
<idno type="ISSN">1553-734X</idno>
<idno type="eISSN">1553-7358</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The question of which strategy is employed in human decision making has been studied extensively in the context of cognitive tasks; however, this question has not been investigated systematically in the context of perceptual tasks. The goal of this study was to gain insight into the decision-making strategy used by human observers in a low-level perceptual task. Data from more than 100 individuals who participated in an auditory-visual spatial localization task was evaluated to examine which of three plausible strategies could account for each observer's behavior the best. This task is very suitable for exploring this question because it involves an implicit inference about whether the auditory and visual stimuli were caused by the same object or independent objects, and provides different strategies of how using the inference about causes can lead to distinctly different spatial estimates and response patterns. For example, employing the commonly used cost function of minimizing the mean squared error of spatial estimates would result in a weighted averaging of estimates corresponding to different causal structures. A strategy that would minimize the error in the inferred causal structure would result in the selection of the most likely causal structure and sticking with it in the subsequent inference of location—“model selection.” A third strategy is one that selects a causal structure in proportion to its probability, thus attempting to match the probability of the inferred causal structure. This type of probability matching strategy has been reported to be used by participants predominantly in cognitive tasks. Comparing these three strategies, the behavior of the vast majority of observers in this perceptual task was most consistent with probability matching. While this appears to be a suboptimal strategy and hence a surprising choice for the perceptual system to adopt, we discuss potential advantages of such a strategy for perception.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Green, Dm" uniqKey="Green D">DM Green</name>
</author>
<author>
<name sortKey="Swets, Ja" uniqKey="Swets J">JA Swets</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Neumann, J" uniqKey="Neumann J">J Neumann</name>
</author>
<author>
<name sortKey="Morgenstern, O" uniqKey="Morgenstern O">O Morgenstern</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hillis, J" uniqKey="Hillis J">J Hillis</name>
</author>
<author>
<name sortKey="Watt, S" uniqKey="Watt S">S Watt</name>
</author>
<author>
<name sortKey="Landy, M" uniqKey="Landy M">M Landy</name>
</author>
<author>
<name sortKey="Banks, M" uniqKey="Banks M">M Banks</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Knill, D" uniqKey="Knill D">D Knill</name>
</author>
<author>
<name sortKey="Saunders, J" uniqKey="Saunders J">J Saunders</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ernst, Mo" uniqKey="Ernst M">MO Ernst</name>
</author>
<author>
<name sortKey="Banks, Ms" uniqKey="Banks M">MS Banks</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bresciani, Jp" uniqKey="Bresciani J">JP Bresciani</name>
</author>
<author>
<name sortKey="Dammeier, F" uniqKey="Dammeier F">F Dammeier</name>
</author>
<author>
<name sortKey="Ernst, Mo" uniqKey="Ernst M">MO Ernst</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roach, Nw" uniqKey="Roach N">NW Roach</name>
</author>
<author>
<name sortKey="Heron, J" uniqKey="Heron J">J Heron</name>
</author>
<author>
<name sortKey="Mcgraw, Pv" uniqKey="Mcgraw P">PV McGraw</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shams, L" uniqKey="Shams L">L Shams</name>
</author>
<author>
<name sortKey="Ma, Wj" uniqKey="Ma W">WJ Ma</name>
</author>
<author>
<name sortKey="Beierholm, U" uniqKey="Beierholm U">U Beierholm</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gorea, A" uniqKey="Gorea A">A Gorea</name>
</author>
<author>
<name sortKey="Caetta, F" uniqKey="Caetta F">F Caetta</name>
</author>
<author>
<name sortKey="Sagi, D" uniqKey="Sagi D">D Sagi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maddox, Wt" uniqKey="Maddox W">WT Maddox</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Warren, Rc" uniqKey="Warren R">RC Warren</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kording, K" uniqKey="Kording K">K Kording</name>
</author>
<author>
<name sortKey="Tenenbaum, J" uniqKey="Tenenbaum J">J Tenenbaum</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stocker, A" uniqKey="Stocker A">A Stocker</name>
</author>
<author>
<name sortKey="Simoncelli, E" uniqKey="Simoncelli E">E Simoncelli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kording, Kp" uniqKey="Kording K">KP Körding</name>
</author>
<author>
<name sortKey="Beierholm, Ur" uniqKey="Beierholm U">UR Beierholm</name>
</author>
<author>
<name sortKey="Ma, Wj" uniqKey="Ma W">WJ Ma</name>
</author>
<author>
<name sortKey="Quartz, S" uniqKey="Quartz S">S Quartz</name>
</author>
<author>
<name sortKey="Tenenbaum, Jb" uniqKey="Tenenbaum J">JB Tenenbaum</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alais, D" uniqKey="Alais D">D Alais</name>
</author>
<author>
<name sortKey="Burr, D" uniqKey="Burr D">D Burr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wozny, D" uniqKey="Wozny D">D Wozny</name>
</author>
<author>
<name sortKey="Beierholm, U" uniqKey="Beierholm U">U Beierholm</name>
</author>
<author>
<name sortKey="Shams, L" uniqKey="Shams L">L Shams</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yuille, Al" uniqKey="Yuille A">AL Yuille</name>
</author>
<author>
<name sortKey="Bulthoff, Hh" uniqKey="Bulthoff H">HH Bülthoff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yuille, Al" uniqKey="Yuille A">AL Yuille</name>
</author>
<author>
<name sortKey="Clark, Jj" uniqKey="Clark J">JJ Clark</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gaissmaier, W" uniqKey="Gaissmaier W">W Gaissmaier</name>
</author>
<author>
<name sortKey="Schooler, Lj" uniqKey="Schooler L">LJ Schooler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grant, D" uniqKey="Grant D">D Grant</name>
</author>
<author>
<name sortKey="Hake, H" uniqKey="Hake H">H Hake</name>
</author>
<author>
<name sortKey="Hornseth, J" uniqKey="Hornseth J">J Hornseth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Unturbe, J" uniqKey="Unturbe J">J Unturbe</name>
</author>
<author>
<name sortKey="Corominas, J" uniqKey="Corominas J">J Corominas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="West, R" uniqKey="West R">R West</name>
</author>
<author>
<name sortKey="Stanovich, Ke" uniqKey="Stanovich K">KE Stanovich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jonides, J" uniqKey="Jonides J">J Jonides</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jonides, J" uniqKey="Jonides J">J Jonides</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vul, E" uniqKey="Vul E">E Vul</name>
</author>
<author>
<name sortKey="Hanus, D" uniqKey="Hanus D">D Hanus</name>
</author>
<author>
<name sortKey="Kanwisher, N" uniqKey="Kanwisher N">N Kanwisher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harold Jeffreys, S" uniqKey="Harold Jeffreys S">S Harold Jeffreys</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nagelkerke, N" uniqKey="Nagelkerke N">N Nagelkerke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Simoncelli, Ep" uniqKey="Simoncelli E">EP Simoncelli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vulkan, N" uniqKey="Vulkan N">N Vulkan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ayton, P" uniqKey="Ayton P">P Ayton</name>
</author>
<author>
<name sortKey="Hunt, A" uniqKey="Hunt A">A Hunt</name>
</author>
<author>
<name sortKey="Wright, G" uniqKey="Wright G">G Wright</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wagenaar, Wa" uniqKey="Wagenaar W">WA Wagenaar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wolford, G" uniqKey="Wolford G">G Wolford</name>
</author>
<author>
<name sortKey="Newman, S" uniqKey="Newman S">S Newman</name>
</author>
<author>
<name sortKey="Miller, M" uniqKey="Miller M">M Miller</name>
</author>
<author>
<name sortKey="Wig, G" uniqKey="Wig G">G Wig</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yellot" uniqKey="Yellot">Yellot</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Burns, K" uniqKey="Burns K">K Burns</name>
</author>
<author>
<name sortKey="Demaree, H" uniqKey="Demaree H">H Demaree</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fiser, J" uniqKey="Fiser J">J Fiser</name>
</author>
<author>
<name sortKey="Berkes, P" uniqKey="Berkes P">P Berkes</name>
</author>
<author>
<name sortKey="Orban, G" uniqKey="Orban G">G Orbán</name>
</author>
<author>
<name sortKey="Lengyel, M" uniqKey="Lengyel M">M Lengyel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hoyer, Po" uniqKey="Hoyer P">PO Hoyer</name>
</author>
<author>
<name sortKey="Arinen, Ah" uniqKey="Arinen A">AH Arinen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moreno Bote, R" uniqKey="Moreno Bote R">R Moreno-Bote</name>
</author>
<author>
<name sortKey="Knill, D" uniqKey="Knill D">D Knill</name>
</author>
<author>
<name sortKey="Pouget, A" uniqKey="Pouget A">A Pouget</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sundareswara, R" uniqKey="Sundareswara R">R Sundareswara</name>
</author>
<author>
<name sortKey="Schrater, Pr" uniqKey="Schrater P">PR Schrater</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Erev, I" uniqKey="Erev I">I Erev</name>
</author>
<author>
<name sortKey="Barron, G" uniqKey="Barron G">G Barron</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Whiteley, L" uniqKey="Whiteley L">L Whiteley</name>
</author>
<author>
<name sortKey="Sahani, M" uniqKey="Sahani M">M Sahani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Knill, Dc" uniqKey="Knill D">DC Knill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stanovich, Ke" uniqKey="Stanovich K">KE Stanovich</name>
</author>
<author>
<name sortKey="West, Rf" uniqKey="West R">RF West</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Landy, Ms" uniqKey="Landy M">MS Landy</name>
</author>
<author>
<name sortKey="Goutcher, R" uniqKey="Goutcher R">R Goutcher</name>
</author>
<author>
<name sortKey="Trommersh User, J" uniqKey="Trommersh User J">J Trommershäuser</name>
</author>
<author>
<name sortKey="Mamassian, P" uniqKey="Mamassian P">P Mamassian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Todd, Pm" uniqKey="Todd P">PM Todd</name>
</author>
<author>
<name sortKey="Gigerenzer, G" uniqKey="Gigerenzer G">G Gigerenzer</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PLoS Comput Biol</journal-id>
<journal-id journal-id-type="publisher-id">plos</journal-id>
<journal-id journal-id-type="pmc">ploscomp</journal-id>
<journal-title-group>
<journal-title>PLoS Computational Biology</journal-title>
</journal-title-group>
<issn pub-type="ppub">1553-734X</issn>
<issn pub-type="epub">1553-7358</issn>
<publisher>
<publisher-name>Public Library of Science</publisher-name>
<publisher-loc>San Francisco, USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">20700493</article-id>
<article-id pub-id-type="pmc">2916852</article-id>
<article-id pub-id-type="publisher-id">10-PLCB-RA-1824R3</article-id>
<article-id pub-id-type="doi">10.1371/journal.pcbi.1000871</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
<subj-group subj-group-type="Discipline">
<subject>Computational Biology/Computational Neuroscience</subject>
<subject>Neuroscience/Cognitive Neuroscience</subject>
<subject>Neuroscience/Sensory Systems</subject>
<subject>Neuroscience/Theoretical Neuroscience</subject>
<subject>Neuroscience/Experimental Psychology</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Probability Matching as a Computational Strategy Used in Perception</article-title>
<alt-title alt-title-type="running-head">Probability Matching as a Perceptual Strategy</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Wozny</surname>
<given-names>David R.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Beierholm</surname>
<given-names>Ulrik R.</given-names>
</name>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Shams</surname>
<given-names>Ladan</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
<xref ref-type="corresp" rid="cor1">
<sup>*</sup>
</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
<addr-line>Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany</addr-line>
</aff>
<aff id="aff2">
<label>2</label>
<addr-line>Biomedical Engineering IDP, University of California Los Angeles, Los Angeles, California, United States of America</addr-line>
</aff>
<aff id="aff3">
<label>3</label>
<addr-line>Gatsby Computational Neuroscience Unit, University College London, London, United Kingdom</addr-line>
</aff>
<aff id="aff4">
<label>4</label>
<addr-line>Department of Psychology, University of California Los Angeles, Los Angeles, California, United States of America</addr-line>
</aff>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Maloney</surname>
<given-names>Laurence T.</given-names>
</name>
<role>Editor</role>
<xref ref-type="aff" rid="edit1"></xref>
</contrib>
</contrib-group>
<aff id="edit1">New York University, United States of America</aff>
<author-notes>
<corresp id="cor1">* E-mail:
<email>ladan@psych.ucla.edu</email>
</corresp>
<fn fn-type="con">
<p>Conceived and designed the experiments: DRW LS. Performed the experiments: DRW. Analyzed the data: DRW. Contributed reagents/materials/analysis tools: URB. Wrote the paper: DRW URB LS.</p>
</fn>
</author-notes>
<pub-date pub-type="collection">
<month>8</month>
<year>2010</year>
</pub-date>
<pmc-comment> Fake ppub added to accomodate plos workflow change from 03/2008 and 03/2009 </pmc-comment>
<pub-date pub-type="ppub">
<month>8</month>
<year>2010</year>
</pub-date>
<pub-date pub-type="epub">
<day>5</day>
<month>8</month>
<year>2010</year>
</pub-date>
<volume>6</volume>
<issue>8</issue>
<elocation-id>e1000871</elocation-id>
<history>
<date date-type="received">
<day>17</day>
<month>2</month>
<year>2010</year>
</date>
<date date-type="accepted">
<day>29</day>
<month>6</month>
<year>2010</year>
</date>
</history>
<permissions>
<copyright-statement>Wozny et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</copyright-statement>
</permissions>
<abstract>
<p>The question of which strategy is employed in human decision making has been studied extensively in the context of cognitive tasks; however, this question has not been investigated systematically in the context of perceptual tasks. The goal of this study was to gain insight into the decision-making strategy used by human observers in a low-level perceptual task. Data from more than 100 individuals who participated in an auditory-visual spatial localization task was evaluated to examine which of three plausible strategies could account for each observer's behavior the best. This task is very suitable for exploring this question because it involves an implicit inference about whether the auditory and visual stimuli were caused by the same object or independent objects, and provides different strategies of how using the inference about causes can lead to distinctly different spatial estimates and response patterns. For example, employing the commonly used cost function of minimizing the mean squared error of spatial estimates would result in a weighted averaging of estimates corresponding to different causal structures. A strategy that would minimize the error in the inferred causal structure would result in the selection of the most likely causal structure and sticking with it in the subsequent inference of location—“model selection.” A third strategy is one that selects a causal structure in proportion to its probability, thus attempting to match the probability of the inferred causal structure. This type of probability matching strategy has been reported to be used by participants predominantly in cognitive tasks. Comparing these three strategies, the behavior of the vast majority of observers in this perceptual task was most consistent with probability matching. While this appears to be a suboptimal strategy and hence a surprising choice for the perceptual system to adopt, we discuss potential advantages of such a strategy for perception.</p>
</abstract>
<abstract abstract-type="summary">
<title>Author Summary</title>
<p>For any task, the utility function specifies the goal to be achieved. For example, in taking a multiple-choice test, the utility is the total
<italic>number</italic>
of correct answers. An optimal decision strategy for a task is one that maximizes the utility. Because the utility functions and decision strategies used in perception have not been empirically investigated, it remains unclear what decision-making strategy is used, and whether the choice of strategy is uniform across individuals and tasks. In this study, we computationally characterize a decision-making strategy for each individual participant in an auditory-visual spatial localization task, where participants need to make implicit inferences about whether or not the auditory and visual stimuli were caused by the same or independent objects. Our results suggest that a) there is variability across individuals in decision strategy, and b) the majority of participants appear to adopt a probability matching strategy that chooses a value according to the inferred probability of that value. These results are surprising, because perception is believed to be highly optimized by evolution, and the probability matching strategy is considered “suboptimal” under the commonly assumed utility functions. However, we note that this strategy is preferred (or may be even optimal) under utility functions that value learning.</p>
</abstract>
<counts>
<page-count count="7"></page-count>
</counts>
</article-meta>
</front>
<body>
<sec id="s1">
<title>Introduction</title>
<p>Human performance in perceptual tasks is often benchmarked by optimal strategies. An optimal strategy is one that performs best with respect to its objectives or maximizes expected reward or equivalently, minimizes a cost function
<xref ref-type="bibr" rid="pcbi.1000871-Green1">[1]</xref>
,
<xref ref-type="bibr" rid="pcbi.1000871-Neumann1">[2]</xref>
. Previous studies have investigated whether performance in perceptual tasks is consistent with normative models that use maximum likelihood estimation (MLE)
<xref ref-type="bibr" rid="pcbi.1000871-Hillis1">[3]</xref>
<xref ref-type="bibr" rid="pcbi.1000871-Ernst1">[5]</xref>
, Bayesian inference
<xref ref-type="bibr" rid="pcbi.1000871-Bresciani1">[6]</xref>
<xref ref-type="bibr" rid="pcbi.1000871-Shams1">[8]</xref>
, signal detection theory
<xref ref-type="bibr" rid="pcbi.1000871-Gorea1">[9]</xref>
<xref ref-type="bibr" rid="pcbi.1000871-Warren1">[11]</xref>
, or other computational frameworks. These previous studies either implicitly or explicitly assume a certain cost/utility function that defines the optimal decision. In contrast, the question of which utility/cost function is used by the nervous system for perceptual tasks has not been systematically investigated
<xref ref-type="bibr" rid="pcbi.1000871-Kording1">[but see 12]</xref>
,
<xref ref-type="bibr" rid="pcbi.1000871-Stocker1">[13]</xref>
.</p>
<p>In this study we aim to computationally characterize human perceptual decision making strategies. As different strategies may be used across individuals, we characterize the strategy used by each individual observer instead of modeling the behavior of an “average observer”. We used a spatial localization task, as it is simple and fundamental to perceptual processing. While spatial localization has been studied extensively, it has not been investigated in the context of decision making strategies. In nature, at any given moment, we are typically exposed to both visual and auditory stimuli, and scene perception and analysis requires simultaneous inference about the location of auditory and visual stimuli (as well as other sensory stimuli such as tactile, and olfactory). Therefore, multisensory spatial localization represents a task that the perceptual system is implicitly engaged in at all times. This task is particularly useful for probing decision-making strategies because it involves an automatic causal inference about the sources of stimuli, and distinct patterns of behavior corresponding to different strategies. For each observer we examined which of three plausible decision making strategies best accounts for their performance. We use a Bayesian causal inference model of multisensory perception
<xref ref-type="bibr" rid="pcbi.1000871-Krding1">[14]</xref>
to quantify subjects' responses as one of three strategies as well as compare them to qualitative predictions of such strategies.</p>
<p>One strategy tested was the objective of minimizing the mean squared error. This is a commonly used loss function in normative models of human behavior
<xref ref-type="bibr" rid="pcbi.1000871-Hillis1">[3]</xref>
,
<xref ref-type="bibr" rid="pcbi.1000871-Knill1">[4]</xref>
,
<xref ref-type="bibr" rid="pcbi.1000871-Roach1">[7]</xref>
,
<xref ref-type="bibr" rid="pcbi.1000871-Alais1">[15]</xref>
,
<xref ref-type="bibr" rid="pcbi.1000871-Wozny1">[16]</xref>
. It assumes that the nervous system tries to minimize the squared error on average. This utility function in the context of our task implies
<italic>model averaging</italic>
, i.e., weighted averaging of the estimate derived from two different causal structures
<xref ref-type="bibr" rid="pcbi.1000871-Krding1">[14]</xref>
: a common cause hypothesis and an independent causal hypothesis, each weighted by their respective probability (see
<xref ref-type="fig" rid="pcbi-1000871-g001">Figure 1c</xref>
).</p>
<fig id="pcbi-1000871-g001" position="float">
<object-id pub-id-type="doi">10.1371/journal.pcbi.1000871.g001</object-id>
<label>Figure 1</label>
<caption>
<title>Illustration of the three different decision strategies for producing an auditory estimate of location.</title>
<p>(A) A schematic example of sensory representations on a trial with a certain discrepancy between the auditory and visual stimuli. The lightbulb and speaker symbols represent the visual and auditory stimulus locations, respectively. The visual and auditory likelihoods are shown in magenta and blue, respectively. For the sake of simplicity, here we assume that the prior distribution is non-informative (uniform). Therefore, in the case of a common cause (
<italic>C</italic>
 = 1), i.e., when the two sensory signals are fused to obtain an estimate, a single Gaussian posterior distribution is obtained which is shown in black. The estimate of the location of sound,
<inline-formula>
<inline-graphic xlink:href="pcbi.1000871.e001.jpg" mimetype="image"></inline-graphic>
</inline-formula>
is the mean of the black distribution. In contrast, in the independent cause scenario (
<italic>C</italic>
 = 2), this estimate is the mean of the blue distribution. (B) The generative model for the causal inference model.
<italic>C</italic>
 = 1: One cause can be responsible for both visual and auditory signals,
<italic>x
<sub>V</sub>
</italic>
and
<italic>x
<sub>A</sub>
</italic>
.
<italic>C</italic>
 = 2: Alternatively, two independent causes may generate the visual and auditory cues. The probability of each causal structure can be computed using Bayes' Rule (see Eq. 1). Hypothetical posterior probabilities for the stimuli in (A) are given at the bottom of each causal structure. For model averaging (C), the final auditory estimate would be a weighted average of the two estimates, with each estimate weighted by the probability of its causal structure. For model selection (D), an estimate is derived based on the most probable model, in this case the independent model (
<italic>C</italic>
 = 2). For probability matching (E), the final auditory estimate in this example would be equal to the independent model estimate (
<italic>C</italic>
 = 2) 70% of the time, and equal to the common cause model estimate (
<italic>C</italic>
 = 1) 30% of the time. Visual estimates are produced likewise.</p>
</caption>
<graphic xlink:href="pcbi.1000871.g001"></graphic>
</fig>
<p>Another strategy we tested was to minimize the error in the inferred causal structure as well as the error in the spatial estimate. This strategy in the context of our task translates into
<italic>model selection</italic>
<xref ref-type="bibr" rid="pcbi.1000871-Yuille1">[17]</xref>
,
<xref ref-type="bibr" rid="pcbi.1000871-Yuille2">[18]</xref>
. This strategy also maximizes the consistency in the inference process
<xref ref-type="bibr" rid="pcbi.1000871-Stocker1">[13]</xref>
. In our task, model selection maximizes consistency between the causal structure chosen and the estimate of location. In this strategy, the estimate of location is purely based on the causal structure that is deemed to be most likely (see
<xref ref-type="fig" rid="pcbi-1000871-g001">Figure 1d</xref>
).</p>
<p>The third strategy tested is
<italic>probability matching</italic>
<xref ref-type="bibr" rid="pcbi.1000871-Gaissmaier1">[19]</xref>
<xref ref-type="bibr" rid="pcbi.1000871-West1">[22]</xref>
. This strategy has been reported to be used by humans in a variety of cognitive tasks. In these tasks, probability matching refers to the phenomenon in which observer's probability of a given response matches the probability of appearance of the given target. For example, if the task is to predict which one of two colored lights will be presented in each trial, in an experiment in which each color is presented with a certain probability, then the participant's frequency of predicting each color will be consistent with the relative frequency of the presentation of the color. For a situation where a green light is presented 70% of the time, and a blue light 30% of the time, probability matching behavior would predict the green light on approximately 70% of trials. This strategy is considered to be sub-optimal in terms of economic and utility theory because once it is known that the green light is presented more often, observers should predict the green light on all trials to maximize their utility or gain (.70 proportion correct vs. .70×.70+.30×.30 = .58 proportion correct). Therefore, probability matching has not received much attention in the study of perception—which is generally considered to be highly optimized by evolution
<xref ref-type="bibr" rid="pcbi.1000871-Jonides1">[but see 23]</xref>
<xref ref-type="bibr" rid="pcbi.1000871-Vul1">[25 for evidence in visual selective attention]</xref>
. Nonetheless, because of its implication in the decision making literature, we included this strategy in our analysis. In our task, this strategy would translate into choosing a causal structure according to the probability of the underlying causal structure. Thus, this strategy is one step removed from matching the probability of response outcomes but rather matches the probability of the implicit causal structure (see
<xref ref-type="fig" rid="pcbi-1000871-g001">Figure 1e</xref>
).</p>
</sec>
<sec sec-type="methods" id="s2">
<title>Methods</title>
<sec id="s2a">
<title>Ethics Statement</title>
<p>This study was conducted according to the principles expressed in the Declaration of Helsinki. All participants in the experiment provided written informed consent in approval with the UCLA Institutional Review Board.</p>
</sec>
<sec id="s2b">
<title>Participants, Procedure and Stimuli</title>
<p>One hundred and forty six subjects participated in the experiment. We used a large sample because we wanted to be able to detect even small subpopulations (e.g., a small percentage of observers) who may adopt a different strategy. Participants sat at a desk in a dimly lit room with their chins positioned on a chin-rest 52 cm from a projection screen. The screen was a black acoustically transparent cloth subtending much of the visual field (134° width×60° height). Behind the screen were 5 free-field speakers (5×8 cm, extended range paper cone), positioned along azimuth 6.5° apart, 7° below fixation. The middle speaker was positioned below the fixation point, and two speakers were position to the right and two to the left of the fixation. The visual stimuli were presented overhead from a ceiling mounted projector set to a resolution of 1280×1024 pixels with a refresh rate of 75 Hz.</p>
<p>The visual stimulus was a white-noise disk (.41 cd/m
<sup>2</sup>
) with a Gaussian envelope of 1.5° FWHM, presented 7° below the fixation point on a black background (.07 cd/m
<sup>2</sup>
), for 35 ms. The visual stimuli were always presented so that their location overlapped the center of one of the five speakers behind the screen positioned at −13°, −6.5°, 0°, 6.5° 13°. Auditory stimuli were ramped white noise bursts of 35 ms measuring 69 dB(A) sound pressure level at a distance of 52 cm. The speaker locations were unknown to the participants.</p>
<p>In order to familiarize participants with the task, each session started with a practice period of 10 randomly interleaved trials in which only an auditory stimulus was presented at a variable location, and subjects were asked to report the location of the auditory stimulus.</p>
<p>Practice was followed by 525 test trials that took about 45 minutes to complete. 15 repetitions of 35 stimulus conditions were presented in pseudorandom order. The stimulus conditions included 5 unisensory auditory locations, 5 unisensory visual locations, and all 25 combinations of auditory and visual locations (bisensory conditions). On bisensory trials, subjects were asked to report
<italic>both</italic>
the location of auditory stimulus and the location of visual stimulus in sequential order. The order of these two responses was consistent throughout the session, and was counter-balanced across subjects. Subjects were told that “the sound and light could come from the same location, or they could come from different locations.” As a reminder, a blue ‘S’ or green ‘L’ was placed inside the cursor to remind subjects to respond to the sound or light respectively.</p>
<p>Each trial started with fixation cross, followed after 750–1100 ms by the presentation of the stimuli. After 450 ms, fixation was removed and a cursor appeared on the screen vertically just above the horizontal line where the stimuli were presented and at a random horizontal location in order to minimize response bias. The cursor was controlled by a trackball mouse placed in front of the subject, and could only be moved in the horizontal direction. Participants were instructed to “move the cursor as quickly and accurately as possible to the exact location of the stimulus and click the mouse”. This enabled the capture of continuous responses with a resolution of 0.1 degree/pixel.</p>
</sec>
<sec id="s2c">
<title>Causal Inference Model</title>
<p>We used a Bayesian causal inference model of multisensory perception augmented with one of the three decision strategies described above to classify the decision making strategy used by each participant. Details of the model can be found elsewhere
<xref ref-type="bibr" rid="pcbi.1000871-Krding1">[14]</xref>
, but in summary, each stimulus or event,
<inline-formula>
<inline-graphic xlink:href="pcbi.1000871.e002.jpg" mimetype="image"></inline-graphic>
</inline-formula>
, in the world causes an underlying noisy sensory estimate,
<inline-formula>
<inline-graphic xlink:href="pcbi.1000871.e003.jpg" mimetype="image"></inline-graphic>
</inline-formula>
, of the event (where
<italic>i</italic>
is indexed over sensory channels). Similar to
<xref ref-type="bibr" rid="pcbi.1000871-Krding1">[14]</xref>
, the sensory estimate for our task is the perceived location of the auditory and visual stimuli. We use a generative model to simulate experimental trials and subject responses by performing 10,000 Monte Carlo simulations per condition. Each individual sensation is modeled using the likelihood function
<inline-formula>
<inline-graphic xlink:href="pcbi.1000871.e004.jpg" mimetype="image"></inline-graphic>
</inline-formula>
. Trial-to-trial variability is introduced by sampling the likelihood from a normal distribution around the true sensory location, analogous to having auditory and visual sensory channels corrupted by independent Gaussian noise with parameters σ
<sub>A</sub>
and σ
<sub>V</sub>
respectively. We assume there is a prior bias for the central location, as modeled by a Gaussian distribution centered at 0°. The strength of this bias, σ
<sub>P</sub>
, is a free parameter. The causal inference model infers the underlying causal structure,
<italic>C</italic>
, of the environment based on the available sensory evidence and prior knowledge using Bayes' rule shown in Equation 1.
<disp-formula>
<graphic xlink:href="pcbi.1000871.e005"></graphic>
<label>(1)</label>
</disp-formula>
<xref ref-type="fig" rid="pcbi-1000871-g001">Figure 1</xref>
shows a schematic example for a bimodal stimulus presentation. The competing causal structures are shown in
<xref ref-type="fig" rid="pcbi-1000871-g001">Figure 1-B</xref>
, where either the sensations could arise from a common cause (
<italic>C</italic>
 = 1,
<xref ref-type="fig" rid="pcbi-1000871-g001">Figure 1-B</xref>
left), or from independent causes (
<italic>C</italic>
 = 2,
<xref ref-type="fig" rid="pcbi-1000871-g001">Figure 1-B</xref>
right). The optimal estimates for the visual and auditory locations are given in Equation 2 for the common cause model, and Equation 3 for the independent model.
<disp-formula>
<graphic xlink:href="pcbi.1000871.e006"></graphic>
<label>(2)</label>
</disp-formula>
<disp-formula>
<graphic xlink:href="pcbi.1000871.e007"></graphic>
<label>(3)</label>
</disp-formula>
The difference in our modeling compared to
<xref ref-type="bibr" rid="pcbi.1000871-Krding1">[14]</xref>
is in producing the final spatial location estimates. The goal of the nervous system is to come up with the best estimates of stimulus locations,
<inline-formula>
<inline-graphic xlink:href="pcbi.1000871.e008.jpg" mimetype="image"></inline-graphic>
</inline-formula>
and
<inline-formula>
<inline-graphic xlink:href="pcbi.1000871.e009.jpg" mimetype="image"></inline-graphic>
</inline-formula>
. If the objective is to minimize mean squared error of the spatial estimates, then the optimal estimates are obtained by model averaging:
<disp-formula>
<graphic xlink:href="pcbi.1000871.e010"></graphic>
<label>(4)</label>
</disp-formula>
where
<inline-formula>
<inline-graphic xlink:href="pcbi.1000871.e011.jpg" mimetype="image"></inline-graphic>
</inline-formula>
is the optimal estimate of auditory location given there is a single cause (Eq. 2), and
<inline-formula>
<inline-graphic xlink:href="pcbi.1000871.e012.jpg" mimetype="image"></inline-graphic>
</inline-formula>
is the optimal estimate of auditory location given there are independent causes (Eq. 3) (see
<xref ref-type="fig" rid="pcbi-1000871-g001">Figure 1-A</xref>
). The final estimate
<inline-formula>
<inline-graphic xlink:href="pcbi.1000871.e013.jpg" mimetype="image"></inline-graphic>
</inline-formula>
is a weighted average of the two estimates each weighted by the posterior probability of the respective causal structure (
<xref ref-type="fig" rid="pcbi-1000871-g001">Figure 1-C</xref>
).
<inline-formula>
<inline-graphic xlink:href="pcbi.1000871.e014.jpg" mimetype="image"></inline-graphic>
</inline-formula>
is computed likewise.</p>
<p>In model selection strategy (
<xref ref-type="fig" rid="pcbi-1000871-g001">Figure 1-D</xref>
), on each trial, the location estimate is based purely on the causal structure that is more probable given the sensory evidence and prior bias about the two causal structures:
<disp-formula>
<graphic xlink:href="pcbi.1000871.e015"></graphic>
<label>(5)</label>
</disp-formula>
For probability matching (
<xref ref-type="fig" rid="pcbi-1000871-g001">Figure 1-E</xref>
), location estimates are based on selecting a causal structure based on the inferred posterior probability of the structure. In other words, the selection criterion is stochastic and no longer deterministic. This can be achieved by using a variable selection criteria,
<inline-formula>
<inline-graphic xlink:href="pcbi.1000871.e016.jpg" mimetype="image"></inline-graphic>
</inline-formula>
, that is sampled from a uniform distribution on each trial.
<disp-formula>
<graphic xlink:href="pcbi.1000871.e017"></graphic>
<label>(6)</label>
</disp-formula>
All three models described above have four free parameters: the standard deviation of the auditory and visual likelihoods σ
<sub>A</sub>
and σ
<sub>V</sub>
, the standard deviation of the prior over space, σ
<sub>P</sub>
, and the prior probability of a common cause, p(C = 1) = 
<italic>pcommon</italic>
. We fit subject responses to the causal inference model for each of the three strategies and determine the best strategy based on the maximum likelihood fit for each subject (see Supplementary
<xref ref-type="supplementary-material" rid="pcbi.1000871.s001">Text S1</xref>
for a detailed description of the fitting procedure).</p>
<p>The three decision strategies produce distinct patterns of responses across trials and stimulus conditions.
<xref ref-type="fig" rid="pcbi-1000871-g002">Figure 2</xref>
shows response distributions for each of the three strategies generated by Monte Carlo simulations for a few stimulus conditions. For these simulations, we used parameter values that are typically found when fitting human observers data. Because vision has a much higher precision in this task than hearing, visual estimates are not affected much by sound. Therefore, we focus our attention on the auditory responses shown in blue. In general, the model averaging strategy mostly has unimodal response distributions, and in conditions with moderate conflict between the visual and auditory stimuli, the auditory responses are shifted in the direction of the visual stimulus (
<xref ref-type="fig" rid="pcbi-1000871-g002">Figure 2-A</xref>
). In contrast, for the model selection strategy, the auditory responses are mostly bimodal and consistent with either unisensory auditory responses, or complete fusion of the stimuli (
<xref ref-type="fig" rid="pcbi-1000871-g002">Figure 2-B</xref>
). The probability mass around each peak varies consistently with the expected probability of each causal structure. In other words, for conditions in which the discrepancy between visual and auditory locations is large, and thus the probability of a common cause is low, there is a large probability mass at the auditory location, and in conditions where the conflict is small, and thus the probability of common cause is high, there is a much larger probability mass around the visual capture location (i.e., location shifted towards visual stimulus). The fixed selection criterion results in distinct separation between the two auditory response distribution modes. For any probability of a common cause greater 0.5, the auditory response will be fused with the visual response. Similarly, the probability matching strategy also shows bimodal auditory response distributions (
<xref ref-type="fig" rid="pcbi-1000871-g002">Figure 2-C</xref>
). However, in contrast with model selection, the modes are not as distinct. Due to the variable model selection criteria (
<italic>ξ</italic>
), even when the probability of a common cause is high, there is a small probability of providing an auditory response consistent with the independent causal structure. Due to the high uncertainty in the auditory signals (i.e., large variance of auditory likelihood), this can even be observed when the stimulus locations are identical (left column).</p>
<fig id="pcbi-1000871-g002" position="float">
<object-id pub-id-type="doi">10.1371/journal.pcbi.1000871.g002</object-id>
<label>Figure 2</label>
<caption>
<title>Simulated response patterns.</title>
<p>Simulated response distributions for the three strategies: model averaging (A), model selection (B), and probability matching (C). Distributions are created from 10,000 samples per condition, using mean subject parameters [σ
<sub>V</sub>
 = 2.5° σ
<sub>A</sub>
 = 10.1° σ
<sub>P</sub>
 = 33.0°
<italic>pcommon</italic>
 = 0.57], and only changing the decision strategy. Five bimodal conditions are shown for each strategy with the visual stimulus to the far left, and the auditory stimulus growing in discrepancy from the left to the right columns. Vertical blue and magenta dotted lines along with the speaker and lightbulb icons show the true location of the auditory and visual locations, respectively. The predicted log-probability of response is shown by the shaded bars for both the visual (magenta) and auditory (blue) response distributions, with overlaps shown in a darker shade of blue.</p>
</caption>
<graphic xlink:href="pcbi.1000871.g002"></graphic>
</fig>
</sec>
</sec>
<sec id="s3">
<title>Results</title>
<p>For each participant, each of the decision strategy models was fitted to the data, and the observer was classified by the strategy that explained the data best. In order to be highly confident in the classifications, for an observer to be included in the sample we required that the log-likelihood difference between the best-fitting model and the second best-fitting model exceed a value of 3—which is considered substantial evidence for the support of one model vs. another
<xref ref-type="bibr" rid="pcbi.1000871-HaroldJeffreys1">[26]</xref>
. In
<xref ref-type="table" rid="pcbi-1000871-t001">Table 1</xref>
, we report the results from 110 participants whose data met this criterion. Among these participants, on average the log-likelihood difference between the top two best-fitting models was 24.6 (median 17.6), which is in the range considered as decisive evidence for a model relative to another model
<xref ref-type="bibr" rid="pcbi.1000871-HaroldJeffreys1">[26]</xref>
. On average, the best fitting model accounted for 83% of the variance in the individual participant's data (generalized coefficient of determination
<xref ref-type="bibr" rid="pcbi.1000871-Nagelkerke1">[27]</xref>
: R
<sup>2</sup>
 = 0.83±0.11). The model fits for the probability-matching group data is also shown for all stimulus conditions in Supplementary
<xref ref-type="supplementary-material" rid="pcbi.1000871.s002">Figure S1</xref>
. Therefore, the best-fitting model fitted the data very well, and the classifications were highly reliable.</p>
<table-wrap id="pcbi-1000871-t001" position="float">
<object-id pub-id-type="doi">10.1371/journal.pcbi.1000871.t001</object-id>
<label>Table 1</label>
<caption>
<title>Summary of participant strategy classification.</title>
</caption>
<alternatives>
<graphic id="pcbi-1000871-t001-1" xlink:href="pcbi.1000871.t001"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">All subjects</td>
<td align="left" rowspan="1" colspan="1">Females</td>
<td align="left" rowspan="1" colspan="1">Males</td>
<td align="left" rowspan="1" colspan="1">Age (μ±SD)</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Matching</td>
<td align="left" rowspan="1" colspan="1">82 (75%)</td>
<td align="left" rowspan="1" colspan="1">57 (75%)</td>
<td align="left" rowspan="1" colspan="1">25 (74%)</td>
<td align="left" rowspan="1" colspan="1">20.9±3.0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Selection</td>
<td align="left" rowspan="1" colspan="1">10 (9%)</td>
<td align="left" rowspan="1" colspan="1">7 (9%)</td>
<td align="left" rowspan="1" colspan="1">3 (9%)</td>
<td align="left" rowspan="1" colspan="1">20.4±2.1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Averaging</td>
<td align="left" rowspan="1" colspan="1">18 (16%)</td>
<td align="left" rowspan="1" colspan="1">12 (16%)</td>
<td align="left" rowspan="1" colspan="1">6 (17%)</td>
<td align="left" rowspan="1" colspan="1">21.5±3.3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Total</td>
<td align="left" rowspan="1" colspan="1">110</td>
<td align="left" rowspan="1" colspan="1">76</td>
<td align="left" rowspan="1" colspan="1">34</td>
<td align="left" rowspan="1" colspan="1">20.9±3.0</td>
</tr>
</tbody>
</table>
</alternatives>
</table-wrap>
<p>The number of participants classified as utilizing the matching, selection, or averaging strategy is provided in
<xref ref-type="table" rid="pcbi-1000871-t001">Table 1</xref>
. Probability matching is the decision strategy used by the vast majority of observers (82/110). Model averaging was second followed by model selection. The proportion of males and females is not significantly different for each strategy (two-sample test for equality of proportions, p>0.05). The difference in distribution of ages among the three groups was also statistically insignificant (two-sample Kolmogorov-Smirnov test, p>0.05). It should be pointed out that these results are not sensitive to the subject exclusion criterion described above. The results remain qualitatively the same even if we do not exclude any participants at all: N = 146, matching = 64%; selection = 18%; averaging = 18%, or if we use other exclusion criteria (e.g., margin of 10 instead of 3: N = 82, matching = 79%; selection = 5%; averaging = 16%).</p>
<p>We also tested whether the model selection strategy could explain the data better than the other two strategies if we allow a bias in choosing a model (i.e., if the criterion can take on any value as a free parameter, rather than fixed at .5 as in Equation 5). Despite the additional free parameter for this model, we find similar proportions of categorization: N = 110, matching = 72%; selection = 13%; averaging = 15% – and after applying Bayesian Information Criteria regularization for the additional free parameter: matching = 72%; selection = 11%; averaging = 17%.</p>
</sec>
<sec id="s4">
<title>Discussion</title>
<p>We aimed to gain insight into the decision making strategy used in a perceptual task, by comparing three strategies and testing which one accounts best for the observers' data. Our computational modeling tools allow us to perform this type of analysis for each individual observer. Perceptual functions, in particular the basic ones that are shared across species (and arguably key to the survival of the organism) such as spatial localization, are often thought to be optimal. Perceptual functions are evolutionarily old and thus, it is argued that there has been sufficient amount of time for them to have been optimized by evolution
<xref ref-type="bibr" rid="pcbi.1000871-Simoncelli1">[28]</xref>
, and indeed several studies have shown a variety of perceptual tasks to be “statistically optimal.” For the same reason, it is also expected that the optimized and automated perceptual processes to be largely uniform across individuals.</p>
<p>We examined the decision strategies in an auditory-visual spatial localization task on a large sample of observers consisting of 110 individuals. First, we found that not all observers appear to utilize the same strategy. This variability across individuals suggests that this localization process is not predestined or hard-wired in the nervous system. More importantly, the vast majority of participants seem to use a probability matching strategy. This finding is surprising because this strategy is not statistically optimal in the conventional sense.</p>
<p>Why should the majority of individuals use a “suboptimal” strategy in this basic task? To address this question, it is best to step back and re-examine the notion of optimality. While a probability matching strategy may not be optimal in a static environment, it may be optimal or close to optimal in a dynamic one
<xref ref-type="bibr" rid="pcbi.1000871-Vulkan1">[29]</xref>
, and especially useful in exploring patterns in the environment. Humans instinctively have the tendency to search for regularities in random patterns
<xref ref-type="bibr" rid="pcbi.1000871-Ayton1">[30]</xref>
<xref ref-type="bibr" rid="pcbi.1000871-Yellot1">[33]</xref>
, and it has been suggested that probability matching results from the addition of an “informatic” utility that considers learning and exploring an important component in survival and ecological rationality
<xref ref-type="bibr" rid="pcbi.1000871-Burns1">[34]</xref>
. Thus, while probability-matchers might look irrational in the absence of predictable patterns, they would have a higher chance of finding patterns if they exist
<xref ref-type="bibr" rid="pcbi.1000871-Gaissmaier1">[19]</xref>
. In the context of our experiment, although the stimuli were uniformly random, perhaps the matchers subconsciously explore for patterns within the stimuli.</p>
<p>The observed probability matching behavior suggests that the nervous system samples from a distribution over model hypotheses on each trial. Sampling-based representational coding has been proposed to account for neurophysiological phenomena such as spontaneous neural activity
<xref ref-type="bibr" rid="pcbi.1000871-Fiser1">[35]</xref>
and variability in neural responses
<xref ref-type="bibr" rid="pcbi.1000871-Hoyer1">[36]</xref>
, as well as other stochastic perceptual phenomena such as bistability
<xref ref-type="bibr" rid="pcbi.1000871-MorenoBote1">[37]</xref>
,
<xref ref-type="bibr" rid="pcbi.1000871-Sundareswara1">[38]</xref>
. Alternatively, it is conceivable that a case-based selection rule
<xref ref-type="bibr" rid="pcbi.1000871-Erev1">[39]</xref>
that, on each trial, chooses the most appropriate model from an earlier experience (not necessarily from the current experiment) resembling the current sensations, would produce this behavior.</p>
<p>While probability matching was the modal response strategy found in the current study, we are not claiming that probability matching is used in all perceptual tasks, or even in all spatial tasks. Optimal performance in perceptual tasks has been reported by some previous studies. A recent study found observers' behavior to be consistent with the expected loss function in a visual discrimination task
<xref ref-type="bibr" rid="pcbi.1000871-Whiteley1">[40]</xref>
, however, the results are ambiguous with respect to the specific decision making strategy utilized (averaging, selection, and probability matching) as they would make similar predictions. Knill, in a study of perception of slant from compression and binocular disparity cues
<xref ref-type="bibr" rid="pcbi.1000871-Knill2">[41]</xref>
, reported optimal performance. In this study, which used an almost identical structure inference model to the one used here, observers' responses were explained well by model averaging. However, probability matching was not considered, and regarding model selection vs. averaging, the author points out that determining exactly which strategy was used by the participants is difficult. Perhaps most relevant to our current findings is a previous study of auditory-visual spatial localization in which the observers' performance was found to be consistent with model averaging
<xref ref-type="bibr" rid="pcbi.1000871-Krding1">[14]</xref>
. Although model selection and probability matching were not tested, the response profiles were unimodal and thus, inconsistent with these strategies. The sample size was relatively small in this study (N = 19), yet together with the aforementioned studies, these findings raise the question of what are the factors that influence the decision-making strategy adopted by observers. It is likely that the specific strategy used by participants depends on the context, instruction, prior experience, and many other factors
<xref ref-type="bibr" rid="pcbi.1000871-Stanovich1">[42]</xref>
. Landy et al.
<xref ref-type="bibr" rid="pcbi.1000871-Landy1">[43]</xref>
found that stimulus variability and unpredictability from trial to trial can result in adoption of a variety of suboptimal strategies by participants in a texture orientation perception task. Even for a given context, stimuli, and instruction (as in this experiment), some subjects' construal of the task may affect their utility/cost function. The specific computational constraints such as criteria of speed and accuracy could also favor the use of one strategy over another. Also in our study, subjects had to make sequential reports of both modalities requiring responses to be held in working memory, which has been suggested to have a role in the decision process
<xref ref-type="bibr" rid="pcbi.1000871-Gaissmaier1">[19]</xref>
,
<xref ref-type="bibr" rid="pcbi.1000871-Wolford1">[32]</xref>
,
<xref ref-type="bibr" rid="pcbi.1000871-Todd1">[44]</xref>
. The specific factors influencing perceptual decision making strategies is an open question for future studies.</p>
<p>Probability matching has been shown to happen when people's response probability matches the relative frequency of the presented stimuli. Here we show that the nervous system can even match the probability of a more abstract construct such as the probability of causal structure of the stimuli which is one step removed from the stimuli themselves. This finding suggests that probability matching may be a general decision-making strategy operating at multiple levels of processing. The results of this study altogether suggest that the nervous system does not necessarily use the commonly assumed least squared error cost function in perceptual tasks, and underscore the importance of considering alterative objectives when evaluating perceptual performance.</p>
</sec>
<sec sec-type="supplementary-material" id="s5">
<title>Supporting Information</title>
<supplementary-material content-type="local-data" id="pcbi.1000871.s001">
<label>Text S1</label>
<caption>
<p>Model fitting and goodness of fit procedure.</p>
<p>(0.03 MB DOC)</p>
</caption>
<media xlink:href="pcbi.1000871.s001.doc" mimetype="application" mime-subtype="msword">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pcbi.1000871.s002">
<label>Figure S1</label>
<caption>
<p>Model fits to probability matching group. Shaded areas show the log-probability of response for the 82 subjects classified as using a probability matching strategy. Thick lines show the model fits averaged across individual subject fits. Vertical blue and magenta dotted lines show the location of the auditory and visual stimulus, respectively. The first row shows the five unimodal auditory conditions, ordered from leftmost to rightmost positions along the azimuth as shown by the blue vertical dotted line. The first column shows the five unimodal visual conditions, ordered from leftmost (top) to rightmost (bottom) as shown by the magenta vertical dotted line. The central 25 plots show data from the bisensory conditions with both the visual (magenta) and auditory (blue) response distributions.</p>
<p>(2.70 MB TIF)</p>
</caption>
<media xlink:href="pcbi.1000871.s002.tif" mimetype="image" mime-subtype="tiff">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<p>We thank Stefan Schaal for his insightful comments on the manuscript. We are also grateful to the three anonymous reviewers whose insightful comments helped improve the paper significantly.</p>
</ack>
<fn-group>
<fn fn-type="conflict">
<p>The authors have declared that no competing interests exist.</p>
</fn>
<fn fn-type="financial-disclosure">
<p>D.R.W. was funded by a UCLA Graduate Division fellowship, and a UCLA NeuroImaging Training Grant sponsored by the National Institutes of Health. U.R.B. was funded by Gatsby Charitable Foundation and Marie Curie FP7 Programme. L.S. was funded by the UCLA Faculty Grants Program and a Faculty Career Award. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</p>
</fn>
</fn-group>
<ref-list>
<title>References</title>
<ref id="pcbi.1000871-Green1">
<label>1</label>
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Green</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Swets</surname>
<given-names>JA</given-names>
</name>
</person-group>
<year>1966</year>
<source>Signal detection theory and psychophysics</source>
<publisher-loc>New York</publisher-loc>
<publisher-name>Wiley</publisher-name>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-Neumann1">
<label>2</label>
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Neumann</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Morgenstern</surname>
<given-names>O</given-names>
</name>
</person-group>
<year>1944</year>
<source>Theory of Games and Economic Behavior</source>
<publisher-loc>Princeton (NJ)</publisher-loc>
<publisher-name>Princeton University Press</publisher-name>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-Hillis1">
<label>3</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hillis</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Watt</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Landy</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Banks</surname>
<given-names>M</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>Slant from texture and disparity cues: Optimal cue combination.</article-title>
<source>J Vis</source>
<volume>4</volume>
<fpage>967</fpage>
<lpage>992</lpage>
<pub-id pub-id-type="pmid">15669906</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-Knill1">
<label>4</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Knill</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Saunders</surname>
<given-names>J</given-names>
</name>
</person-group>
<year>2003</year>
<article-title>Do humans optimally integrate stereo and texture information for judgments of surface slant?</article-title>
<source>Vision Res</source>
<volume>43</volume>
<fpage>2539</fpage>
<lpage>2558</lpage>
<pub-id pub-id-type="pmid">13129541</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-Ernst1">
<label>5</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ernst</surname>
<given-names>MO</given-names>
</name>
<name>
<surname>Banks</surname>
<given-names>MS</given-names>
</name>
</person-group>
<year>2002</year>
<article-title>Humans integrate visual and haptic information in a statistically optimal fashion.</article-title>
<source>Nature</source>
<volume>415</volume>
<fpage>429</fpage>
<lpage>433</lpage>
<pub-id pub-id-type="pmid">11807554</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-Bresciani1">
<label>6</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bresciani</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Dammeier</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Ernst</surname>
<given-names>MO</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>Vision and touch are automatically integrated for the perception of sequences of events.</article-title>
<source>J Vis</source>
<volume>6</volume>
<fpage>554</fpage>
<lpage>564</lpage>
<pub-id pub-id-type="pmid">16881788</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-Roach1">
<label>7</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roach</surname>
<given-names>NW</given-names>
</name>
<name>
<surname>Heron</surname>
<given-names>J</given-names>
</name>
<name>
<surname>McGraw</surname>
<given-names>PV</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>Resolving multisensory conflict: a strategy for balancing the costs and benefits of audio-visual integration.</article-title>
<source>Proc Biol Sci</source>
<volume>273</volume>
<fpage>2159</fpage>
<lpage>2168</lpage>
<pub-id pub-id-type="pmid">16901835</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-Shams1">
<label>8</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shams</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>WJ</given-names>
</name>
<name>
<surname>Beierholm</surname>
<given-names>U</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Sound-induced flash illusion as an optimal percept.</article-title>
<source>Neuroreport</source>
<volume>16</volume>
<fpage>1923</fpage>
<lpage>1927</lpage>
<pub-id pub-id-type="pmid">16272880</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-Gorea1">
<label>9</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gorea</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Caetta</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Sagi</surname>
<given-names>D</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Criteria interactions across visual attributes.</article-title>
<source>Vision Res</source>
<volume>45</volume>
<fpage>2523</fpage>
<lpage>2532</lpage>
<pub-id pub-id-type="pmid">15950255</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-Maddox1">
<label>10</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maddox</surname>
<given-names>WT</given-names>
</name>
</person-group>
<year>2002</year>
<article-title>Toward a unified theory of decision criterion learning in perceptual categorization.</article-title>
<source>J Exp Anal Behav</source>
<volume>78</volume>
<fpage>567</fpage>
<lpage>595</lpage>
<pub-id pub-id-type="pmid">12507020</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-Warren1">
<label>11</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Warren</surname>
<given-names>RC</given-names>
</name>
</person-group>
<year>1984</year>
<article-title>Detectability of low-contrast features in computed tomography.</article-title>
<source>Phys Med Biol</source>
<volume>29</volume>
<fpage>1</fpage>
<lpage>13</lpage>
<pub-id pub-id-type="pmid">6701188</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-Kording1">
<label>12</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kording</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Tenenbaum</surname>
<given-names>J</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Causal inference in sensorimotor integration.</article-title>
<source>Adv Neural Inf Process Syst</source>
<volume>19</volume>
<fpage>737</fpage>
<lpage>744</lpage>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-Stocker1">
<label>13</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stocker</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Simoncelli</surname>
<given-names>E</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>A Bayesian model of conditioned perception.</article-title>
<source>Adv Neural Inf Process Syst</source>
<volume>20</volume>
<fpage>1409</fpage>
<lpage>1416</lpage>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-Krding1">
<label>14</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Körding</surname>
<given-names>KP</given-names>
</name>
<name>
<surname>Beierholm</surname>
<given-names>UR</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>WJ</given-names>
</name>
<name>
<surname>Quartz</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Tenenbaum</surname>
<given-names>JB</given-names>
</name>
<etal></etal>
</person-group>
<year>2007</year>
<article-title>Causal inference in multisensory perception.</article-title>
<source>PLoS ONE</source>
<volume>2</volume>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-Alais1">
<label>15</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alais</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Burr</surname>
<given-names>D</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>The ventriloquist effect results from near-optimal bimodal integration.</article-title>
<source>Curr Biol</source>
<volume>14</volume>
<fpage>257</fpage>
<lpage>262</lpage>
<pub-id pub-id-type="pmid">14761661</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-Wozny1">
<label>16</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wozny</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Beierholm</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Shams</surname>
<given-names>L</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>Human trimodal perception follows optimal statistical inference.</article-title>
<source>J Vis</source>
<volume>8</volume>
<fpage>24</fpage>
<pub-id pub-id-type="pmid">18484830</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-Yuille1">
<label>17</label>
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Yuille</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Bülthoff</surname>
<given-names>HH</given-names>
</name>
</person-group>
<year>1996</year>
<article-title>Bayesian decision theory and psychophysics.</article-title>
<person-group person-group-type="editor">
<name>
<surname>Knill</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Richards</surname>
<given-names>W</given-names>
</name>
</person-group>
<source>Perception as Bayesian inference</source>
<publisher-loc>Cambridge, England</publisher-loc>
<publisher-name>Cambridge University Press</publisher-name>
<fpage>123</fpage>
<lpage>163</lpage>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-Yuille2">
<label>18</label>
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Yuille</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Clark</surname>
<given-names>JJ</given-names>
</name>
</person-group>
<year>1993</year>
<article-title>Bayesian models, deformable templates and competitive priors.</article-title>
<person-group person-group-type="editor">
<name>
<surname>Harris</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Jenkin</surname>
<given-names>M</given-names>
</name>
</person-group>
<source>Spatial vision in humans and robots</source>
<publisher-loc>Cambridge, England</publisher-loc>
<publisher-name>Cambridge University Press</publisher-name>
<fpage>333</fpage>
<lpage>348</lpage>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-Gaissmaier1">
<label>19</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gaissmaier</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Schooler</surname>
<given-names>LJ</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>The smart potential behind probability matching.</article-title>
<source>Cognition</source>
<volume>109</volume>
<fpage>416</fpage>
<lpage>422</lpage>
<pub-id pub-id-type="pmid">19019351</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-Grant1">
<label>20</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grant</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Hake</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Hornseth</surname>
<given-names>J</given-names>
</name>
</person-group>
<year>1951</year>
<article-title>Acquisition and extinction of a verbal conditioned response with differing percentages of reinforcement.</article-title>
<source>J Exp Psychol</source>
<volume>42</volume>
<fpage>1</fpage>
<lpage>5</lpage>
<pub-id pub-id-type="pmid">14880648</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-Unturbe1">
<label>21</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Unturbe</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Corominas</surname>
<given-names>J</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Probability matching involves rule-generating ability: A neuropsychological mechanism dealing with probabilities.</article-title>
<source>Neuropsychology</source>
<volume>21</volume>
<fpage>621</fpage>
<lpage>630</lpage>
<pub-id pub-id-type="pmid">17784810</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-West1">
<label>22</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>West</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Stanovich</surname>
<given-names>KE</given-names>
</name>
</person-group>
<year>2003</year>
<article-title>Is probability matching smart? Associations between probabilistic choices and cognitive ability.</article-title>
<source>Mem Cognit</source>
<volume>31</volume>
<fpage>243</fpage>
<lpage>251</lpage>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-Jonides1">
<label>23</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jonides</surname>
<given-names>J</given-names>
</name>
</person-group>
<year>1980</year>
<article-title>Towards a model of the mind's eye's movement.</article-title>
<source>Can J Psychol</source>
<volume>34</volume>
<fpage>103</fpage>
<lpage>112</lpage>
<pub-id pub-id-type="pmid">7448632</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-Jonides2">
<label>24</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jonides</surname>
<given-names>J</given-names>
</name>
</person-group>
<year>1983</year>
<article-title>Further toward a model of the mind's eye's movement.</article-title>
<source>Bull Psychon Soc</source>
<volume>21</volume>
<fpage>247</fpage>
<lpage>250</lpage>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-Vul1">
<label>25</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vul</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Hanus</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Kanwisher</surname>
<given-names>N</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Attention as inference: selection is probabilistic; responses are all-or-none samples.</article-title>
<source>J Exp Psychol: General</source>
<volume>138</volume>
<fpage>546</fpage>
<lpage>560</lpage>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-HaroldJeffreys1">
<label>26</label>
<mixed-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Harold Jeffreys</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>1961</year>
<comment>Theory of probability</comment>
<size units="page"></size>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-Nagelkerke1">
<label>27</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nagelkerke</surname>
<given-names>N</given-names>
</name>
</person-group>
<year>1991</year>
<article-title>A Note on a General Definition of the Coefficient of Determination.</article-title>
<source>Biometrika</source>
<volume>78</volume>
<fpage>691</fpage>
<lpage>692</lpage>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-Simoncelli1">
<label>28</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Simoncelli</surname>
<given-names>EP</given-names>
</name>
</person-group>
<year>2003</year>
<article-title>Vision and the statistics of the visual environment.</article-title>
<source>Curr Opin Neurobiol</source>
<volume>13</volume>
<fpage>144</fpage>
<lpage>149</lpage>
<pub-id pub-id-type="pmid">12744966</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-Vulkan1">
<label>29</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vulkan</surname>
<given-names>N</given-names>
</name>
</person-group>
<year>2000</year>
<article-title>An economist's perspective on probability matching.</article-title>
<source>J Econ Surv</source>
<volume>14</volume>
<fpage>101</fpage>
<lpage>118</lpage>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-Ayton1">
<label>30</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ayton</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Hunt</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Wright</surname>
<given-names>G</given-names>
</name>
</person-group>
<year>1989</year>
<article-title>Psychological conceptions of randomness.</article-title>
<source>J Behav Decis Mak</source>
<volume>2</volume>
<fpage>221</fpage>
<lpage>238</lpage>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-Wagenaar1">
<label>31</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wagenaar</surname>
<given-names>WA</given-names>
</name>
</person-group>
<year>1972</year>
<article-title>Generation of random sequences by human subjects: A critical survey of literature.</article-title>
<source>Psychol Bull</source>
<volume>77</volume>
<fpage>65</fpage>
<lpage>72</lpage>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-Wolford1">
<label>32</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wolford</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Newman</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wig</surname>
<given-names>G</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>Searching for patterns in random sequences.</article-title>
<source>Can J Exp Psychol</source>
<volume>58</volume>
<fpage>221</fpage>
<lpage>228</lpage>
<pub-id pub-id-type="pmid">15648726</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-Yellot1">
<label>33</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yellot</surname>
</name>
</person-group>
<year>1969</year>
<article-title>Probability learning with noncontingent success.</article-title>
<source>J Math Psychol</source>
<volume>6</volume>
<fpage>541</fpage>
<lpage>575</lpage>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-Burns1">
<label>34</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Burns</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Demaree</surname>
<given-names>H</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>A chance to learn: On matching probabilities to optimize utilities.</article-title>
<source>Inf Sci (Ny)</source>
<volume>179</volume>
<fpage>1599</fpage>
<lpage>1607</lpage>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-Fiser1">
<label>35</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fiser</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Berkes</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Orbán</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Lengyel</surname>
<given-names>M</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>Statistically optimal perception and learning: from behavior to neural representations.</article-title>
<source>Trends Cogn Sci</source>
<volume>14</volume>
<fpage>119</fpage>
<lpage>130</lpage>
<pub-id pub-id-type="pmid">20153683</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-Hoyer1">
<label>36</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hoyer</surname>
<given-names>PO</given-names>
</name>
<name>
<surname>Arinen</surname>
<given-names>AH</given-names>
</name>
</person-group>
<year>2003</year>
<article-title>Interpreting neural response variability as Monte Carlo sampling of the posterior.</article-title>
<source>Adv Neural Inf Process Syst</source>
<volume>15</volume>
<fpage>277</fpage>
<lpage>284</lpage>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-MorenoBote1">
<label>37</label>
<mixed-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Moreno-Bote</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Knill</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Pouget</surname>
<given-names>A</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Sampling and Optimal Cue Combination during Bistable Perception.</article-title>
<comment>Computational and systems neuroscience 2009: Front Syst Neurosci</comment>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-Sundareswara1">
<label>38</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sundareswara</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Schrater</surname>
<given-names>PR</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>Perceptual multistability predicted by search model for Bayesian decisions.</article-title>
<source>J Vis</source>
<volume>8</volume>
<fpage>12.11</fpage>
<lpage>19</lpage>
<pub-id pub-id-type="pmid">18842083</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-Erev1">
<label>39</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Erev</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Barron</surname>
<given-names>G</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>On Adaptation, Maximization, and Reinforcement Learning Among Cognitive Strategies.</article-title>
<source>Psychol Rev</source>
<volume>112</volume>
<fpage>912</fpage>
<lpage>931</lpage>
<pub-id pub-id-type="pmid">16262473</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-Whiteley1">
<label>40</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Whiteley</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Sahani</surname>
<given-names>M</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>Implicit knowledge of visual uncertainty guides decisions with asymmetric outcomes.</article-title>
<source>J Vis</source>
<volume>8</volume>
<fpage>2.1</fpage>
<lpage>15</lpage>
<pub-id pub-id-type="pmid">18484808</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-Knill2">
<label>41</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Knill</surname>
<given-names>DC</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Robust cue integration: a Bayesian model and evidence from cue-conflict studies with stereoscopic and figure cues to slant.</article-title>
<source>J Vis</source>
<volume>7</volume>
<fpage>5.1</fpage>
<lpage>24</lpage>
<pub-id pub-id-type="pmid">17685801</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-Stanovich1">
<label>42</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stanovich</surname>
<given-names>KE</given-names>
</name>
<name>
<surname>West</surname>
<given-names>RF</given-names>
</name>
</person-group>
<year>2000</year>
<article-title>Individual differences in reasoning: implications for the rationality debate? Open peer commentary.</article-title>
<source>Behav Brain Sci</source>
<volume>23</volume>
<fpage>645</fpage>
<lpage>726</lpage>
<pub-id pub-id-type="pmid">11301544</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-Landy1">
<label>43</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Landy</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Goutcher</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Trommershäuser</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Mamassian</surname>
<given-names>P</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Visual estimation under risk.</article-title>
<source>J Vis</source>
<volume>7</volume>
<fpage>4</fpage>
<pub-id pub-id-type="pmid">17685787</pub-id>
</mixed-citation>
</ref>
<ref id="pcbi.1000871-Todd1">
<label>44</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Todd</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Gigerenzer</surname>
<given-names>G</given-names>
</name>
</person-group>
<year>2000</year>
<article-title>Précis of Simple heuristics that make us smart.</article-title>
<source>Behav Brain Sci</source>
<volume>23</volume>
<fpage>727</fpage>
<lpage>741; discussion 742–780</lpage>
<pub-id pub-id-type="pmid">11301545</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>Royaume-Uni</li>
<li>États-Unis</li>
</country>
<region>
<li>Angleterre</li>
<li>Californie</li>
<li>District de Leipzig</li>
<li>Grand Londres</li>
<li>Saxe (Land)</li>
</region>
<settlement>
<li>Leipzig</li>
<li>Londres</li>
</settlement>
</list>
<tree>
<country name="Allemagne">
<region name="Saxe (Land)">
<name sortKey="Wozny, David R" sort="Wozny, David R" uniqKey="Wozny D" first="David R." last="Wozny">David R. Wozny</name>
</region>
</country>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Wozny, David R" sort="Wozny, David R" uniqKey="Wozny D" first="David R." last="Wozny">David R. Wozny</name>
</region>
<name sortKey="Shams, Ladan" sort="Shams, Ladan" uniqKey="Shams L" first="Ladan" last="Shams">Ladan Shams</name>
<name sortKey="Shams, Ladan" sort="Shams, Ladan" uniqKey="Shams L" first="Ladan" last="Shams">Ladan Shams</name>
</country>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Beierholm, Ulrik R" sort="Beierholm, Ulrik R" uniqKey="Beierholm U" first="Ulrik R." last="Beierholm">Ulrik R. Beierholm</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Pmc/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D86 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd -nk 001D86 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Pmc
   |étape=   Checkpoint
   |type=    RBID
   |clé=     PMC:2916852
   |texte=   Probability Matching as a Computational Strategy Used in Perception
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/RBID.i   -Sk "pubmed:20700493" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024