Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Volume Visualization: A Technical Overview with a Focus on Medical Applications

Identifieur interne : 001C77 ( Pmc/Checkpoint ); précédent : 001C76; suivant : 001C78

Volume Visualization: A Technical Overview with a Focus on Medical Applications

Auteurs : Qi Zhang ; Roy Eagleson ; Terry M. Peters

Source :

RBID : PMC:3138940

Abstract

With the increasing availability of high-resolution isotropic three- or four-dimensional medical datasets from sources such as magnetic resonance imaging, computed tomography, and ultrasound, volumetric image visualization techniques have increased in importance. Over the past two decades, a number of new algorithms and improvements have been developed for practical clinical image display. More recently, further efficiencies have been attained by designing and implementing volume-rendering algorithms on graphics processing units (GPUs). In this paper, we review volumetric image visualization pipelines, algorithms, and medical applications. We also illustrate our algorithm implementation and evaluation results, and address the advantages and drawbacks of each algorithm in terms of image quality and efficiency. Within the outlined literature review, we have integrated our research results relating to new visualization, classification, enhancement, and multimodal data dynamic rendering. Finally, we illustrate issues related to modern GPU working pipelines, and their applications in volume visualization domain.


Url:
DOI: 10.1007/s10278-010-9321-6
PubMed: 20714917
PubMed Central: 3138940


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:3138940

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Volume Visualization: A Technical Overview with a Focus on Medical Applications</title>
<author>
<name sortKey="Zhang, Qi" sort="Zhang, Qi" uniqKey="Zhang Q" first="Qi" last="Zhang">Qi Zhang</name>
<affiliation>
<nlm:aff id="Aff1">Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, 100 Perth Drive, London, ON N6A 5K8 Canada</nlm:aff>
<wicri:noCountry code="subfield">ON N6A 5K8 Canada</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Eagleson, Roy" sort="Eagleson, Roy" uniqKey="Eagleson R" first="Roy" last="Eagleson">Roy Eagleson</name>
<affiliation>
<nlm:aff id="Aff1">Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, 100 Perth Drive, London, ON N6A 5K8 Canada</nlm:aff>
<wicri:noCountry code="subfield">ON N6A 5K8 Canada</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Peters, Terry M" sort="Peters, Terry M" uniqKey="Peters T" first="Terry M." last="Peters">Terry M. Peters</name>
<affiliation>
<nlm:aff id="Aff1">Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, 100 Perth Drive, London, ON N6A 5K8 Canada</nlm:aff>
<wicri:noCountry code="subfield">ON N6A 5K8 Canada</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">20714917</idno>
<idno type="pmc">3138940</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3138940</idno>
<idno type="RBID">PMC:3138940</idno>
<idno type="doi">10.1007/s10278-010-9321-6</idno>
<date when="2010">2010</date>
<idno type="wicri:Area/Pmc/Corpus">000906</idno>
<idno type="wicri:Area/Pmc/Curation">000906</idno>
<idno type="wicri:Area/Pmc/Checkpoint">001C77</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Volume Visualization: A Technical Overview with a Focus on Medical Applications</title>
<author>
<name sortKey="Zhang, Qi" sort="Zhang, Qi" uniqKey="Zhang Q" first="Qi" last="Zhang">Qi Zhang</name>
<affiliation>
<nlm:aff id="Aff1">Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, 100 Perth Drive, London, ON N6A 5K8 Canada</nlm:aff>
<wicri:noCountry code="subfield">ON N6A 5K8 Canada</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Eagleson, Roy" sort="Eagleson, Roy" uniqKey="Eagleson R" first="Roy" last="Eagleson">Roy Eagleson</name>
<affiliation>
<nlm:aff id="Aff1">Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, 100 Perth Drive, London, ON N6A 5K8 Canada</nlm:aff>
<wicri:noCountry code="subfield">ON N6A 5K8 Canada</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Peters, Terry M" sort="Peters, Terry M" uniqKey="Peters T" first="Terry M." last="Peters">Terry M. Peters</name>
<affiliation>
<nlm:aff id="Aff1">Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, 100 Perth Drive, London, ON N6A 5K8 Canada</nlm:aff>
<wicri:noCountry code="subfield">ON N6A 5K8 Canada</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of Digital Imaging</title>
<idno type="ISSN">0897-1889</idno>
<idno type="eISSN">1618-727X</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>With the increasing availability of high-resolution isotropic three- or four-dimensional medical datasets from sources such as magnetic resonance imaging, computed tomography, and ultrasound, volumetric image visualization techniques have increased in importance. Over the past two decades, a number of new algorithms and improvements have been developed for practical clinical image display. More recently, further efficiencies have been attained by designing and implementing volume-rendering algorithms on graphics processing units (GPUs). In this paper, we review volumetric image visualization pipelines, algorithms, and medical applications. We also illustrate our algorithm implementation and evaluation results, and address the advantages and drawbacks of each algorithm in terms of image quality and efficiency. Within the outlined literature review, we have integrated our research results relating to new visualization, classification, enhancement, and multimodal data dynamic rendering. Finally, we illustrate issues related to modern GPU working pipelines, and their applications in volume visualization domain.</p>
</div>
</front>
</TEI>
<pmc article-type="review-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Digit Imaging</journal-id>
<journal-title-group>
<journal-title>Journal of Digital Imaging</journal-title>
</journal-title-group>
<issn pub-type="ppub">0897-1889</issn>
<issn pub-type="epub">1618-727X</issn>
<publisher>
<publisher-name>Springer-Verlag</publisher-name>
<publisher-loc>New York</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">20714917</article-id>
<article-id pub-id-type="pmc">3138940</article-id>
<article-id pub-id-type="publisher-id">9321</article-id>
<article-id pub-id-type="doi">10.1007/s10278-010-9321-6</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Volume Visualization: A Technical Overview with a Focus on Medical Applications</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Zhang</surname>
<given-names>Qi</given-names>
</name>
<address>
<phone>+1-519-6635777</phone>
<fax>+1-23-45678910</fax>
<email>qzhang@imaging.robarts.ca</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Eagleson</surname>
<given-names>Roy</given-names>
</name>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Peters</surname>
<given-names>Terry M.</given-names>
</name>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<aff id="Aff1">Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, 100 Perth Drive, London, ON N6A 5K8 Canada</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>17</day>
<month>8</month>
<year>2010</year>
</pub-date>
<pub-date pub-type="ppub">
<month>8</month>
<year>2011</year>
</pub-date>
<volume>24</volume>
<issue>4</issue>
<fpage>640</fpage>
<lpage>664</lpage>
<permissions>
<copyright-statement>© Society for Imaging Informatics in Medicine 2010</copyright-statement>
</permissions>
<abstract id="Abs1">
<p>With the increasing availability of high-resolution isotropic three- or four-dimensional medical datasets from sources such as magnetic resonance imaging, computed tomography, and ultrasound, volumetric image visualization techniques have increased in importance. Over the past two decades, a number of new algorithms and improvements have been developed for practical clinical image display. More recently, further efficiencies have been attained by designing and implementing volume-rendering algorithms on graphics processing units (GPUs). In this paper, we review volumetric image visualization pipelines, algorithms, and medical applications. We also illustrate our algorithm implementation and evaluation results, and address the advantages and drawbacks of each algorithm in terms of image quality and efficiency. Within the outlined literature review, we have integrated our research results relating to new visualization, classification, enhancement, and multimodal data dynamic rendering. Finally, we illustrate issues related to modern GPU working pipelines, and their applications in volume visualization domain.</p>
</abstract>
<kwd-group>
<title>Key words</title>
<kwd>Visualization</kwd>
<kwd>medical imaging</kwd>
<kwd>image processing</kwd>
<kwd>volume rendering</kwd>
<kwd>raycasting</kwd>
<kwd>splatting</kwd>
<kwd>shear-warp</kwd>
<kwd>shell rendering</kwd>
<kwd>texture mapping</kwd>
<kwd>Fourier transformation</kwd>
<kwd>shading</kwd>
<kwd>transfer function</kwd>
<kwd>classification</kwd>
<kwd>graphics processing unit (GPU)</kwd>
</kwd-group>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© Society for Imaging Informatics in Medicine 2011</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
</pmc>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Eagleson, Roy" sort="Eagleson, Roy" uniqKey="Eagleson R" first="Roy" last="Eagleson">Roy Eagleson</name>
<name sortKey="Peters, Terry M" sort="Peters, Terry M" uniqKey="Peters T" first="Terry M." last="Peters">Terry M. Peters</name>
<name sortKey="Zhang, Qi" sort="Zhang, Qi" uniqKey="Zhang Q" first="Qi" last="Zhang">Qi Zhang</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Pmc/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C77 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd -nk 001C77 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Pmc
   |étape=   Checkpoint
   |type=    RBID
   |clé=     PMC:3138940
   |texte=   Volume Visualization: A Technical Overview with a Focus on Medical Applications
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/RBID.i   -Sk "pubmed:20714917" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024