Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Sensorimotor integration for multisegmental frontal plane balance control in humans

Identifieur interne : 001989 ( Pmc/Checkpoint ); précédent : 001988; suivant : 001990

Sensorimotor integration for multisegmental frontal plane balance control in humans

Auteurs : Adam D. Goodworth [États-Unis] ; Robert J. Peterka [États-Unis]

Source :

RBID : PMC:3349694

Abstract

To quantify the contribution of sensory information to multisegmental frontal plane balance control in humans, we developed a feedback control model to account for experimental data. Subjects stood with feet close together on a surface that rotated according to a pseudorandom waveform at three different amplitudes. Experimental frequency-response functions and impulse-response functions were measured to characterize lower body (LB) and upper body (UB) motion evoked during surface rotations while subjects stood with eyes open or closed. The model assumed that corrective torques in LB and UB segments were generated with no time delay from intrinsic musculoskeletal mechanisms and with time delay from sensory feedback mechanisms. It was found that subjects' LB control was primarily based on sensory feedback. Changes in the LB control mechanisms across stimulus amplitude were consistent with the hypothesis that sensory reweighting contributed to amplitude-dependent changes in balance responses whereby subjects decreased reliance on proprioceptive cues that oriented the LB toward the surface and increased reliance on vestibular/visual cues that oriented the LB upright toward earth vertical as stimulus amplitude increased in both eyes open and closed conditions. Sensory reweighting in the LB control system also accounted for most of the amplitude-dependent changes observed in UB responses. In contrast to the LB system, sensory reweighting was not a dominant mechanism of UB control, and UB control was more influenced by intrinsic musculoskeletal mechanisms. The proposed model refines our understanding of sensorimotor integration during balance control by including multisegmental motion and explaining how intersegmental interactions influence frontal plane balance responses.


Url:
DOI: 10.1152/jn.00670.2010
PubMed: 21940611
PubMed Central: 3349694


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:3349694

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Sensorimotor integration for multisegmental frontal plane balance control in humans</title>
<author>
<name sortKey="Goodworth, Adam D" sort="Goodworth, Adam D" uniqKey="Goodworth A" first="Adam D." last="Goodworth">Adam D. Goodworth</name>
<affiliation wicri:level="2">
<nlm:aff wicri:cut="; and" id="aff1">Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Oregon</region>
</placeName>
<wicri:cityArea>Department of Biomedical Engineering, Oregon Health & Science University, Portland</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="aff2">Department of Physical Therapy, Center for Health, Care, and Well-being, University of Hartford, West Hartford, Connecticut</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Connecticut</region>
</placeName>
<wicri:cityArea>Department of Physical Therapy, Center for Health, Care, and Well-being, University of Hartford, West Hartford</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Peterka, Robert J" sort="Peterka, Robert J" uniqKey="Peterka R" first="Robert J." last="Peterka">Robert J. Peterka</name>
<affiliation wicri:level="2">
<nlm:aff wicri:cut="; and" id="aff1">Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Oregon</region>
</placeName>
<wicri:cityArea>Department of Biomedical Engineering, Oregon Health & Science University, Portland</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">21940611</idno>
<idno type="pmc">3349694</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3349694</idno>
<idno type="RBID">PMC:3349694</idno>
<idno type="doi">10.1152/jn.00670.2010</idno>
<date when="2011">2011</date>
<idno type="wicri:Area/Pmc/Corpus">001415</idno>
<idno type="wicri:Area/Pmc/Curation">001415</idno>
<idno type="wicri:Area/Pmc/Checkpoint">001989</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Sensorimotor integration for multisegmental frontal plane balance control in humans</title>
<author>
<name sortKey="Goodworth, Adam D" sort="Goodworth, Adam D" uniqKey="Goodworth A" first="Adam D." last="Goodworth">Adam D. Goodworth</name>
<affiliation wicri:level="2">
<nlm:aff wicri:cut="; and" id="aff1">Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Oregon</region>
</placeName>
<wicri:cityArea>Department of Biomedical Engineering, Oregon Health & Science University, Portland</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="aff2">Department of Physical Therapy, Center for Health, Care, and Well-being, University of Hartford, West Hartford, Connecticut</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Connecticut</region>
</placeName>
<wicri:cityArea>Department of Physical Therapy, Center for Health, Care, and Well-being, University of Hartford, West Hartford</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Peterka, Robert J" sort="Peterka, Robert J" uniqKey="Peterka R" first="Robert J." last="Peterka">Robert J. Peterka</name>
<affiliation wicri:level="2">
<nlm:aff wicri:cut="; and" id="aff1">Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Oregon</region>
</placeName>
<wicri:cityArea>Department of Biomedical Engineering, Oregon Health & Science University, Portland</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of Neurophysiology</title>
<idno type="ISSN">0022-3077</idno>
<idno type="eISSN">1522-1598</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>To quantify the contribution of sensory information to multisegmental frontal plane balance control in humans, we developed a feedback control model to account for experimental data. Subjects stood with feet close together on a surface that rotated according to a pseudorandom waveform at three different amplitudes. Experimental frequency-response functions and impulse-response functions were measured to characterize lower body (LB) and upper body (UB) motion evoked during surface rotations while subjects stood with eyes open or closed. The model assumed that corrective torques in LB and UB segments were generated with no time delay from intrinsic musculoskeletal mechanisms and with time delay from sensory feedback mechanisms. It was found that subjects' LB control was primarily based on sensory feedback. Changes in the LB control mechanisms across stimulus amplitude were consistent with the hypothesis that sensory reweighting contributed to amplitude-dependent changes in balance responses whereby subjects decreased reliance on proprioceptive cues that oriented the LB toward the surface and increased reliance on vestibular/visual cues that oriented the LB upright toward earth vertical as stimulus amplitude increased in both eyes open and closed conditions. Sensory reweighting in the LB control system also accounted for most of the amplitude-dependent changes observed in UB responses. In contrast to the LB system, sensory reweighting was not a dominant mechanism of UB control, and UB control was more influenced by intrinsic musculoskeletal mechanisms. The proposed model refines our understanding of sensorimotor integration during balance control by including multisegmental motion and explaining how intersegmental interactions influence frontal plane balance responses.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Neurophysiol</journal-id>
<journal-id journal-id-type="iso-abbrev">J. Neurophysiol</journal-id>
<journal-id journal-id-type="hwp">jn</journal-id>
<journal-id journal-id-type="pmc">jn</journal-id>
<journal-id journal-id-type="publisher-id">JN</journal-id>
<journal-title-group>
<journal-title>Journal of Neurophysiology</journal-title>
</journal-title-group>
<issn pub-type="ppub">0022-3077</issn>
<issn pub-type="epub">1522-1598</issn>
<publisher>
<publisher-name>American Physiological Society</publisher-name>
<publisher-loc>Bethesda, MD</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">21940611</article-id>
<article-id pub-id-type="pmc">3349694</article-id>
<article-id pub-id-type="publisher-id">JN-00670-2010</article-id>
<article-id pub-id-type="doi">10.1152/jn.00670.2010</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Articles</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Sensorimotor integration for multisegmental frontal plane balance control in humans</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Goodworth</surname>
<given-names>Adam D.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Peterka</surname>
<given-names>Robert J.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<aff id="aff1">
<sup>1</sup>
Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon; and</aff>
<aff id="aff2">
<sup>2</sup>
Department of Physical Therapy, Center for Health, Care, and Well-being, University of Hartford, West Hartford, Connecticut</aff>
</contrib-group>
<author-notes>
<corresp>Address for reprint requests and other correspondence: R. J. Peterka,
<addr-line>OHSU West Campus, 505 NW 185th Ave., Beaverton, OR 97006</addr-line>
(e-mail:
<email>peterkar@ohsu.edu</email>
).</corresp>
</author-notes>
<pub-date pub-type="ppub">
<month>1</month>
<year>2012</year>
</pub-date>
<pub-date pub-type="epub">
<day>21</day>
<month>9</month>
<year>2011</year>
</pub-date>
<volume>107</volume>
<issue>1</issue>
<fpage>12</fpage>
<lpage>28</lpage>
<history>
<date date-type="received">
<day>30</day>
<month>7</month>
<year>2010</year>
</date>
<date date-type="accepted">
<day>16</day>
<month>9</month>
<year>2011</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2012 the American Physiological Society</copyright-statement>
<copyright-year>2012</copyright-year>
</permissions>
<self-uri xlink:title="pdf" xlink:type="simple" xlink:href="z9k00112000012.pdf"></self-uri>
<abstract>
<p>To quantify the contribution of sensory information to multisegmental frontal plane balance control in humans, we developed a feedback control model to account for experimental data. Subjects stood with feet close together on a surface that rotated according to a pseudorandom waveform at three different amplitudes. Experimental frequency-response functions and impulse-response functions were measured to characterize lower body (LB) and upper body (UB) motion evoked during surface rotations while subjects stood with eyes open or closed. The model assumed that corrective torques in LB and UB segments were generated with no time delay from intrinsic musculoskeletal mechanisms and with time delay from sensory feedback mechanisms. It was found that subjects' LB control was primarily based on sensory feedback. Changes in the LB control mechanisms across stimulus amplitude were consistent with the hypothesis that sensory reweighting contributed to amplitude-dependent changes in balance responses whereby subjects decreased reliance on proprioceptive cues that oriented the LB toward the surface and increased reliance on vestibular/visual cues that oriented the LB upright toward earth vertical as stimulus amplitude increased in both eyes open and closed conditions. Sensory reweighting in the LB control system also accounted for most of the amplitude-dependent changes observed in UB responses. In contrast to the LB system, sensory reweighting was not a dominant mechanism of UB control, and UB control was more influenced by intrinsic musculoskeletal mechanisms. The proposed model refines our understanding of sensorimotor integration during balance control by including multisegmental motion and explaining how intersegmental interactions influence frontal plane balance responses.</p>
</abstract>
<kwd-group>
<kwd>feedback control model</kwd>
<kwd>sensory reweighting</kwd>
</kwd-group>
</article-meta>
</front>
</pmc>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Connecticut</li>
<li>Oregon</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Oregon">
<name sortKey="Goodworth, Adam D" sort="Goodworth, Adam D" uniqKey="Goodworth A" first="Adam D." last="Goodworth">Adam D. Goodworth</name>
</region>
<name sortKey="Goodworth, Adam D" sort="Goodworth, Adam D" uniqKey="Goodworth A" first="Adam D." last="Goodworth">Adam D. Goodworth</name>
<name sortKey="Peterka, Robert J" sort="Peterka, Robert J" uniqKey="Peterka R" first="Robert J." last="Peterka">Robert J. Peterka</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Pmc/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001989 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd -nk 001989 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Pmc
   |étape=   Checkpoint
   |type=    RBID
   |clé=     PMC:3349694
   |texte=   Sensorimotor integration for multisegmental frontal plane balance control in humans
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/RBID.i   -Sk "pubmed:21940611" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024