Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Integration of visual motion and locomotion in mouse visual cortex

Identifieur interne : 001186 ( Pmc/Checkpoint ); précédent : 001185; suivant : 001187

Integration of visual motion and locomotion in mouse visual cortex

Auteurs : Aman B. Saleem [Royaume-Uni] ; Asli Ayaz [Royaume-Uni] ; Kate Jeffery [Royaume-Uni] ; Kenneth D. Harris [Royaume-Uni] ; Matteo Carandini [Royaume-Uni]

Source :

RBID : PMC:3926520

Abstract

Successful navigation through the world requires accurate estimation of one’s own speed. To derive this estimate, animals integrate visual speed gauged from optic flow and run speed gauged from proprioceptive and locomotor systems. The primary visual cortex (V1) carries signals related to visual speed, and its responses are also affected by run speed. To study how V1 combines these signals during navigation, we recorded from mice that traversed a virtual environment. Nearly half of the V1 neurons were reliably driven by combinations of visual speed and run speed. These neurons performed a weighted sum of the two speeds. The weights were diverse across neurons, and typically positive. As a population, V1 neurons predicted a linear combination of visual and run speed better than visual or run speeds alone. These data indicate that V1 in the mouse participates in a multimodal processing system that integrates visual motion and locomotion during navigation.


Url:
DOI: 10.1038/nn.3567
PubMed: 24185423
PubMed Central: 3926520


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:3926520

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Integration of visual motion and locomotion in mouse visual cortex</title>
<author>
<name sortKey="Saleem, Aman B" sort="Saleem, Aman B" uniqKey="Saleem A" first="Aman B" last="Saleem">Aman B. Saleem</name>
<affiliation wicri:level="3">
<nlm:aff id="A1">UCL Institute of Ophthalmology, University College London, London, United Kingdom</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>UCL Institute of Ophthalmology, University College London, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:aff id="A2">Department of Cognitive, Perceptual and Brain Sciences, University College London, London, United Kingdom</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Cognitive, Perceptual and Brain Sciences, University College London, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ayaz, Asli" sort="Ayaz, Asli" uniqKey="Ayaz A" first="Asli" last="Ayaz">Asli Ayaz</name>
<affiliation wicri:level="3">
<nlm:aff id="A1">UCL Institute of Ophthalmology, University College London, London, United Kingdom</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>UCL Institute of Ophthalmology, University College London, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jeffery, Kate" sort="Jeffery, Kate" uniqKey="Jeffery K" first="Kate" last="Jeffery">Kate Jeffery</name>
<affiliation wicri:level="3">
<nlm:aff id="A2">Department of Cognitive, Perceptual and Brain Sciences, University College London, London, United Kingdom</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Cognitive, Perceptual and Brain Sciences, University College London, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Harris, Kenneth D" sort="Harris, Kenneth D" uniqKey="Harris K" first="Kenneth D" last="Harris">Kenneth D. Harris</name>
<affiliation wicri:level="3">
<nlm:aff id="A1">UCL Institute of Ophthalmology, University College London, London, United Kingdom</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>UCL Institute of Ophthalmology, University College London, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:aff id="A3">UCL Institute of Neurology, University College London, London, United Kingdom</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>UCL Institute of Neurology, University College London, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:aff id="A4">Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Neuroscience, Physiology and Pharmacology, University College London, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Carandini, Matteo" sort="Carandini, Matteo" uniqKey="Carandini M" first="Matteo" last="Carandini">Matteo Carandini</name>
<affiliation wicri:level="3">
<nlm:aff id="A1">UCL Institute of Ophthalmology, University College London, London, United Kingdom</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>UCL Institute of Ophthalmology, University College London, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24185423</idno>
<idno type="pmc">3926520</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3926520</idno>
<idno type="RBID">PMC:3926520</idno>
<idno type="doi">10.1038/nn.3567</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">002559</idno>
<idno type="wicri:Area/Pmc/Curation">002559</idno>
<idno type="wicri:Area/Pmc/Checkpoint">001186</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Integration of visual motion and locomotion in mouse visual cortex</title>
<author>
<name sortKey="Saleem, Aman B" sort="Saleem, Aman B" uniqKey="Saleem A" first="Aman B" last="Saleem">Aman B. Saleem</name>
<affiliation wicri:level="3">
<nlm:aff id="A1">UCL Institute of Ophthalmology, University College London, London, United Kingdom</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>UCL Institute of Ophthalmology, University College London, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:aff id="A2">Department of Cognitive, Perceptual and Brain Sciences, University College London, London, United Kingdom</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Cognitive, Perceptual and Brain Sciences, University College London, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ayaz, Asli" sort="Ayaz, Asli" uniqKey="Ayaz A" first="Asli" last="Ayaz">Asli Ayaz</name>
<affiliation wicri:level="3">
<nlm:aff id="A1">UCL Institute of Ophthalmology, University College London, London, United Kingdom</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>UCL Institute of Ophthalmology, University College London, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jeffery, Kate" sort="Jeffery, Kate" uniqKey="Jeffery K" first="Kate" last="Jeffery">Kate Jeffery</name>
<affiliation wicri:level="3">
<nlm:aff id="A2">Department of Cognitive, Perceptual and Brain Sciences, University College London, London, United Kingdom</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Cognitive, Perceptual and Brain Sciences, University College London, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Harris, Kenneth D" sort="Harris, Kenneth D" uniqKey="Harris K" first="Kenneth D" last="Harris">Kenneth D. Harris</name>
<affiliation wicri:level="3">
<nlm:aff id="A1">UCL Institute of Ophthalmology, University College London, London, United Kingdom</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>UCL Institute of Ophthalmology, University College London, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:aff id="A3">UCL Institute of Neurology, University College London, London, United Kingdom</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>UCL Institute of Neurology, University College London, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:aff id="A4">Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Neuroscience, Physiology and Pharmacology, University College London, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Carandini, Matteo" sort="Carandini, Matteo" uniqKey="Carandini M" first="Matteo" last="Carandini">Matteo Carandini</name>
<affiliation wicri:level="3">
<nlm:aff id="A1">UCL Institute of Ophthalmology, University College London, London, United Kingdom</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>UCL Institute of Ophthalmology, University College London, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nature neuroscience</title>
<idno type="ISSN">1097-6256</idno>
<idno type="eISSN">1546-1726</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="P2">Successful navigation through the world requires accurate estimation of one’s own speed. To derive this estimate, animals integrate visual speed gauged from optic flow and run speed gauged from proprioceptive and locomotor systems. The primary visual cortex (V1) carries signals related to visual speed, and its responses are also affected by run speed. To study how V1 combines these signals during navigation, we recorded from mice that traversed a virtual environment. Nearly half of the V1 neurons were reliably driven by combinations of visual speed and run speed. These neurons performed a weighted sum of the two speeds. The weights were diverse across neurons, and typically positive. As a population, V1 neurons predicted a linear combination of visual and run speed better than visual or run speeds alone. These data indicate that V1 in the mouse participates in a multimodal processing system that integrates visual motion and locomotion during navigation.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Carandini, M" uniqKey="Carandini M">M Carandini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ghazanfar, Aa" uniqKey="Ghazanfar A">AA Ghazanfar</name>
</author>
<author>
<name sortKey="Schroeder, Ce" uniqKey="Schroeder C">CE Schroeder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Iurilli, G" uniqKey="Iurilli G">G Iurilli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcadams, Cj" uniqKey="Mcadams C">CJ McAdams</name>
</author>
<author>
<name sortKey="Reid, Rc" uniqKey="Reid R">RC Reid</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shuler, Mg" uniqKey="Shuler M">MG Shuler</name>
</author>
<author>
<name sortKey="Bear, Mf" uniqKey="Bear M">MF Bear</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Niell, Cm" uniqKey="Niell C">CM Niell</name>
</author>
<author>
<name sortKey="Stryker, Mp" uniqKey="Stryker M">MP Stryker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Keller, Gb" uniqKey="Keller G">GB Keller</name>
</author>
<author>
<name sortKey="Bonhoeffer, T" uniqKey="Bonhoeffer T">T Bonhoeffer</name>
</author>
<author>
<name sortKey="Hubener, M" uniqKey="Hubener M">M Hubener</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ayaz, A" uniqKey="Ayaz A">A Ayaz</name>
</author>
<author>
<name sortKey="Saleem, Ab" uniqKey="Saleem A">AB Saleem</name>
</author>
<author>
<name sortKey="Scholvinck, Ml" uniqKey="Scholvinck M">ML Scholvinck</name>
</author>
<author>
<name sortKey="Carandini, M" uniqKey="Carandini M">M Carandini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jeffery, Kj" uniqKey="Jeffery K">KJ Jeffery</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Terrazas, A" uniqKey="Terrazas A">A Terrazas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Israel, I" uniqKey="Israel I">I Israel</name>
</author>
<author>
<name sortKey="Grasso, R" uniqKey="Grasso R">R Grasso</name>
</author>
<author>
<name sortKey="Georges Francois, P" uniqKey="Georges Francois P">P Georges-Francois</name>
</author>
<author>
<name sortKey="Tsuzuku, T" uniqKey="Tsuzuku T">T Tsuzuku</name>
</author>
<author>
<name sortKey="Berthoz, A" uniqKey="Berthoz A">A Berthoz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lappe, M" uniqKey="Lappe M">M Lappe</name>
</author>
<author>
<name sortKey="Bremmer, F" uniqKey="Bremmer F">F Bremmer</name>
</author>
<author>
<name sortKey="Van Den Berg, Av" uniqKey="Van Den Berg A">AV van den Berg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deangelis, Gc" uniqKey="Deangelis G">GC DeAngelis</name>
</author>
<author>
<name sortKey="Angelaki, De" uniqKey="Angelaki D">DE Angelaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Duffy, Cj" uniqKey="Duffy C">CJ Duffy</name>
</author>
<author>
<name sortKey="Wurtz, Rh" uniqKey="Wurtz R">RH Wurtz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, G" uniqKey="Chen G">G Chen</name>
</author>
<author>
<name sortKey="King, Ja" uniqKey="King J">JA King</name>
</author>
<author>
<name sortKey="Burgess, N" uniqKey="Burgess N">N Burgess</name>
</author>
<author>
<name sortKey="O Eefe, J" uniqKey="O Eefe J">J O’Keefe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sargolini, F" uniqKey="Sargolini F">F Sargolini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Geisler, C" uniqKey="Geisler C">C Geisler</name>
</author>
<author>
<name sortKey="Robbe, D" uniqKey="Robbe D">D Robbe</name>
</author>
<author>
<name sortKey="Zugaro, M" uniqKey="Zugaro M">M Zugaro</name>
</author>
<author>
<name sortKey="Sirota, A" uniqKey="Sirota A">A Sirota</name>
</author>
<author>
<name sortKey="Buzsaki, G" uniqKey="Buzsaki G">G Buzsaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Angelaki, De" uniqKey="Angelaki D">DE Angelaki</name>
</author>
<author>
<name sortKey="Gu, Y" uniqKey="Gu Y">Y Gu</name>
</author>
<author>
<name sortKey="Deangelis, Gc" uniqKey="Deangelis G">GC Deangelis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ernst, Mo" uniqKey="Ernst M">MO Ernst</name>
</author>
<author>
<name sortKey="Banks, Ms" uniqKey="Banks M">MS Banks</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wolpert, Dm" uniqKey="Wolpert D">DM Wolpert</name>
</author>
<author>
<name sortKey="Ghahramani, Z" uniqKey="Ghahramani Z">Z Ghahramani</name>
</author>
<author>
<name sortKey="Jordan, Mi" uniqKey="Jordan M">MI Jordan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zipser, D" uniqKey="Zipser D">D Zipser</name>
</author>
<author>
<name sortKey="Andersen, Ra" uniqKey="Andersen R">RA Andersen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gu, Y" uniqKey="Gu Y">Y Gu</name>
</author>
<author>
<name sortKey="Angelaki, De" uniqKey="Angelaki D">DE Angelaki</name>
</author>
<author>
<name sortKey="Deangelis, Gc" uniqKey="Deangelis G">GC Deangelis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Angelaki, De" uniqKey="Angelaki D">DE Angelaki</name>
</author>
<author>
<name sortKey="Gu, Y" uniqKey="Gu Y">Y Gu</name>
</author>
<author>
<name sortKey="Deangelis, Gc" uniqKey="Deangelis G">GC DeAngelis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pouget, A" uniqKey="Pouget A">A Pouget</name>
</author>
<author>
<name sortKey="Deneve, S" uniqKey="Deneve S">S Deneve</name>
</author>
<author>
<name sortKey="Duhamel, Jr" uniqKey="Duhamel J">JR Duhamel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gu, Y" uniqKey="Gu Y">Y Gu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dombeck, Da" uniqKey="Dombeck D">DA Dombeck</name>
</author>
<author>
<name sortKey="Khabbaz, An" uniqKey="Khabbaz A">AN Khabbaz</name>
</author>
<author>
<name sortKey="Collman, F" uniqKey="Collman F">F Collman</name>
</author>
<author>
<name sortKey="Adelman, Tl" uniqKey="Adelman T">TL Adelman</name>
</author>
<author>
<name sortKey="Tank, Dw" uniqKey="Tank D">DW Tank</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harvey, Cd" uniqKey="Harvey C">CD Harvey</name>
</author>
<author>
<name sortKey="Collman, F" uniqKey="Collman F">F Collman</name>
</author>
<author>
<name sortKey="Dombeck, Da" uniqKey="Dombeck D">DA Dombeck</name>
</author>
<author>
<name sortKey="Tank, Dw" uniqKey="Tank D">DW Tank</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harris, Kd" uniqKey="Harris K">KD Harris</name>
</author>
<author>
<name sortKey="Henze, Da" uniqKey="Henze D">DA Henze</name>
</author>
<author>
<name sortKey="Csicsvari, J" uniqKey="Csicsvari J">J Csicsvari</name>
</author>
<author>
<name sortKey="Hirase, H" uniqKey="Hirase H">H Hirase</name>
</author>
<author>
<name sortKey="Buzsaki, G" uniqKey="Buzsaki G">G Buzsaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harris, Kd" uniqKey="Harris K">KD Harris</name>
</author>
<author>
<name sortKey="Csicsvari, J" uniqKey="Csicsvari J">J Csicsvari</name>
</author>
<author>
<name sortKey="Hirase, H" uniqKey="Hirase H">H Hirase</name>
</author>
<author>
<name sortKey="Dragoi, G" uniqKey="Dragoi G">G Dragoi</name>
</author>
<author>
<name sortKey="Buzsaki, G" uniqKey="Buzsaki G">G Buzsaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Itskov, V" uniqKey="Itskov V">V Itskov</name>
</author>
<author>
<name sortKey="Curto, C" uniqKey="Curto C">C Curto</name>
</author>
<author>
<name sortKey="Harris, Kd" uniqKey="Harris K">KD Harris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harris, Kd" uniqKey="Harris K">KD Harris</name>
</author>
<author>
<name sortKey="Thiele, A" uniqKey="Thiele A">A Thiele</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rao, Rp" uniqKey="Rao R">RP Rao</name>
</author>
<author>
<name sortKey="Ballard, Dh" uniqKey="Ballard D">DH Ballard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bastos, Am" uniqKey="Bastos A">AM Bastos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, Nl" uniqKey="Xu N">NL Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Murayama, M" uniqKey="Murayama M">M Murayama</name>
</author>
<author>
<name sortKey="Larkum, Me" uniqKey="Larkum M">ME Larkum</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Polack, Po" uniqKey="Polack P">PO Polack</name>
</author>
<author>
<name sortKey="Friedman, J" uniqKey="Friedman J">J Friedman</name>
</author>
<author>
<name sortKey="Golshani, P" uniqKey="Golshani P">P Golshani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ahrens, Mb" uniqKey="Ahrens M">MB Ahrens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deneve, S" uniqKey="Deneve S">S Deneve</name>
</author>
<author>
<name sortKey="Pouget, A" uniqKey="Pouget A">A Pouget</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harvey, Cd" uniqKey="Harvey C">CD Harvey</name>
</author>
<author>
<name sortKey="Coen, P" uniqKey="Coen P">P Coen</name>
</author>
<author>
<name sortKey="Tank, Dw" uniqKey="Tank D">DW Tank</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Domnisoru, C" uniqKey="Domnisoru C">C Domnisoru</name>
</author>
<author>
<name sortKey="Kinkhabwala, Aa" uniqKey="Kinkhabwala A">AA Kinkhabwala</name>
</author>
<author>
<name sortKey="Tank, Dw" uniqKey="Tank D">DW Tank</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schmidt Hieber, C" uniqKey="Schmidt Hieber C">C Schmidt-Hieber</name>
</author>
<author>
<name sortKey="Hausser, M" uniqKey="Hausser M">M Hausser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Szuts, Ta" uniqKey="Szuts T">TA Szuts</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wallace, Dj" uniqKey="Wallace D">DJ Wallace</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bizley, Jk" uniqKey="Bizley J">JK Bizley</name>
</author>
<author>
<name sortKey="Nodal, Fr" uniqKey="Nodal F">FR Nodal</name>
</author>
<author>
<name sortKey="Bajo, Vm" uniqKey="Bajo V">VM Bajo</name>
</author>
<author>
<name sortKey="Nelken, I" uniqKey="Nelken I">I Nelken</name>
</author>
<author>
<name sortKey="King, Aj" uniqKey="King A">AJ King</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Crochet, S" uniqKey="Crochet S">S Crochet</name>
</author>
<author>
<name sortKey="Petersen, Cc" uniqKey="Petersen C">CC Petersen</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<pmc-dir>properties manuscript</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-journal-id">9809671</journal-id>
<journal-id journal-id-type="pubmed-jr-id">21092</journal-id>
<journal-id journal-id-type="nlm-ta">Nat Neurosci</journal-id>
<journal-id journal-id-type="iso-abbrev">Nat. Neurosci.</journal-id>
<journal-title-group>
<journal-title>Nature neuroscience</journal-title>
</journal-title-group>
<issn pub-type="ppub">1097-6256</issn>
<issn pub-type="epub">1546-1726</issn>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24185423</article-id>
<article-id pub-id-type="pmc">3926520</article-id>
<article-id pub-id-type="doi">10.1038/nn.3567</article-id>
<article-id pub-id-type="manuscript">EMS56482</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Integration of visual motion and locomotion in mouse visual cortex</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Saleem</surname>
<given-names>Aman B</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ayaz</surname>
<given-names>Asli</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Jeffery</surname>
<given-names>Kate</given-names>
</name>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Harris</surname>
<given-names>Kenneth D</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
<xref ref-type="aff" rid="A3">3</xref>
<xref ref-type="aff" rid="A4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Carandini</surname>
<given-names>Matteo</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
</contrib-group>
<aff id="A1">
<label>1</label>
UCL Institute of Ophthalmology, University College London, London, United Kingdom</aff>
<aff id="A2">
<label>2</label>
Department of Cognitive, Perceptual and Brain Sciences, University College London, London, United Kingdom</aff>
<aff id="A3">
<label>3</label>
UCL Institute of Neurology, University College London, London, United Kingdom</aff>
<aff id="A4">
<label>4</label>
Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom</aff>
<author-notes>
<fn id="FN1">
<p id="P1">
<bold>Author contributions</bold>
All the authors contributed to the design of the study and to the interpretation of the data, ABS and AA carried out the experiments, ABS analyzed the data and, ABS, MC and KDH wrote the paper.</p>
</fn>
</author-notes>
<pub-date pub-type="nihms-submitted">
<day>12</day>
<month>2</month>
<year>2014</year>
</pub-date>
<pub-date pub-type="epub">
<day>03</day>
<month>11</month>
<year>2013</year>
</pub-date>
<pub-date pub-type="ppub">
<month>12</month>
<year>2013</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>01</day>
<month>6</month>
<year>2014</year>
</pub-date>
<volume>16</volume>
<issue>12</issue>
<fpage>1864</fpage>
<lpage>1869</lpage>
<pmc-comment>elocation-id from pubmed: 10.1038/nn.3567</pmc-comment>
<permissions>
<license>
<license-p>Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
<uri xlink:type="simple" xlink:href="http://www.nature.com/authors/editorial_policies/license.html#terms">http://www.nature.com/authors/editorial_policies/license.html#terms</uri>
</license-p>
</license>
</permissions>
<abstract>
<p id="P2">Successful navigation through the world requires accurate estimation of one’s own speed. To derive this estimate, animals integrate visual speed gauged from optic flow and run speed gauged from proprioceptive and locomotor systems. The primary visual cortex (V1) carries signals related to visual speed, and its responses are also affected by run speed. To study how V1 combines these signals during navigation, we recorded from mice that traversed a virtual environment. Nearly half of the V1 neurons were reliably driven by combinations of visual speed and run speed. These neurons performed a weighted sum of the two speeds. The weights were diverse across neurons, and typically positive. As a population, V1 neurons predicted a linear combination of visual and run speed better than visual or run speeds alone. These data indicate that V1 in the mouse participates in a multimodal processing system that integrates visual motion and locomotion during navigation.</p>
</abstract>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="S1">
<title>Introduction</title>
<p id="P3">There is increasing evidence that the activity of the primary visual cortex (V1) is determined not only by the patterns of light falling on the retina
<sup>
<xref rid="R1" ref-type="bibr">1</xref>
</sup>
, but also by multiple non-visual factors. These factors include sensory input from other modalities
<sup>
<xref rid="R2" ref-type="bibr">2</xref>
,
<xref rid="R3" ref-type="bibr">3</xref>
</sup>
, the allocation of spatial attention
<sup>
<xref rid="R4" ref-type="bibr">4</xref>
</sup>
, and the likelihood of an impending reward
<sup>
<xref rid="R5" ref-type="bibr">5</xref>
</sup>
.</p>
<p id="P4">In mice, in particular, the firing of V1 neurons shows strong changes with locomotion
<sup>
<xref rid="R6" ref-type="bibr">6</xref>
-
<xref rid="R8" ref-type="bibr">8</xref>
</sup>
, but the precise form and function of this modulation are unclear. One possibility is that locomotion simply changes the gain of V1 neurons, increasing their responses to visual stimuli when animals are running compared to stationary
<sup>
<xref rid="R6" ref-type="bibr">6</xref>
</sup>
. Another possibility is that V1 neurons respond to the mismatch between what is seen by the animal and what is expected based on locomotion
<sup>
<xref rid="R7" ref-type="bibr">7</xref>
</sup>
. Overall, the computational function of locomotor inputs to V1 is still a mystery. Might they be useful for navigation?</p>
<p id="P5">One of the primary roles of vision is to help animals navigate. Successful navigation requires an accurate estimate of one’s own speed
<sup>
<xref rid="R9" ref-type="bibr">9</xref>
-
<xref rid="R11" ref-type="bibr">11</xref>
</sup>
. To obtain this estimate, animals and humans integrate a measure of speed gauged from optic flow with one gauged from the proprioceptive and locomotor systems
<sup>
<xref rid="R9" ref-type="bibr">9</xref>
-
<xref rid="R15" ref-type="bibr">15</xref>
</sup>
. Neural correlates of locomotor speed have been found in high-level structures such as the hippocampus
<sup>
<xref rid="R16" ref-type="bibr">16</xref>
,
<xref rid="R17" ref-type="bibr">17</xref>
</sup>
, but the neural substrates in which multiple input streams are integrated to produce speed estimates are as yet unknown.</p>
<p id="P6">Integration of multiple inputs has been observed in several neural circuits
<sup>
<xref rid="R15" ref-type="bibr">15</xref>
,
<xref rid="R18" ref-type="bibr">18</xref>
-
<xref rid="R20" ref-type="bibr">20</xref>
</sup>
, and typically involves intermediate neuronal representations
<sup>
<xref rid="R21" ref-type="bibr">21</xref>
-
<xref rid="R24" ref-type="bibr">24</xref>
</sup>
. In early processing, the input streams are integrated into a distributed population code, in which the two signals are weighted differently by different neurons
<sup>
<xref rid="R21" ref-type="bibr">21</xref>
,
<xref rid="R24" ref-type="bibr">24</xref>
</sup>
. Such an intermediate representation allows the integrated signal to be read out by higher level structures. Furthermore, properties of this intermediate representation (such as the statistical distribution of weights used by different neurons) are not random but adapted to the specific integration that must be performed
<sup>
<xref rid="R21" ref-type="bibr">21</xref>
,
<xref rid="R25" ref-type="bibr">25</xref>
</sup>
.</p>
<p id="P7">Here we studied how visual and locomotion signals are combined in mouse V1, using a virtual reality system in which visual input was either controlled by, or independent of locomotion. We found that most V1 neurons respond to locomotion even in the dark. The dependence of these responses on running speed was gradual, and in many cells it was non-monotonic. In the presence of visual inputs, most V1 neurons that were responsive encoded a weighted sum of visual motion and locomotor signals. The weights differed across neurons, and were typically positive. As a population, V1 encoded positively weighted averages of speed derived from visual and locomotor inputs. We suggest that such a representation facilitates self-motion computations, contributing to the estimation of an animal’s speed through the world.</p>
</sec>
<sec sec-type="results" id="S2">
<title>Results</title>
<p id="P8">To study the effects of visual motion and locomotion, we recorded from mouse V1 neurons in a virtual environment based on an air-suspended spherical treadmill
<sup>
<xref rid="R26" ref-type="bibr">26</xref>
,
<xref rid="R27" ref-type="bibr">27</xref>
</sup>
. The virtual environment was a corridor whose walls, ceiling and floor were adorned with a white-noise pattern (
<xref ref-type="fig" rid="F1">Fig. 1a</xref>
). Four prominent landmarks – three gratings and a plaid – were placed at equal distances along the corridor (
<xref ref-type="fig" rid="F1">Fig. 1b</xref>
). Head-fixed mice viewed this environment on three computer monitors arranged to cover 170° of visual angle (
<xref ref-type="fig" rid="F1">Fig. 1a</xref>
), and traversed the corridor voluntarily by running on the treadmill at speeds of their own choosing (
<xref ref-type="fig" rid="F1">Fig. 1c, d</xref>
&
<xref ref-type="supplementary-material" rid="SD1">Supplementary Fig. 1</xref>
).</p>
<p id="P9">While the mice traversed this environment, we recorded from populations of V1 neurons with multisite electrodes and identified the spike trains of single neurons and multi-unit activity with a semi-automatic spike sorting algorithm
<sup>
<xref rid="R28" ref-type="bibr">28</xref>
</sup>
(
<xref ref-type="supplementary-material" rid="SD1">Supplementary Fig. 2</xref>
). We then used grating stimuli to measure the receptive fields of the neurons (receptive field size 24 ± 2 °, s.e., n = 81, receptive field centers 10°-70° azimuth, semi-saturation contrast 23 ± 3%, s.e., n = 38).</p>
<p id="P10">To measure the features that influenced neural activity in the virtual environment, we adopted a technique previously used for analysis of hippocampal place cells
<sup>
<xref rid="R29" ref-type="bibr">29</xref>
,
<xref rid="R30" ref-type="bibr">30</xref>
</sup>
. For each neuron, we estimated the firing rate as a function of one or more predictor variables (e.g. speed alone, position alone, or both speed and position). Using a separate data segment (the “test set”), we defined a prediction quality measure Q as the fraction of the variance of the firing rate explained by the predictor variables. This measure of prediction quality does not require that stimuli be presented multiple times (
<xref ref-type="supplementary-material" rid="SD1">Supplementary Fig. 3</xref>
), a key advantage when analyzing activity obtained during self-generated behavior.</p>
<p id="P11">We first measured V1 responses in a closed-loop condition, where the virtual environment was yoked to running speed and thus faithfully reflected the movement of the animal in the forward direction. For each neuron, we computed our ability to predict the firing rate based on position alone (Q
<sub>P</sub>
), on speed alone (Q
<sub>S</sub>
), and on both position and speed (Q
<sub>PS</sub>
:
<xref ref-type="supplementary-material" rid="SD1">Supplementary Figs. 4</xref>
and
<xref ref-type="supplementary-material" rid="SD1">5</xref>
). The responses of most V1 neurons (181/194) were predictable based on both the position and speed in the environment (Q
<sub>PS</sub>
>0;
<xref ref-type="supplementary-material" rid="SD1">Supplementary Fig. 5</xref>
). Here we concentrate on 110 of these neurons whose firing rates were particularly predictable (Q
<sub>PS</sub>
>0.1). Some of these neurons (51/110) showed clear modulation in firing rate as a function of position (Q
<sub>P</sub>
>0.1). This tuning for position was expected due to the different visual features present along the corridor, and indeed neurons often responded most strongly as the animal passed the visual landmarks (
<xref ref-type="fig" rid="F1">Fig. 1e</xref>
,
<xref ref-type="supplementary-material" rid="SD1">Supplementary Fig. 5</xref>
). The response of most neurons (81/110) also showed a clear dependence on speed (Q
<sub>S</sub>
> 0.1). Typically, speed explained a larger fraction of the response than position (75/110 cells with Q
<sub>S</sub>
> Q
<sub>P</sub>
,
<xref ref-type="fig" rid="F1">Fig. 1g</xref>
). Indeed, for many neurons the responses were as well predicted by speed alone as by speed and position together (Q
<sub>S</sub>
/Q
<sub>PS</sub>
~ 1,
<xref ref-type="fig" rid="F1">Fig. 1g</xref>
and
<xref ref-type="supplementary-material" rid="SD1">Supplementary Fig. 5</xref>
). Speed, therefore, exerts a powerful influence on the responses of most V1 neurons in the virtual environment.</p>
<p id="P12">But what kind of speed is exerting this influence? In virtual reality, the speed at which the virtual environment moves past the animal (
<italic>virtual speed)</italic>
is identical to the speed with which the animal runs on the air-suspended ball (
<italic>run speed).</italic>
Neurons in V1 can gauge virtual speed through visual inputs, but to gauge run speed they must rely on non-visual inputs. These could include sensory input from proprioception, and top-down inputs such as efference copy from the motor systems. Ordinarily, virtual and run speeds are identical, so their effects on V1 cannot be distinguished.</p>
<p id="P13">One way to isolate run speed from virtual speed is simply to eliminate the visual input. To do this, we turned off the monitors and occluded all other sources of light, and thus measured responses to run speed in the dark. Running influenced the activity of many V1 neurons even in this dark environment (39/55 well-isolated neurons were significantly modulated, p<0.001) modulating their activity by 50% to 200% (
<xref ref-type="supplementary-material" rid="SD1">Supplementary Fig. 6</xref>
). The dependence of firing rate on run speed was graded, rather than a simple binary switch between different rates in stationary and running periods (
<xref ref-type="fig" rid="F2">Fig. 2a-c</xref>
). Indeed, among the neurons modulated by running, most (27/39) showed a significant (p<0.001) dependence on run speed even when we excluded stationary periods (run speed < 1 cm/s). About half of these neurons (16/27) showed a band-pass tuning characteristic, responding maximally to a particular run speed (
<xref ref-type="fig" rid="F2">Fig. 2b,d</xref>
;
<xref ref-type="supplementary-material" rid="SD1">Supplementary Fig. 7</xref>
); in the rest, firing rate showed either a monotonic increase with run speed (
<xref ref-type="fig" rid="F2">Fig. 2a</xref>
, 7/27 neurons), or a monotonic decrease with run speed (
<xref ref-type="fig" rid="F2">Fig. 2c</xref>
, 4/27 neurons). Similar results were obtained when the monitors were turned on but displayed a uniform gray screen (not shown). Thus, the responses of V1 neurons depend smoothly and in diverse ways on the speed at which the animal runs, even in the absence of visual inputs.</p>
<p id="P14">To understand how run speed affects V1 responses to visual stimuli, we reconfigured the virtual reality environment into an open-loop condition. In this condition we simply replayed movies of previous closed-loop runs, irrespective of the animal’s current run speed. Whereas in the closed-loop condition virtual speed and run speed were always equal, in the open-loop condition the animal went through the virtual environment at different combinations of virtual and run speeds (
<xref ref-type="fig" rid="F3">Fig. 3a</xref>
). We could investigate the influence of both speeds because the mice did not attempt to adjust their running based on visual inputs: there was little correlation between run speed and virtual speed (r = 0.07 ± 0.05). Similarly, V1 neurons did not modify their responses in the two conditions: when the two speeds happened to match during open-loop, V1 responses were similar to those measured in closed-loop (
<xref ref-type="supplementary-material" rid="SD1">Supplementary Fig. 8</xref>
). We therefore used the open-loop responses to measure the effects and interactions of the two speeds.</p>
<p id="P15">In the open-loop condition, V1 responses were modulated by both run speed and virtual speed. Some neurons were strongly influenced by virtual speed (
<xref ref-type="fig" rid="F3">Fig. 3c,d</xref>
; 28/173 with Q
<sub>V</sub>
> 0.1); this was expected because translation of the virtual corridor causes strong visual motion across the retina, and visual motion is a prime determinant of V1 responses. The responses of many neurons were also modulated by run speed (39/173 with Q
<sub>R</sub>
> 0.1;
<xref ref-type="fig" rid="F3">Fig. 3b-d</xref>
). This modulation was not due to eye movements (
<xref ref-type="supplementary-material" rid="SD1">Supplementary Fig. 9</xref>
). As in the absence of visual stimuli, responses varied smoothly with run speed. Indeed, firing rates were better predicted by a smooth function of speed, than by a binary function with one value each for the stationary and running conditions (Q
<sub>binary</sub>
< Q
<sub>R</sub>
: p < 10
<sup>−8</sup>
, sign-rank test).</p>
<p id="P16">There was no obvious relationship, however, between tuning for virtual speed and for run speed (
<xref ref-type="supplementary-material" rid="SD1">Supplementary Figure 10</xref>
); rather, the firing of most cells appeared to depend on the two speeds in combination, with different cells performing different combinations. To study these combinations, for each neuron we derived a “speed map”, an optimally smoothed estimate of the response at each combination of run and virtual speeds (
<xref ref-type="fig" rid="F3">Fig. 3b-d</xref>
). Predictions of the firing rates based on these speed maps were superior to predictions based on either speed alone (Q
<sub>RV</sub>
> max(Q
<sub>R</sub>
,Q
<sub>V</sub>
): p < 10
<sup>−11</sup>
; sign-rank test). In total, 73/173 neurons were driven by some combination of virtual and run speeds (Q
<sub>RV</sub>
> 0.1) and were selected for further analysis.</p>
<p id="P17">To summarize and quantify how a neuron’s firing rate depends on virtual speed and run speed, we adopted a simple model based on a weighted sum of the two speeds. This model requires a single parameter θ, the “interaction angle” determined by the two weights, and a nonlinear function
<italic>f</italic>
that operates on the weighted sum (
<xref ref-type="fig" rid="F3">Fig. 3e</xref>
). We found that the modeled responses not only visually resembled the original speed maps (
<xref ref-type="fig" rid="F3">Fig. 3f-h</xref>
), but also provided cross-validated predictions of the spike trains that were almost as accurate as those based on the original two-dimensional speed map (
<xref ref-type="fig" rid="F3">Fig. 3i</xref>
, Q
<sub>map</sub>
- Q
<sub>model</sub>
= 0.006 ± 0.002). Therefore, each neuron’s responses depend on a linear combination of virtual speed and run speed.</p>
<p id="P18">To study the relative weighting that neurons give to virtual and run speed, we estimated for each neuron the optimal interaction angle θ
<sub>max</sub>
that gave the best cross-validated prediction of its spike trains. This angle ranges from 0 to π, and describes the linear combination of speeds best encoded by each neuron. The most common value of θ
<sub>max</sub>
, seen in about half of the neurons (34/73), was θ
<sub>max</sub>
≈ π/4, indicating that these neurons responded to an equal weighting of run and virtual speeds. Among the other neurons, some were selective for run speed only (27/73 neurons with θ
<sub>max</sub>
≈ π/2;
<xref ref-type="fig" rid="F3">Fig. 3j</xref>
), and a few for virtual speed only (6/73 with θ
<sub>max</sub>
≈ 0). Even fewer neurons (5/73) were selective for the difference between virtual speed and run speed (θ
<sub>max</sub>
≈ 3π/4), which measures the mismatch between locomotion and visual motion
<sup>
<xref rid="R7" ref-type="bibr">7</xref>
</sup>
. Overall, the relative weighting of virtual speed and run speed varied between neurons, but showed a clear preference for equal weighting.</p>
<p id="P19">The fact that V1 neurons encode diverse combinations of run and virtual speed suggests that a downstream area could read out from the population of V1 neurons diverse combinations of visual and non-visual information. To investigate these population-level consequences of the single-neuron properties, we applied a decoding method to the spike data, aiming to infer the combination of run speed and virtual speed that had generated the data. We used the activity of simultaneously recorded V1 neurons (
<xref ref-type="fig" rid="F4">Fig. 4a</xref>
) to estimate different linear combinations of run and virtual speeds, parameterized by the interaction angle. For example, to test whether the V1 population encodes a given combination of run and virtual speed (θ = π/3) we asked whether the decoder could predict this particular combination as a function of time (
<xref ref-type="fig" rid="F4">Fig. 4b</xref>
), based on parameters obtained from a separate training set. The quality of the prediction depended on the linear combination of speeds being predicted (
<xref ref-type="fig" rid="F4">Fig. 4c, d</xref>
). The combination that was decoded best had positive and approximately equal weighting of the two speeds (at θ ≈ π/4, circular mean = 52°). By contrast, virtual speed (θ ≈ 0 or π) and run speed (θ ≈ π/2) were decoded less precisely. The difference between the speeds (θ
<sub>max</sub>
≈ 3π/4) was predicted least precisely of all (circular-linear correlation p<10
<sup>−3</sup>
,
<xref ref-type="fig" rid="F4">Fig. 4c, d</xref>
).</p>
<p id="P20">To assess the robustness of these results, we performed various additional tests. First, we established that these results did not overly rely on responses measured during stationary conditions. To do this, we restricted the decoding to epochs when both run speed and virtual speed were > 3 cm/s, and we found a similar dependence of decoding performance on interaction angle (gray curves of
<xref ref-type="fig" rid="F4">Fig. 4c,d</xref>
: circular mean = 42°; circular-linear correlation p<0.01; the reduction in decoding performance in the restricted analysis suggests that the population encodes both smooth changes of speed and binary changes: stationary vs. moving). Second, we ensured that these results did not depend on the precise choice of decoding algorithm. Indeed, the same dependence of decoding performance on interaction angle was observed with two alternative decoders (
<xref ref-type="supplementary-material" rid="SD1">Supplementary Fig. 11</xref>
). Finally, we asked whether these results reflect the distribution of optimal interaction angles that we have measured. We used simulations of V1 populations with different distributions of interaction angles (
<xref ref-type="supplementary-material" rid="SD1">Supplementary Fig. 12</xref>
). We could replicate the profile of decoding performance present in the data only when the distribution of interaction angles in the simulated population resembled that of the real population (
<xref ref-type="supplementary-material" rid="SD1">Supplementary Fig. 12c-j</xref>
).</p>
<p id="P21">The population of V1 neurons therefore encodes positively-weighted linear combinations of run speed and virtual speed more accurately than virtual speed or run speed alone.</p>
</sec>
<sec sec-type="discussion" id="S3">
<title>Discussion</title>
<p id="P22">Measuring activity in visual cortex in a virtual reality environment revealed a number of interactions between visual motion and locomotion. First, we replicated the observation that running affects V1 responses
<sup>
<xref rid="R6" ref-type="bibr">6</xref>
,
<xref rid="R7" ref-type="bibr">7</xref>
</sup>
, even in the absence of visual stimuli, and we extended it by showing that these responses vary smoothly and often non-monotonically with run speed. Further, we found that V1 neurons typically respond to combinations of run speed (gauged from locomotor and proprioceptive systems) and visual speed (gauged from optic flow). This combination of run speed and visual speed is simply a weighted sum, with weights varying across neurons. Most neurons gave positive weights to visual and run speeds. Accordingly, the population of V1 neurons was most informative as to positively weighted linear combinations of run and visual speeds.</p>
<p id="P23">The fact that V1 integrates locomotor and visual signals in this manner suggests that it may be an early stage of a pathway for estimating an animal’s speed through the world, which can then help functions such as navigation. However, two alternative hypotheses have also been suggested for the presence of run speed signals in V1.</p>
<p id="P24">A first alternative hypothesis is that locomotion simply changes the gain of V1 sensory responses, without affecting the selectivity of visual neurons. In support of this hypothesis are observations that locomotion scales, but does not modify, the visual preferences of V1 neurons
<sup>
<xref rid="R6" ref-type="bibr">6</xref>
</sup>
. Our data are not fully consistent with this interpretation for multiple reasons. First, we and others
<sup>
<xref rid="R7" ref-type="bibr">7</xref>
</sup>
, find responses to run speed even in the absence of visual stimuli, suggesting that locomotor signals provide a drive to V1 neurons, and not just a modulation of visual responses. Also, there is evidence that even the visual preferences of V1 neurons (particularly preferred stimulus size) can be altered by locomotion
<sup>
<xref rid="R8" ref-type="bibr">8</xref>
</sup>
. Further, we found that responses to running were different across neurons, inconsistent with modulation of an entire visual representation by a single locomotor-dependent gain function. Previous data appeared to suggest that the effect of locomotion was binary
<sup>
<xref rid="R6" ref-type="bibr">6</xref>
</sup>
, as would be expected if running caused a discrete change in cortical state
<sup>
<xref rid="R31" ref-type="bibr">31</xref>
</sup>
. However, we found that a binary model did not predict the firing rate responses as well as a continuous dependence on firing rate. Our data therefore indicate that locomotor effect on the responses of V1 neurons go well beyond a uniform difference in gain between running and stationary animals.</p>
<p id="P25">A second alternative hypothesis holds that V1 signals the mismatch between actual visual stimuli and those that should have been encountered given the locomotion. This explanation fits the theoretical framework of predictive coding
<sup>
<xref rid="R32" ref-type="bibr">32</xref>
</sup>
, and is supported by a recent report using two-photon imaging of superficial V1 neurons
<sup>
<xref rid="R7" ref-type="bibr">7</xref>
</sup>
. By exploring all combinations of run speed and visual speed, however, we found that only a small minority of V1 neurons (5/73) were selective for mismatch. Perhaps this discrepancy results from different selection biases in the two recording methods: while our silicon probe recordings primarily recorded neurons from the deeper layers of cortex, two-photon imaging reports only neurons from layer 2/3; the possibility that prediction errors are specifically encoded in superficial layers has in fact been suggested by computational models
<sup>
<xref rid="R33" ref-type="bibr">33</xref>
</sup>
. However, a more likely reason may be differences in stimulus design. We avoided sudden perturbations of the visual stimulus, while the previous study
<sup>
<xref rid="R7" ref-type="bibr">7</xref>
</sup>
specifically focused on such sudden perturbations. Such perturbations may trigger a change in alertness and often evoked behavioral response (slowing down) in their study. Behavior can evoke calcium responses in sensory cortex
<sup>
<xref rid="R34" ref-type="bibr">34</xref>
,
<xref rid="R35" ref-type="bibr">35</xref>
</sup>
, making it hard to disambiguate the influence of sensory mismatch from its behavioral consequences. Thus, the lack of sudden perturbations of the visual stimulus in our experiments might explain the differences in the observations.</p>
<p id="P26">What circuit mechanisms might underlie the effects we describe? The effects of locomotion on visual cortical processing may involve neuromodulators such as norepinephrine
<sup>
<xref rid="R36" ref-type="bibr">36</xref>
</sup>
. Our data are not inconsistent with this possibility, although the smooth (and sometimes bandpass) modulation of firing with running speed would require the neuromodulatory signal to encode speed in an analog manner. Furthermore the diverse effects of running we observed across neurons would suggest a diverse prevalence of receptors or circuit connections underlie the tuning for run speed. These receptors or circuits are most likely the same that support the effects of locomotion on spatial integration: locomotion can affect size-tuning, preferentially enhancing responses to larger stimuli
<sup>
<xref rid="R8" ref-type="bibr">8</xref>
</sup>
. This finding is compatible with our current results, but not sufficient to predict them; for example, the tuning for run speed that we observed here in the dark certainly could not be predicted by changes in spatial integration.</p>
<p id="P27">In our experiments we recorded from animals that navigated a familiar environment, in which the distance between the animal and the virtual wall (equivalently, the gain of the virtual reality system) was held constant. The mice had experienced at least three training sessions in closed-loop mode before recording, which would be sufficient for the hippocampus to form a clear representation of the virtual environment
<sup>
<xref rid="R15" ref-type="bibr">15</xref>
</sup>
, and are presumably sufficient for the animal to learn the stable mapping between movements and visual flow. In a natural environment, however, an animal’s distance to environmental landmarks can rapidly change. Such changes can lead to rapid alteration in visuo-motor gain, accompanied by changes in neural activity at multiple levels, as demonstrated for instance in zebrafish
<sup>
<xref rid="R37" ref-type="bibr">37</xref>
</sup>
. Furthermore, both animal behavior and neural representations can adjust to the relative noise levels of different input streams, in a manner reminiscent of Bayes-optimal inference
<sup>
<xref rid="R19" ref-type="bibr">19</xref>
,
<xref rid="R38" ref-type="bibr">38</xref>
</sup>
. In the case of mouse navigation, such changes should cause a reweighting of run and visual speeds in the estimation of an animal’s own running velocity. Such a reweighting could occur through alteration of the V1 representation, by changing the distribution of weights of visual and running speed to center around a new optimal value. Alternatively, however, such changes could occur outside of V1. The latter possibility is supported by the fact that the representation we observed in V1 allows readouts of a wider range of run-visual mixtures than a simulated population in which all neurons encoded a single interaction angle (
<xref ref-type="supplementary-material" rid="SD1">Supplementary Fig. 12</xref>
). Further experiments will be required to distinguish these possibilities. We also note that, while head-fixed animals are certainly capable of navigation in virtual reality
<sup>
<xref rid="R15" ref-type="bibr">15</xref>
,
<xref rid="R27" ref-type="bibr">27</xref>
,
<xref rid="R39" ref-type="bibr">39</xref>
-
<xref rid="R41" ref-type="bibr">41</xref>
</sup>
, animals that are not head fixed gain an important cue for speed estimation from the vestibular system. To understand how this vestibular signal affects integration of visual and locomotor information requires further recordings from V1 neurons in freely moving animals
<sup>
<xref rid="R42" ref-type="bibr">42</xref>
,
<xref rid="R43" ref-type="bibr">43</xref>
</sup>
.</p>
<p id="P28">Our results suggest that the function of mouse visual cortex may be more than just vision. Indeed, a growing body of evidence suggests that neocortical areas are not specific to a single function, and that neurons of even primary sensory cortices can respond to a wide range of multimodal stimuli and non-sensory features
<sup>
<xref rid="R2" ref-type="bibr">2</xref>
,
<xref rid="R3" ref-type="bibr">3</xref>
,
<xref rid="R5" ref-type="bibr">5</xref>
,
<xref rid="R44" ref-type="bibr">44</xref>
,
<xref rid="R45" ref-type="bibr">45</xref>
</sup>
. Our results provide a striking example of such integration, and suggest an ethological benefit it may provide to the animal. Estimation of speed through the world is a critical function for navigation and is achieved by integrating inputs from the visual system with locomotor variables. Our data indicate that, at least in the mouse, this integration occurs as early as primary visual cortex.</p>
</sec>
<sec sec-type="methods" id="S4" specific-use="web-only">
<title>Online Methods</title>
<p id="P29">Experiments were conducted according to the UK Animals (Scientific Procedures) Act, 1986 under personal and project licenses issued by the Home Office following ethical review.</p>
<sec id="S6">
<title>Surgery and training</title>
<p id="P30">Five wild-type mice (C57BL6, 20-26g) were chronically implanted with a custom-built head post and recording chamber (4 mm inner diameter) under isoflurane anesthesia. No statistical methods were used to predetermine group sizes; the sample sizes we chose are similar to those used in previous studies. We did not require blinding and randomization as only wild-type mice were used. In subsequent days, implanted mice were acclimatized to run in the virtual environment in 20-30 min sessions (4-12 sessions), until they freely ran 20 traversals of the environment in 6 minutes. One day prior to the first recording session, animals were anesthetized under isoflurane and a ~1 mm craniotomy was performed over area V1 (centered at 2.5 mm lateral from midline and 0.5 mm anterior from lambda). The chamber was then sealed using silicone elastomer (Kwik-Cast).</p>
</sec>
<sec id="S7">
<title>Recordings</title>
<p id="P31">To record from V1 we inserted 16-channel linear multi-site probes (with site of size 312 or 430 μm
<sup>2</sup>
, spaced 50 μm apart, NeuroNexus Tech.) to a depth of 900 μm. Recordings were filtered (0.3 - 5 kHz), threshold crossings were auto clustered using KlustaKwik
<sup>
<xref rid="R46" ref-type="bibr">46</xref>
</sup>
followed by manual adjustment using Klusters
<sup>
<xref rid="R47" ref-type="bibr">47</xref>
</sup>
. A total of 194 units were isolated, of which 123 were in deep layers (channel > 10), 11 in superficial layers (channel < 6, numbered surface to deep; we found layer 4 to be located around channels 6-10 based on a current source density analysis). 46 isolated units were judged to be well-isolated (Isolation distance
<sup>
<xref rid="R48" ref-type="bibr">48</xref>
</sup>
>20). All examples shown in the manuscript are well-isolated units. The analysis of data included all units (except dark condition), as restricting the analysis of the data to only well-isolated units did not affect the results. Indeed, there was no correlation between spike isolation quality and Q
<sub>R</sub>
(
<italic>ρ</italic>
= 0.06) or Q
<sub>PS</sub>
(
<italic>ρ</italic>
= 0.07). The firing rate of each unit was calculated by smoothing its spike train using a 150 ms Gaussian window. All the stimuli and spiking activity were then sampled at 60 Hz, the refresh rate of the monitors.</p>
</sec>
<sec id="S8">
<title>Virtual environment</title>
<p id="P32">Visual scenes of a virtual environment were presented on three monitors (19-inch LCD, HA191, Hanns.G, mean luminance 50 cd/m
<sup>2</sup>
, 35 cm away from the eye) that covered a visual angle of 170° azimuth and 45° elevation). Mice explored this environment by walking over an air-suspended spherical treadmill
<sup>
<xref rid="R49" ref-type="bibr">49</xref>
</sup>
(
<xref ref-type="fig" rid="F1">Fig. 1a</xref>
).</p>
<p id="P33">The environment was simulated in Matlab using the Psychophysics toolbox
<sup>
<xref rid="R50" ref-type="bibr">50</xref>
,
<xref rid="R51" ref-type="bibr">51</xref>
</sup>
. The virtual environment was a corridor (120 cm × 8 cm × 8 cm) whose walls, ceiling and floor were adorned all along the corridor with a filtered white noise patterns of full Michelson contrast (overall RMS contrast: 0.14), and four positions in the corridor had prominent patterns as landmarks: gratings (oriented vertical or horizontal of full Michelson contrast, overall RMS contrast: 0.35) in three positions and a plaid (overlapping half-contrast horizontal and vertical gratings, overall RMS contrast: 0.35) in the fourth (
<xref ref-type="fig" rid="F1">Fig. 1a, b</xref>
). Movement in the virtual reality was constrained to one-dimensional translation along the length of the room (the other two degrees of freedom were ignored). All speeds < 1 cm/s were combined into a single bin unless otherwise specified. The gratings had a spatial wavelength of 1 cm on the wall, which is equivalent to a spatial frequency of 0.09 cycles/° at a visual angle of 45° azimuth and 0° elevation. The white noise pattern was low-pass Gaussian filtered with a cutoff frequency of 0.5 cycles/° at 45° azimuth. Due to the 3-dimensional nature of the stimulus, the spatial frequency (in cycles/s) and visual speed (in °/s) presented are a function of the visual angle. Therefore, the speed of the visual environment is defined in terms of the speed of movement through the virtual reality environment, the virtual reality speed (virtual speed in cm/s). In closed-loop, this is the speed matched to what the animal would see if it were running in a real environment of the same dimensions. For reference, at a visual angle of 60° azimuth and 0° elevation, a virtual speed of 1 cm/s corresponds to a visual speed of 9.6 °/s, 10 cm/s to 96 °/s and 30 cm/s to 288 °/s. The running speed of the animal is calculated based on the movement of the air-suspended ball in the forward/backward direction, as captured by the optical mice
<sup>
<xref rid="R49" ref-type="bibr">49</xref>
</sup>
.</p>
<p id="P34">The closed-loop condition was run first (>20 runs through the corridor), followed by two sessions of the open-loop condition. On reaching the end of the corridor on each run, the animals were returned (virtually) to the start, after a 3 s period during which no visual stimuli were presented (gray screen). In the open-loop condition, movies generated in closed-loop were simply played back, regardless of the animal’s run speed. For three animals (6 sessions), the closed-loop condition was repeated after the open-loop sessions. Following the measurements in virtual reality for all animals, we mapped receptive fields using traditional bar and grating stimuli. Each animal was taken through 1-3 such recording sessions.</p>
</sec>
<sec id="S9">
<title>Response function</title>
<p id="P35">The response of each neuron (shown in
<xref ref-type="fig" rid="F1">Figs. 1</xref>
and
<xref ref-type="fig" rid="F3">3</xref>
) was calculated as a function of the variables of the virtual environment and their various combinations using a local smoothing method previously used to compute hippocampal place fields
<sup>
<xref rid="R52" ref-type="bibr">52</xref>
-
<xref rid="R54" ref-type="bibr">54</xref>
</sup>
. For example, a neuron’s firing rate
<italic>y(t),</italic>
at time
<italic>t</italic>
, was modeled as a function χ
<sub>a</sub>
(
<italic>a</italic>
(
<italic>t</italic>
)) over the variable
<italic>a</italic>
. To estimate the model χ
<sub>a</sub>
, the variable
<italic>a</italic>
was first smoothed in time (150 ms Gaussian) and discretized in
<italic>n</italic>
bins to take values
<italic>a</italic>
<sub>1</sub>
,
<italic>a</italic>
<sub>2</sub>
,…,
<italic>a
<sub>n</sub>
</italic>
(the number of bins
<italic>n</italic>
was taken as 150 for position, 30 for speeds; the precise bin numbers were not important as response functions were smoothed) We then calculated the spike count map
<italic>S</italic>
and occupancy map
<italic>Φ</italic>
. Each point of the spike count map was the total number of spikes when
<italic>a(t)</italic>
had a value of
<italic>a
<sub>i</sub>
</italic>
:
<italic>S
<sub>i</sub>
</italic>
= Σ
<sub>
<italic>t</italic>
:(
<italic>a</italic>
(
<italic>t</italic>
)=
<italic>a
<sub>i</sub>
</italic>
)</sub>
<italic>y</italic>
(
<italic>t</italic>
), where
<italic>i</italic>
is the index of bins of variable
<italic>a</italic>
. The occupancy map was the total time spent when the variable
<italic>a</italic>
had a value of
<italic>a
<sub>i</sub>
</italic>
: Φ
<sub>
<italic>i</italic>
</sub>
= Σ
<sub>
<italic>t</italic>
:(
<italic>a</italic>
(
<italic>t</italic>
)=
<italic>a
<sub>i</sub>
</italic>
)</sub>
Δ
<italic>t</italic>
where Δ
<italic>t</italic>
was the size of each time bin (Δ
<italic>t</italic>
= 16.67 ms). Both the spike count (
<italic>S</italic>
) and occupancy (Φ) maps were smoothed by convolving them with a common Gaussian window whose width σ (ranging between 1 bin to total no. of bins) was optimized to maximize the cross-validated prediction quality (explained below). The stationary/static bins were not included in the smoothing process. The firing rate model was then calculated as the ratio of the smoothed spike count and occupancy maps:
<disp-formula id="FD1">
<mml:math display="block" id="M1" overflow="scroll">
<mml:mrow>
<mml:msub>
<mml:mi>χ</mml:mi>
<mml:mi>a</mml:mi>
</mml:msub>
<mml:mspace width="thinmathspace"></mml:mspace>
<mml:mo>=</mml:mo>
<mml:mspace width="thinmathspace"></mml:mspace>
<mml:mfrac>
<mml:mrow>
<mml:mi>S</mml:mi>
<mml:mo></mml:mo>
<mml:msub>
<mml:mi>η</mml:mi>
<mml:mi mathvariant="normal">a</mml:mi>
</mml:msub>
<mml:mo>(</mml:mo>
<mml:mn>0</mml:mn>
<mml:mo>,</mml:mo>
<mml:mi>σ</mml:mi>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mrow>
<mml:mi>Φ</mml:mi>
<mml:mo></mml:mo>
<mml:msub>
<mml:mi>η</mml:mi>
<mml:mi mathvariant="normal">a</mml:mi>
</mml:msub>
<mml:mo>(</mml:mo>
<mml:mn>0</mml:mn>
<mml:mo>,</mml:mo>
<mml:mi>σ</mml:mi>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mfrac>
</mml:mrow>
</mml:math>
</disp-formula>
where
<italic>η</italic>
<sub>a</sub>
(0, σ) is a Gaussian of width σ, and the operator ‘*’ indicates a convolution. Based on the model, fit over training data, we predicted the firing rate over the test data as:
<disp-formula id="FD2">
<mml:math display="block" id="M2" overflow="scroll">
<mml:mrow>
<mml:msup>
<mml:mi>y</mml:mi>
<mml:mi>a</mml:mi>
</mml:msup>
<mml:mo>(</mml:mo>
<mml:mi>t</mml:mi>
<mml:mo>)</mml:mo>
<mml:mspace width="thinmathspace"></mml:mspace>
<mml:mo>=</mml:mo>
<mml:mspace width="thinmathspace"></mml:mspace>
<mml:msub>
<mml:mi>χ</mml:mi>
<mml:mi>a</mml:mi>
</mml:msub>
<mml:mrow>
<mml:mo stretchy="true">(</mml:mo>
<mml:mrow>
<mml:mi>a</mml:mi>
<mml:mo>(</mml:mo>
<mml:mi>t</mml:mi>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mo stretchy="true">)</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:math>
</disp-formula>
where
<italic>y
<sup>a</sup>
</italic>
(
<italic>t</italic>
) is the prediction of firing rate based on variable
<italic>a</italic>
. A similar procedure was followed for the 2D “speed maps”, where two independent Gaussians were used to smooth across each variable.</p>
</sec>
<sec id="S10">
<title>Prediction quality</title>
<p id="P36">Response functions and models were fit based on 80% of the data and the performance of each of models was tested on the remaining 20% (cross-validation). We calculated the prediction quality
<italic>Q
<sub>a</sub>
</italic>
of model χ
<sub>a</sub>
, based on variable
<italic>a</italic>
, as the fraction of variance explained:
<disp-formula id="FD3">
<mml:math display="block" id="M3" overflow="scroll">
<mml:mrow>
<mml:msub>
<mml:mi>Q</mml:mi>
<mml:mi>a</mml:mi>
</mml:msub>
<mml:mspace width="thinmathspace"></mml:mspace>
<mml:mo>=</mml:mo>
<mml:mspace width="thinmathspace"></mml:mspace>
<mml:mn>1</mml:mn>
<mml:mo></mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:munder>
<mml:mo></mml:mo>
<mml:mi>t</mml:mi>
</mml:munder>
<mml:mrow>
<mml:msup>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mi>y</mml:mi>
<mml:mo>(</mml:mo>
<mml:mi>t</mml:mi>
<mml:mo>)</mml:mo>
<mml:mo></mml:mo>
<mml:msup>
<mml:mi>y</mml:mi>
<mml:mi>a</mml:mi>
</mml:msup>
<mml:mo>(</mml:mo>
<mml:mi>t</mml:mi>
<mml:mo>)</mml:mo>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mn>2</mml:mn>
</mml:msup>
</mml:mrow>
</mml:mrow>
<mml:mrow>
<mml:munder>
<mml:mo></mml:mo>
<mml:mi>t</mml:mi>
</mml:munder>
<mml:mrow>
<mml:msup>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mi>y</mml:mi>
<mml:mo>(</mml:mo>
<mml:mi>t</mml:mi>
<mml:mo>)</mml:mo>
<mml:mo></mml:mo>
<mml:mi>μ</mml:mi>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mn>2</mml:mn>
</mml:msup>
</mml:mrow>
</mml:mrow>
</mml:mfrac>
</mml:mrow>
</mml:math>
</disp-formula>
where
<italic>y</italic>
(
<italic>t</italic>
) is the smoothed firing rate (150 ms Gaussian window) of the neuron at time
<italic>t</italic>
,
<italic>y
<sup>a</sup>
</italic>
(
<italic>t</italic>
) was the prediction by model χ
<sub>a</sub>
for the same time bin and
<italic>μ</italic>
is the mean firing rate of the training data. A value of Q close to 0 suggests the model does not predict the firing rate of the neuron any better than using a constant and a higher Q suggests good performance. Values of Q close to 1 are unlikely as the intrinsic variability in the response of neurons, which is uncorrelated to the stimulus, is not captured by any of the models. Very low values of Q suggest that the response is unreliable. Therefore, we only concentrated on neurons whose responses were reliable for further analysis by setting a limit of Q > 0.1 (
<xref ref-type="fig" rid="F1">Fig. 1g</xref>
: 110/194 neurons with Q
<sub>PS</sub>
> 0.1 and
<xref ref-type="fig" rid="F2">Fig 2j</xref>
: 73/194 neurons with Q
<sub>map</sub>
> 0.1). To compare the metric explained variance of the mean response which is more commonly used, we calculated Q and explained variance on direction tuning of neurons. We found that neurons with a model for direction tuning of Q > 0.1 had an explained variance in the range of 0.75-0.97 (two examples are shown in
<xref ref-type="supplementary-material" rid="SD1">Supplementary Fig. 3</xref>
). To test the alternative hypothesis of a binary model of run speed, we only considered two bins, which were whether the animal ran (Speed > 1 cm/s) or not. We used the mean firing rate of the training data in these bins, to predict firing rate of the test data and calculate Q
<sub>binary</sub>
.</p>
</sec>
<sec id="S11">
<title>Responses in darkness</title>
<p id="P37">We trained a separate set of animals (n = 3) with an additional 5-10 minute condition of complete darkness. The darkness was achieved by turning all the non-essential lights and equipment in the room off. Light from essential equipment outside the recording area (e.g. recording amplifiers) was covered with a red filter (787 Marius Red; LEE filters), rendering any stray light invisible to mice. As a result, the recording area was completely dark both for mice and for humans (luminance <10
<sup>−2</sup>
cd/m
<sup>2</sup>
, i.e. below the limit of the light meter). We used 32-channel, 4 shank multisite probes (spaced 200 μm apart) to record one session on each animal; each shank had two sets of tetrodes spaced 150 μm apart (Each electrode had recording sites of 121 μm
<sup>2</sup>
, Neuronexus). We recorded a total of 145 units of which 55 were well-isolated units (Mahalanobis distance > 20). We only considered the well-isolated units for analysis in the dark condition. Similar results were obtained when considering all units (not shown). The dark condition during the three recording sessions lasted 8, 9 and 13 mins. In this condition, speed was defined as the amplitude of the two-dimensional velocity vector.</p>
<p id="P38">Responses in the dark condition were calculated by discretizing the run speed such that each speed bin contained at least 7% of the dark condition (>30 s). In cases where the animal was stationary for long periods of time (>7%), the stationary speed (≤ 1 cm/s) bin had more data points. We calculated the mean and error of the firing rate in each of the speed bins (
<xref ref-type="fig" rid="F2">Fig. 2</xref>
). The speed in any bin was the mean speed during the time spent at that speed bin. To assess statistical significance of modulation by run speed, for each neuron we recalculated the firing rate as a function of speed in each bin after shuffling the spike times. As a conservative estimate we considered a neuron’s response to be significantly modulated by run speed if the variance of its responses was greater than 99.9% of the variance of the its shuffled responses (p<0.001). To test if the neuron’s response was significantly non-binary, we followed the same procedure as above, but restricting the test to only periods when run speed was > 1 cm/s.</p>
<p id="P39">To characterize the run speed responses we fit the mean responses to speed
<italic>s</italic>
(
<italic>s</italic>
> 1 cm/s) by the following descriptive function
<sup>
<xref rid="R55" ref-type="bibr">55</xref>
,
<xref rid="R56" ref-type="bibr">56</xref>
</sup>
:
<disp-formula id="FD4">
<mml:math display="block" id="M4" overflow="scroll">
<mml:mrow>
<mml:mi>y</mml:mi>
<mml:mo>(</mml:mo>
<mml:mi>s</mml:mi>
<mml:mo>)</mml:mo>
<mml:mspace width="thinmathspace"></mml:mspace>
<mml:mo>=</mml:mo>
<mml:mspace width="thinmathspace"></mml:mspace>
<mml:msub>
<mml:mi>y</mml:mi>
<mml:mi mathvariant="italic">max</mml:mi>
</mml:msub>
<mml:mspace width="thinmathspace"></mml:mspace>
<mml:mi mathvariant="italic">exp</mml:mi>
<mml:mo>[</mml:mo>
<mml:mo></mml:mo>
<mml:mrow>
<mml:msup>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mi>s</mml:mi>
<mml:mo></mml:mo>
<mml:msub>
<mml:mi>s</mml:mi>
<mml:mi mathvariant="italic">max</mml:mi>
</mml:msub>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mn>2</mml:mn>
</mml:msup>
</mml:mrow>
<mml:mo></mml:mo>
<mml:mi>σ</mml:mi>
<mml:mo>(</mml:mo>
<mml:mi>s</mml:mi>
<mml:mo>)</mml:mo>
<mml:mo>]</mml:mo>
</mml:mrow>
</mml:math>
</disp-formula>
where
<italic>σ</italic>
(
<italic>s</italic>
) was
<italic>σ</italic>
<sub></sub>
if
<italic>x</italic>
<
<italic>x
<sub>max</sub>
</italic>
and
<italic>σ</italic>
<sub>+</sub>
if
<italic>x</italic>
>
<italic>x
<sub>max</sub>
</italic>
, and
<italic>y
<sub>max</sub>
</italic>
,
<italic>x
<sub>max</sub>
</italic>
,
<italic>σ</italic>
<sub></sub>
and
<italic>σ</italic>
<sub>+</sub>
were the free parameters. We fit three curves by adding constraints on
<italic>x
<sub>max</sub>
</italic>
: a) a monotonically increasing function was fit by constraining
<italic>x
<sub>max</sub>
</italic>
to be greater than ≥ 30 cm/s, b) a monotonically increasing function was fit by constraining
<italic>x
<sub>max</sub>
</italic>
to be ≤ 1 cm/s, and c) a bandpass curve by not constraining
<italic>x
<sub>max</sub>
</italic>
. These three curves were fit on 80% of the data and we tested the fraction of explained variance of the firing rate on the remaining 20%. We considered a neuron bandpass only if the variance explained by the band-pass curve was greater than both a monotonically increasing or decreasing curve and when
<italic>x
<sub>max</sub>
</italic>
was > 2 cm/s and < 25 cm/s.</p>
</sec>
<sec id="S12">
<title>Weighted sum model</title>
<p id="P40">The firing rate of a neuron
<italic>i</italic>
at time t,
<italic>y
<sub>i</sub>
</italic>
(t) was modeled as:
<disp-formula id="FD5">
<mml:math display="block" id="M5" overflow="scroll">
<mml:mrow>
<mml:msub>
<mml:mi>y</mml:mi>
<mml:mi>i</mml:mi>
</mml:msub>
<mml:mo>(</mml:mo>
<mml:mi>t</mml:mi>
<mml:mo>)</mml:mo>
<mml:mspace width="thinmathspace"></mml:mspace>
<mml:mo>=</mml:mo>
<mml:mspace width="thinmathspace"></mml:mspace>
<mml:mi>f</mml:mi>
<mml:mo>[</mml:mo>
<mml:mi>α</mml:mi>
<mml:mi>V</mml:mi>
<mml:mo>(</mml:mo>
<mml:mi>t</mml:mi>
<mml:mo>)</mml:mo>
<mml:mo>+</mml:mo>
<mml:mi>β</mml:mi>
<mml:mi>R</mml:mi>
<mml:mo>(</mml:mo>
<mml:mi>t</mml:mi>
<mml:mo>)</mml:mo>
<mml:mo>]</mml:mo>
</mml:mrow>
</mml:math>
</disp-formula>
where
<italic>α</italic>
= sin(
<italic>θ</italic>
),
<italic>β</italic>
= cos(
<italic>θ</italic>
),
<italic>V</italic>
(
<italic>t</italic>
) is the virtual speed,
<italic>R</italic>
(
<italic>t</italic>
) the run speed of the animal at time
<italic>t</italic>
. The function
<italic>f</italic>
[ ] was estimated using a 1d version of the same binning and smoothing procedure described above for estimating response functions. For each cell, the model was fitted for a range of integration angles
<italic>θ</italic>
from 0 to
<italic>π</italic>
in steps of
<italic>π</italic>
/16. The optimal integration angle
<italic>θ
<sub>max</sub>
</italic>
was chosen as the value of
<italic>θ</italic>
giving the highest cross-validated prediction quality.</p>
</sec>
<sec id="S13">
<title>Population decoding</title>
<p id="P41">The smoothed (0.9 s Gaussian window) firing rate vector of all simultaneously recorded neurons was used to predict a linear combination of virtual speed and run speed (sin(
<italic>θ</italic>
)
<italic>V</italic>
(
<italic>t</italic>
) + cos(
<italic>θ</italic>
)
<italic>R</italic>
(
<italic>t</italic>
)) for a range of interaction angles
<italic>θ</italic>
from 0 to
<italic>π</italic>
in steps of
<italic>π</italic>
/16. As our hypothesis is to test the decoding of speed relevant to navigation, we consider all speeds < 3 cm/s to be stationary (Red curves in
<xref ref-type="fig" rid="F4">Fig. 4b-d</xref>
), or ignored all the times when either run speed or visual speed were < 3cm/s (Gray curves in
<xref ref-type="fig" rid="F4">Fig. 4c,d</xref>
; we only considered sessions (9/11) where >100 seconds fulfilled this criterion). Reducing the limit to < 1 or 0.03 cm/s did not affect the trend in the decoding performance (shown in
<xref ref-type="supplementary-material" rid="SD1">Supplementary Figs. 11</xref>
&
<xref ref-type="supplementary-material" rid="SD1">12</xref>
). We used a linear decoder (ridge regression, with the ridge parameter optimized by cross-validation), to evaluate how well an observer could decode a combination of speeds given the firing rate of the population. The performance of the decoder was tested as the fraction of variance explained on an independent 20% of the data that was not used to train the decoder.</p>
</sec>
</sec>
<sec sec-type="supplementary-material" id="SM">
<title>Supplementary Material</title>
<supplementary-material content-type="local-data" id="SD1">
<label>Supplementary Figures 1-12</label>
<media xlink:href="NIHMS56482-supplement-1.docx" orientation="portrait" xlink:type="simple" id="d37e1485" position="anchor"></media>
</supplementary-material>
</sec>
</body>
<back>
<ack id="S14">
<title>Acknowledgements</title>
<p>We thank Marieke Schölvinck for help with pilot experiments, Laurenz Muessig and Francesca Cacucci for sharing open-field behavioral data, Bilal Haider, David Schulz and other members of the lab for helpful discussions, John O’Keefe, Neil Burgess and Kit Longden for comments on the project. This work was supported by the Medical Research Council and by the European Research Council. MC and KDH are jointly funded by the Wellcome Trust. KJ is supported by the Biotechnology and Biological Sciences Research Council. MC holds the GlaxoSmithKline / Fight for Sight Chair in Visual Neuroscience.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="R1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carandini</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Do we know what the early visual system does?</article-title>
<source>J Neurosci</source>
<year>2005</year>
<volume>25</volume>
<fpage>10577</fpage>
<lpage>10597</lpage>
<pub-id pub-id-type="pmid">16291931</pub-id>
</element-citation>
</ref>
<ref id="R2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ghazanfar</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Schroeder</surname>
<given-names>CE</given-names>
</name>
</person-group>
<article-title>Is neocortex essentially multisensory?</article-title>
<source>Trends in cognitive sciences</source>
<year>2006</year>
<volume>10</volume>
<fpage>278</fpage>
<lpage>285</lpage>
<pub-id pub-id-type="pmid">16713325</pub-id>
</element-citation>
</ref>
<ref id="R3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Iurilli</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Sound-driven synaptic inhibition in primary visual cortex</article-title>
<source>Neuron</source>
<year>2012</year>
<volume>73</volume>
<fpage>814</fpage>
<lpage>828</lpage>
<pub-id pub-id-type="pmid">22365553</pub-id>
</element-citation>
</ref>
<ref id="R4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McAdams</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Reid</surname>
<given-names>RC</given-names>
</name>
</person-group>
<article-title>Attention modulates the responses of simple cells in monkey primary visual cortex</article-title>
<source>J Neurosci</source>
<year>2005</year>
<volume>25</volume>
<fpage>11023</fpage>
<lpage>11033</lpage>
<pub-id pub-id-type="pmid">16306415</pub-id>
</element-citation>
</ref>
<ref id="R5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shuler</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Bear</surname>
<given-names>MF</given-names>
</name>
</person-group>
<article-title>Reward timing in the primary visual cortex</article-title>
<source>Science</source>
<year>2006</year>
<volume>311</volume>
<fpage>1606</fpage>
<lpage>1609</lpage>
<pub-id pub-id-type="pmid">16543459</pub-id>
</element-citation>
</ref>
<ref id="R6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Niell</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Stryker</surname>
<given-names>MP</given-names>
</name>
</person-group>
<article-title>Modulation of visual responses by behavioral state in mouse visual cortex</article-title>
<source>Neuron</source>
<year>2010</year>
<volume>65</volume>
<fpage>472</fpage>
<lpage>479</lpage>
<pub-id pub-id-type="pmid">20188652</pub-id>
</element-citation>
</ref>
<ref id="R7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Keller</surname>
<given-names>GB</given-names>
</name>
<name>
<surname>Bonhoeffer</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Hubener</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Sensorimotor mismatch signals in primary visual cortex of the behaving mouse</article-title>
<source>Neuron</source>
<year>2012</year>
<volume>74</volume>
<fpage>809</fpage>
<lpage>815</lpage>
<pub-id pub-id-type="pmid">22681686</pub-id>
</element-citation>
</ref>
<ref id="R8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ayaz</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Saleem</surname>
<given-names>AB</given-names>
</name>
<name>
<surname>Scholvinck</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Carandini</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Locomotion controls spatial integration in mouse visual cortex</article-title>
<source>Curr Biol</source>
<year>2013</year>
<volume>23</volume>
<fpage>890</fpage>
<lpage>894</lpage>
<pub-id pub-id-type="pmid">23664971</pub-id>
</element-citation>
</ref>
<ref id="R9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jeffery</surname>
<given-names>KJ</given-names>
</name>
</person-group>
<article-title>Self-localization and the entorhinal-hippocampal system</article-title>
<source>Curr Opin Neurobiol</source>
<year>2007</year>
<volume>17</volume>
<fpage>684</fpage>
<lpage>691</lpage>
<pub-id pub-id-type="pmid">18249109</pub-id>
</element-citation>
</ref>
<ref id="R10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Terrazas</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Self-motion and the hippocampal spatial metric</article-title>
<source>J Neurosci</source>
<year>2005</year>
<volume>25</volume>
<fpage>8085</fpage>
<lpage>8096</lpage>
<pub-id pub-id-type="pmid">16135766</pub-id>
</element-citation>
</ref>
<ref id="R11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Israel</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Grasso</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Georges-Francois</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Tsuzuku</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Berthoz</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Spatial memory and path integration studied by self-driven passive linear displacement. I. Basic properties</article-title>
<source>J Neurophysiol</source>
<year>1997</year>
<volume>77</volume>
<fpage>3180</fpage>
<lpage>3192</lpage>
<pub-id pub-id-type="pmid">9212267</pub-id>
</element-citation>
</ref>
<ref id="R12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lappe</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bremmer</surname>
<given-names>F</given-names>
</name>
<name>
<surname>van den Berg</surname>
<given-names>AV</given-names>
</name>
</person-group>
<article-title>Perception of self-motion from visual flow</article-title>
<source>Trends in cognitive sciences</source>
<year>1999</year>
<volume>3</volume>
<fpage>329</fpage>
<lpage>336</lpage>
<pub-id pub-id-type="pmid">10461195</pub-id>
</element-citation>
</ref>
<ref id="R13">
<label>13</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>DeAngelis</surname>
<given-names>GC</given-names>
</name>
<name>
<surname>Angelaki</surname>
<given-names>DE</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Murray</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Wallace</surname>
<given-names>MT</given-names>
</name>
</person-group>
<article-title>The Neural Bases of Multisensory Processes Frontiers</article-title>
<source>Neuroscience</source>
<year>2012</year>
</element-citation>
</ref>
<ref id="R14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Duffy</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Wurtz</surname>
<given-names>RH</given-names>
</name>
</person-group>
<article-title>Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli</article-title>
<source>J Neurophysiol</source>
<year>1991</year>
<volume>65</volume>
<fpage>1329</fpage>
<lpage>1345</lpage>
<pub-id pub-id-type="pmid">1875243</pub-id>
</element-citation>
</ref>
<ref id="R15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>G</given-names>
</name>
<name>
<surname>King</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Burgess</surname>
<given-names>N</given-names>
</name>
<name>
<surname>O’Keefe</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>How vision and movement combine in the hippocampal place code</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2013</year>
<volume>110</volume>
<fpage>378</fpage>
<lpage>383</lpage>
<pub-id pub-id-type="pmid">23256159</pub-id>
</element-citation>
</ref>
<ref id="R16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sargolini</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Conjunctive representation of position, direction, and velocity in entorhinal cortex</article-title>
<source>Science</source>
<year>2006</year>
<volume>312</volume>
<fpage>758</fpage>
<lpage>762</lpage>
<pub-id pub-id-type="pmid">16675704</pub-id>
</element-citation>
</ref>
<ref id="R17">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Geisler</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Robbe</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Zugaro</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sirota</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Buzsaki</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Hippocampal place cell assemblies are speed-controlled oscillators</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2007</year>
<volume>104</volume>
<fpage>8149</fpage>
<lpage>8154</lpage>
<pub-id pub-id-type="pmid">17470808</pub-id>
</element-citation>
</ref>
<ref id="R18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Angelaki</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Deangelis</surname>
<given-names>GC</given-names>
</name>
</person-group>
<article-title>Visual and vestibular cue integration for heading perception in extrastriate visual cortex</article-title>
<source>J Physiol</source>
<year>2011</year>
<volume>589</volume>
<fpage>825</fpage>
<lpage>833</lpage>
<pub-id pub-id-type="pmid">20679353</pub-id>
</element-citation>
</ref>
<ref id="R19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ernst</surname>
<given-names>MO</given-names>
</name>
<name>
<surname>Banks</surname>
<given-names>MS</given-names>
</name>
</person-group>
<article-title>Humans integrate visual and haptic information in a statistically optimal fashion</article-title>
<source>Nature</source>
<year>2002</year>
<volume>415</volume>
<fpage>429</fpage>
<lpage>433</lpage>
<pub-id pub-id-type="pmid">11807554</pub-id>
</element-citation>
</ref>
<ref id="R20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wolpert</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Ghahramani</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Jordan</surname>
<given-names>MI</given-names>
</name>
</person-group>
<article-title>An internal model for sensorimotor integration</article-title>
<source>Science</source>
<year>1995</year>
<volume>269</volume>
<fpage>1880</fpage>
<lpage>1882</lpage>
<pub-id pub-id-type="pmid">7569931</pub-id>
</element-citation>
</ref>
<ref id="R21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zipser</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Andersen</surname>
<given-names>RA</given-names>
</name>
</person-group>
<article-title>A Back-Propagation Programmed Network That Simulates Response Properties of a Subset of Posterior Parietal Neurons</article-title>
<source>Nature</source>
<year>1988</year>
<volume>331</volume>
<fpage>679</fpage>
<lpage>684</lpage>
<pub-id pub-id-type="pmid">3344044</pub-id>
</element-citation>
</ref>
<ref id="R22">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Angelaki</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Deangelis</surname>
<given-names>GC</given-names>
</name>
</person-group>
<article-title>Neural correlates of multisensory cue integration in macaque MSTd</article-title>
<source>Nat Neurosci</source>
<year>2008</year>
<volume>11</volume>
<fpage>1201</fpage>
<lpage>1210</lpage>
<pub-id pub-id-type="pmid">18776893</pub-id>
</element-citation>
</ref>
<ref id="R23">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Angelaki</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>DeAngelis</surname>
<given-names>GC</given-names>
</name>
</person-group>
<article-title>Multisensory integration: psychophysics, neurophysiology, and computation</article-title>
<source>Curr Opin Neurobiol</source>
<year>2009</year>
<volume>19</volume>
<fpage>452</fpage>
<lpage>458</lpage>
<pub-id pub-id-type="pmid">19616425</pub-id>
</element-citation>
</ref>
<ref id="R24">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pouget</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Deneve</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Duhamel</surname>
<given-names>JR</given-names>
</name>
</person-group>
<article-title>A computational perspective on the neural basis of multisensory spatial representations</article-title>
<source>Nature reviews. Neuroscience</source>
<year>2002</year>
<volume>3</volume>
<fpage>741</fpage>
<lpage>747</lpage>
<pub-id pub-id-type="pmid">12209122</pub-id>
</element-citation>
</ref>
<ref id="R25">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gu</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Perceptual learning reduces interneuronal correlations in macaque visual cortex</article-title>
<source>Neuron</source>
<year>2011</year>
<volume>71</volume>
<fpage>750</fpage>
<lpage>761</lpage>
<pub-id pub-id-type="pmid">21867889</pub-id>
</element-citation>
</ref>
<ref id="R26">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dombeck</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Khabbaz</surname>
<given-names>AN</given-names>
</name>
<name>
<surname>Collman</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Adelman</surname>
<given-names>TL</given-names>
</name>
<name>
<surname>Tank</surname>
<given-names>DW</given-names>
</name>
</person-group>
<article-title>Imaging large-scale neural activity with cellular resolution in awake, mobile mice</article-title>
<source>Neuron</source>
<year>2007</year>
<volume>56</volume>
<fpage>43</fpage>
<lpage>57</lpage>
<pub-id pub-id-type="pmid">17920014</pub-id>
</element-citation>
</ref>
<ref id="R27">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Harvey</surname>
<given-names>CD</given-names>
</name>
<name>
<surname>Collman</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Dombeck</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Tank</surname>
<given-names>DW</given-names>
</name>
</person-group>
<article-title>Intracellular dynamics of hippocampal place cells during virtual navigation</article-title>
<source>Nature</source>
<year>2009</year>
<volume>461</volume>
<fpage>941</fpage>
<lpage>946</lpage>
<pub-id pub-id-type="pmid">19829374</pub-id>
</element-citation>
</ref>
<ref id="R28">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Harris</surname>
<given-names>KD</given-names>
</name>
<name>
<surname>Henze</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Csicsvari</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hirase</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Buzsaki</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements</article-title>
<source>J Neurophysiol</source>
<year>2000</year>
<volume>84</volume>
<fpage>401</fpage>
<lpage>414</lpage>
<pub-id pub-id-type="pmid">10899214</pub-id>
</element-citation>
</ref>
<ref id="R29">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Harris</surname>
<given-names>KD</given-names>
</name>
<name>
<surname>Csicsvari</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hirase</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Dragoi</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Buzsaki</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Organization of cell assemblies in the hippocampus</article-title>
<source>Nature</source>
<year>2003</year>
<volume>424</volume>
<fpage>552</fpage>
<lpage>556</lpage>
<pub-id pub-id-type="pmid">12891358</pub-id>
</element-citation>
</ref>
<ref id="R30">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Itskov</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Curto</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>KD</given-names>
</name>
</person-group>
<article-title>Valuations for spike train prediction</article-title>
<source>Neural Comput</source>
<year>2008</year>
<volume>20</volume>
<fpage>644</fpage>
<lpage>667</lpage>
<pub-id pub-id-type="pmid">18045025</pub-id>
</element-citation>
</ref>
<ref id="R31">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Harris</surname>
<given-names>KD</given-names>
</name>
<name>
<surname>Thiele</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Cortical state and attention</article-title>
<source>Nature reviews. Neuroscience</source>
<year>2011</year>
<volume>12</volume>
<fpage>509</fpage>
<lpage>523</lpage>
<pub-id pub-id-type="pmid">21829219</pub-id>
</element-citation>
</ref>
<ref id="R32">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rao</surname>
<given-names>RP</given-names>
</name>
<name>
<surname>Ballard</surname>
<given-names>DH</given-names>
</name>
</person-group>
<article-title>Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects</article-title>
<source>Nat Neurosci</source>
<year>1999</year>
<volume>2</volume>
<fpage>79</fpage>
<lpage>87</lpage>
<pub-id pub-id-type="pmid">10195184</pub-id>
</element-citation>
</ref>
<ref id="R33">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bastos</surname>
<given-names>AM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Canonical microcircuits for predictive coding</article-title>
<source>Neuron</source>
<year>2012</year>
<volume>76</volume>
<fpage>695</fpage>
<lpage>711</lpage>
<pub-id pub-id-type="pmid">23177956</pub-id>
</element-citation>
</ref>
<ref id="R34">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>NL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Nonlinear dendritic integration of sensory and motor input during an active sensing task</article-title>
<source>Nature</source>
<year>2012</year>
<volume>492</volume>
<fpage>247</fpage>
<lpage>251</lpage>
<pub-id pub-id-type="pmid">23143335</pub-id>
</element-citation>
</ref>
<ref id="R35">
<label>35</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Murayama</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Larkum</surname>
<given-names>ME</given-names>
</name>
</person-group>
<article-title>Enhanced dendritic activity in awake rats</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2009</year>
<volume>106</volume>
<fpage>20482</fpage>
<lpage>20486</lpage>
<pub-id pub-id-type="pmid">19918085</pub-id>
</element-citation>
</ref>
<ref id="R36">
<label>36</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Polack</surname>
<given-names>PO</given-names>
</name>
<name>
<surname>Friedman</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Golshani</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Cellular mechanisms of brain state-dependent gain modulation in visual cortex</article-title>
<source>Nat Neurosci</source>
<year>2013</year>
</element-citation>
</ref>
<ref id="R37">
<label>37</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ahrens</surname>
<given-names>MB</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Brain-wide neuronal dynamics during motor adaptation in zebrafish</article-title>
<source>Nature</source>
<year>2012</year>
<volume>485</volume>
<fpage>471</fpage>
<lpage>477</lpage>
<pub-id pub-id-type="pmid">22622571</pub-id>
</element-citation>
</ref>
<ref id="R38">
<label>38</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Deneve</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Pouget</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Bayesian multisensory integration and cross-modal spatial links</article-title>
<source>Journal of physiology, Paris</source>
<year>2004</year>
<volume>98</volume>
<fpage>249</fpage>
<lpage>258</lpage>
</element-citation>
</ref>
<ref id="R39">
<label>39</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Harvey</surname>
<given-names>CD</given-names>
</name>
<name>
<surname>Coen</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Tank</surname>
<given-names>DW</given-names>
</name>
</person-group>
<article-title>Choice-specific sequences in parietal cortex during a virtual-navigation decision task</article-title>
<source>Nature</source>
<year>2012</year>
<volume>484</volume>
<fpage>62</fpage>
<lpage>68</lpage>
<pub-id pub-id-type="pmid">22419153</pub-id>
</element-citation>
</ref>
<ref id="R40">
<label>40</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Domnisoru</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Kinkhabwala</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Tank</surname>
<given-names>DW</given-names>
</name>
</person-group>
<article-title>Membrane potential dynamics of grid cells</article-title>
<source>Nature</source>
<year>2013</year>
<volume>495</volume>
<fpage>199</fpage>
<lpage>204</lpage>
<pub-id pub-id-type="pmid">23395984</pub-id>
</element-citation>
</ref>
<ref id="R41">
<label>41</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schmidt-Hieber</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Hausser</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Cellular mechanisms of spatial navigation in the medial entorhinal cortex</article-title>
<source>Nat Neurosci</source>
<year>2013</year>
<volume>16</volume>
<fpage>325</fpage>
<lpage>331</lpage>
<comment>doi:10.1038/nn.3340</comment>
<pub-id pub-id-type="pmid">23396102</pub-id>
</element-citation>
</ref>
<ref id="R42">
<label>42</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Szuts</surname>
<given-names>TA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A wireless multi-channel neural amplifier for freely moving animals</article-title>
<source>Nat Neurosci</source>
<year>2011</year>
<volume>14</volume>
<fpage>263</fpage>
<lpage>269</lpage>
<pub-id pub-id-type="pmid">21240274</pub-id>
</element-citation>
</ref>
<ref id="R43">
<label>43</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wallace</surname>
<given-names>DJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Rats maintain an overhead binocular field at the expense of constant fusion</article-title>
<source>Nature</source>
<year>2013</year>
<volume>498</volume>
<fpage>65</fpage>
<lpage>69</lpage>
<pub-id pub-id-type="pmid">23708965</pub-id>
</element-citation>
</ref>
<ref id="R44">
<label>44</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bizley</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Nodal</surname>
<given-names>FR</given-names>
</name>
<name>
<surname>Bajo</surname>
<given-names>VM</given-names>
</name>
<name>
<surname>Nelken</surname>
<given-names>I</given-names>
</name>
<name>
<surname>King</surname>
<given-names>AJ</given-names>
</name>
</person-group>
<article-title>Physiological and anatomical evidence for multisensory interactions in auditory cortex</article-title>
<source>Cereb Cortex</source>
<year>2007</year>
<volume>17</volume>
<fpage>2172</fpage>
<lpage>2189</lpage>
<pub-id pub-id-type="pmid">17135481</pub-id>
</element-citation>
</ref>
<ref id="R45">
<label>45</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Crochet</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Petersen</surname>
<given-names>CC</given-names>
</name>
</person-group>
<article-title>Correlating whisker behavior with membrane potential in barrel cortex of awake mice</article-title>
<source>Nat Neurosci</source>
<year>2006</year>
<volume>9</volume>
<fpage>608</fpage>
<lpage>610</lpage>
<pub-id pub-id-type="pmid">16617340</pub-id>
</element-citation>
</ref>
</ref-list>
<ref-list>
<title>Online Methods References</title>
<ref id="R46">
<label>46</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Harris</surname>
<given-names>KD</given-names>
</name>
<name>
<surname>Henze</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Csicsvari</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hirase</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Buzsaki</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements</article-title>
<source>J Neurophysiol</source>
<year>2000</year>
<volume>84</volume>
<fpage>401</fpage>
<lpage>414</lpage>
<pub-id pub-id-type="pmid">10899214</pub-id>
</element-citation>
</ref>
<ref id="R47">
<label>47</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hazan</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Zugaro</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Buzsaki</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Klusters, NeuroScope, NDManager: a free software suite for neurophysiological data processing and visualization</article-title>
<source>Journal of neuroscience methods</source>
<year>2006</year>
<volume>155</volume>
<fpage>207</fpage>
<lpage>216</lpage>
<pub-id pub-id-type="pmid">16580733</pub-id>
</element-citation>
</ref>
<ref id="R48">
<label>48</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schmitzer-Torbert</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Jackson</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Henze</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Redish</surname>
<given-names>AD</given-names>
</name>
</person-group>
<article-title>Quantitative measures of cluster quality for use in extracellular recordings</article-title>
<source>Neuroscience</source>
<year>2005</year>
<volume>131</volume>
<fpage>1</fpage>
<lpage>11</lpage>
<pub-id pub-id-type="pmid">15680687</pub-id>
</element-citation>
</ref>
<ref id="R49">
<label>49</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dombeck</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Khabbaz</surname>
<given-names>AN</given-names>
</name>
<name>
<surname>Collman</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Adelman</surname>
<given-names>TL</given-names>
</name>
<name>
<surname>Tank</surname>
<given-names>DW</given-names>
</name>
</person-group>
<article-title>Imaging large-scale neural activity with cellular resolution in awake, mobile mice</article-title>
<source>Neuron</source>
<year>2007</year>
<volume>56</volume>
<fpage>43</fpage>
<lpage>57</lpage>
<pub-id pub-id-type="pmid">17920014</pub-id>
</element-citation>
</ref>
<ref id="R50">
<label>50</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brainard</surname>
<given-names>DH</given-names>
</name>
</person-group>
<article-title>The psychophysics toolbox</article-title>
<source>Spatial Vision</source>
<year>1997</year>
<volume>10</volume>
<fpage>433</fpage>
<lpage>436</lpage>
<pub-id pub-id-type="pmid">9176952</pub-id>
</element-citation>
</ref>
<ref id="R51">
<label>51</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pelli</surname>
<given-names>DG</given-names>
</name>
</person-group>
<article-title>The VideoToolbox software for visual psychophysics: Transforming numbers into movies</article-title>
<source>Spatial vision</source>
<year>1997</year>
<volume>10</volume>
<fpage>437</fpage>
<lpage>442</lpage>
<pub-id pub-id-type="pmid">9176953</pub-id>
</element-citation>
</ref>
<ref id="R52">
<label>52</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Harris</surname>
<given-names>KD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Spike train dynamics predicts theta-related phase precession in hippocampal pyramidal cells</article-title>
<source>Nature</source>
<year>2002</year>
<volume>417</volume>
<fpage>738</fpage>
<lpage>741</lpage>
<pub-id pub-id-type="pmid">12066184</pub-id>
</element-citation>
</ref>
<ref id="R53">
<label>53</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Harris</surname>
<given-names>KD</given-names>
</name>
<name>
<surname>Csicsvari</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hirase</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Dragoi</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Buzsaki</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Organization of cell assemblies in the hippocampus</article-title>
<source>Nature</source>
<year>2003</year>
<volume>424</volume>
<fpage>552</fpage>
<lpage>556</lpage>
<pub-id pub-id-type="pmid">12891358</pub-id>
</element-citation>
</ref>
<ref id="R54">
<label>54</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Loader</surname>
<given-names>C</given-names>
</name>
</person-group>
<source>Local regression and likelihood</source>
<year>1999</year>
<publisher-name>Springer</publisher-name>
<publisher-loc>New York</publisher-loc>
</element-citation>
</ref>
<ref id="R55">
<label>55</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Freeman</surname>
<given-names>TC</given-names>
</name>
<name>
<surname>Durand</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kiper</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Carandini</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Suppression without inhibition in visual cortex</article-title>
<source>Neuron</source>
<year>2002</year>
<volume>35</volume>
<fpage>759</fpage>
<lpage>771</lpage>
<pub-id pub-id-type="pmid">12194874</pub-id>
</element-citation>
</ref>
<ref id="R56">
<label>56</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Webb</surname>
<given-names>BS</given-names>
</name>
<name>
<surname>Dhruv</surname>
<given-names>NT</given-names>
</name>
<name>
<surname>Solomon</surname>
<given-names>SG</given-names>
</name>
<name>
<surname>Tailby</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Lennie</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Early and late mechanisms of surround suppression in striate cortex of macaque</article-title>
<source>J Neurosci</source>
<year>2005</year>
<volume>25</volume>
<fpage>11666</fpage>
<lpage>11675</lpage>
<pub-id pub-id-type="pmid">16354925</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="F1" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<title>Neuronal responses in V1 are strongly influenced by speed</title>
<p>
<bold>a.</bold>
Examples of visual scenes seen by the animal during virtual navigation.
<bold>b.</bold>
The virtual environment was a corridor with four landmarks (three gratings and one plaid). Movement in the environment was restricted to the forward direction.
<italic>Dots</italic>
indicate the positions of the example scenes in
<bold>a</bold>
.
<bold>c.</bold>
The paths taken by an animal in 15 runs through the corridor.
<bold>d.</bold>
The same paths expressed in terms of speed at each position.
<italic>Red dots</italic>
: spikes generated by a V1 neuron.
<bold>e-f.</bold>
The firing rate of two neurons as a function of animal position and speed.
<italic>Right</italic>
: Dependence of firing rate on position alone.
<italic>Top</italic>
: Dependence of firing rate on speed alone; the leftmost point corresponds to all speeds ≤ 1 cm/s.
<italic>Error bars</italic>
are the standard deviation over different training sets.
<bold>g.</bold>
The relative power using position alone (Q
<sub>P</sub>
/Q
<sub>PS</sub>
) and speed alone (Q
<sub>S</sub>
/Q
<sub>PS</sub>
) to predict firing rate. The dotted line denotes Q
<sub>P</sub>
+ Q
<sub>S</sub>
= Q
<sub>PS</sub>
.
<italic>Red dots</italic>
indicate neurons in
<bold>e</bold>
and
<bold>f</bold>
. Solid dots indicate well isolated single units. Example neurons shown here and in all figures are all well-isolated units.</p>
</caption>
<graphic xlink:href="emss-56482-f0001"></graphic>
</fig>
<fig id="F2" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<title>Tuning of V1 neurons for run speed in the dark</title>
<p>
<bold>a-c.</bold>
Dependence of firing rate on run speed for three V1 neurons measured in the dark.
<italic>Error bars</italic>
indicate 2 s.e. The sampling bins were spaced to have equal numbers of data points;
<italic>curves</italic>
are fits of a descriptive function (see Methods).
<italic>Arrows</italic>
indicate the speed at the maximal response, and
<italic>open circles</italic>
the firing rates when the animal was stationary.
<bold>d.</bold>
The preferred run speed (peak of the best fit curve) for the neurons that show a significant non-binary modulation of firing rate as a function of run speed (n = 27 well-isolated neurons). Neurons where the preferred speed was <2 cm/s are considered low-pass (
<italic>Low</italic>
; example in
<bold>c</bold>
); neurons where the preferred speed was >25 cm/s are considered high-pass (
<italic>High</italic>
; example in
<bold>a</bold>
), while the remainder are considered bandpass (example in
<bold>b</bold>
).</p>
</caption>
<graphic xlink:href="emss-56482-f0002"></graphic>
</fig>
<fig id="F3" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<title>V1 Neurons are tuned for a weighted sum of run speed and virtual speed</title>
<p>
<bold>a.</bold>
Some paths in virtual speed and run speed taken by an animal in the open-loop condition.
<bold>b-d.</bold>
“Speed maps” showing firing rate of three example neurons as a function of virtual speed and run speed.
<italic>Right</italic>
: Dependence of firing rate on run speed alone.
<italic>Top</italic>
: Dependence of firing rate on virtual speed alone.
<bold>e.</bold>
In the weighted sum model, firing rate is a nonlinear function
<italic>f</italic>
of a weighted sum of virtual speed
<italic>V</italic>
and run speed
<italic>R</italic>
. The weights α and β are summarized by a single interaction angle θ = tan
<sup>−1</sup>
(α/β).
<bold>f-h.</bold>
The model captures the main features of the full speed maps (
<italic>left</italic>
; compare to
<bold>b-d</bold>
).
<italic>Right</italic>
: the model’s predictive power as a function of θ. The optimal interaction angle θ
<sub>max</sub>
is highlighted in red and indicated as a vector in the left panel. The dashed line represents the predictive power of the original speed map.
<bold>i.</bold>
Comparison of predictive power using the weighted sum model (Q
<sub>model</sub>
) at the optimal interaction angle (θ
<sub>max</sub>
), to that using the speed map (Q
<sub>RV</sub>
).
<italic>Dotted line</italic>
indicates equal performance.
<italic>Blue points</italic>
mark the examples in
<bold>f</bold>
-
<bold>h</bold>
. Solid dots indicate well-isolated units.
<bold>j.</bold>
Distribution of optimal interaction angles θ
<sub>max</sub>
across neurons. The
<italic>black bars</italic>
indicate the distribution for well-isolated units.</p>
</caption>
<graphic xlink:href="emss-56482-f0003"></graphic>
</fig>
<fig id="F4" orientation="portrait" position="float">
<label>Figure 4</label>
<caption>
<title>V1 population activity encodes positive combinations of virtual and run speed</title>
<p>
<bold>a.</bold>
The activity of 24 V1 neurons during an epoch of open-loop navigation, represented as a grayscale map. The firing rate of each neuron was normalized for illustration purposes.
<bold>b.</bold>
Population activity was used to predict linear combinations of run speed and virtual speed using a linear decoder that was trained and evaluated on separate parts of the dataset. The
<italic>black curve</italic>
shows a weighted average of virtual speed and run speed (interaction angle θ ~ π/3), and the red curve its prediction from population activity, for the same epoch as in
<bold>a</bold>
.
<bold>c.</bold>
Performance of the population decoder as a function of interaction angle (θ), for a single experimental session.
<italic>Error bars</italic>
are s.e. across 5 runs of cross-validation. The dotted line indicates the mean performance across all interaction angles. The highlighted point indicates the example shown in
<bold>b</bold>
. The gray curve shown the performance when the decoding is restricted to periods when both virtual speed and run speed were > 3 cm/s.
<bold>d.</bold>
Decoding performance as a function of θ across recording sessions.
<italic>Error bars</italic>
are s.e. across sessions.</p>
</caption>
<graphic xlink:href="emss-56482-f0004"></graphic>
</fig>
</floats-group>
</pmc>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
<region>
<li>Angleterre</li>
<li>Grand Londres</li>
</region>
<settlement>
<li>Londres</li>
</settlement>
</list>
<tree>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Saleem, Aman B" sort="Saleem, Aman B" uniqKey="Saleem A" first="Aman B" last="Saleem">Aman B. Saleem</name>
</region>
<name sortKey="Ayaz, Asli" sort="Ayaz, Asli" uniqKey="Ayaz A" first="Asli" last="Ayaz">Asli Ayaz</name>
<name sortKey="Carandini, Matteo" sort="Carandini, Matteo" uniqKey="Carandini M" first="Matteo" last="Carandini">Matteo Carandini</name>
<name sortKey="Harris, Kenneth D" sort="Harris, Kenneth D" uniqKey="Harris K" first="Kenneth D" last="Harris">Kenneth D. Harris</name>
<name sortKey="Harris, Kenneth D" sort="Harris, Kenneth D" uniqKey="Harris K" first="Kenneth D" last="Harris">Kenneth D. Harris</name>
<name sortKey="Harris, Kenneth D" sort="Harris, Kenneth D" uniqKey="Harris K" first="Kenneth D" last="Harris">Kenneth D. Harris</name>
<name sortKey="Jeffery, Kate" sort="Jeffery, Kate" uniqKey="Jeffery K" first="Kate" last="Jeffery">Kate Jeffery</name>
<name sortKey="Saleem, Aman B" sort="Saleem, Aman B" uniqKey="Saleem A" first="Aman B" last="Saleem">Aman B. Saleem</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Pmc/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001186 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd -nk 001186 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Pmc
   |étape=   Checkpoint
   |type=    RBID
   |clé=     PMC:3926520
   |texte=   Integration of visual motion and locomotion in mouse visual cortex
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/RBID.i   -Sk "pubmed:24185423" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024