Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Humans can integrate feedback of discrete events in their sensorimotor control of a robotic hand

Identifieur interne : 000B91 ( Pmc/Checkpoint ); précédent : 000B90; suivant : 000B92

Humans can integrate feedback of discrete events in their sensorimotor control of a robotic hand

Auteurs : Christian Cipriani ; Jacob L. Segil ; Francesco Clemente ; Richard F. Ff Weir ; Benoni Edin

Source :

RBID : PMC:4666528

Abstract

Providing functionally effective sensory feedback to users of prosthetics is a largely unsolved challenge. Traditional solutions require high band-widths for providing feedback for the control of manipulation and yet have been largely unsuccessful. In this study, we have explored a strategy that relies on temporally discrete sensory feedback that is technically simple to provide. According to the Discrete Event-driven Sensory feedback Control (DESC) policy, motor tasks in humans are organized in phases delimited by means of sensory encoded discrete mechanical events. To explore the applicability of DESC for control, we designed a paradigm in which healthy humans operated an artificial robot hand to lift and replace an instrumented object, a task that can readily be learned and mastered under visual control. Assuming that the central nervous system of humans naturally organizes motor tasks based on a strategy akin to DESC, we delivered short-lasting vibrotactile feedback related to events that are known to forcefully affect progression of the grasp-lift-and-hold task. After training, we determined whether the artificial feedback had been integrated with the sensorimotor control by introducing short delays and we indeed observed that the participants significantly delayed subsequent phases of the task. This study thus gives support to the DESC policy hypothesis. Moreover, it demonstrates that humans can integrate temporally discrete sensory feedback while controlling an artificial hand and invites further studies in which inexpensive, noninvasive technology could be used in clever ways to provide physiologically appropriate sensory feedback in upper limb prosthetics with much lower band-width requirements than with traditional solutions.


Url:
DOI: 10.1007/s00221-014-4024-8
PubMed: 24992899
PubMed Central: 4666528


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:4666528

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Humans can integrate feedback of discrete events in their sensorimotor control of a robotic hand</title>
<author>
<name sortKey="Cipriani, Christian" sort="Cipriani, Christian" uniqKey="Cipriani C" first="Christian" last="Cipriani">Christian Cipriani</name>
</author>
<author>
<name sortKey="Segil, Jacob L" sort="Segil, Jacob L" uniqKey="Segil J" first="Jacob L." last="Segil">Jacob L. Segil</name>
</author>
<author>
<name sortKey="Clemente, Francesco" sort="Clemente, Francesco" uniqKey="Clemente F" first="Francesco" last="Clemente">Francesco Clemente</name>
</author>
<author>
<name sortKey="Weir, Richard F Ff" sort="Weir, Richard F Ff" uniqKey="Weir R" first="Richard F. Ff" last="Weir">Richard F. Ff Weir</name>
</author>
<author>
<name sortKey="Edin, Benoni" sort="Edin, Benoni" uniqKey="Edin B" first="Benoni" last="Edin">Benoni Edin</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24992899</idno>
<idno type="pmc">4666528</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4666528</idno>
<idno type="RBID">PMC:4666528</idno>
<idno type="doi">10.1007/s00221-014-4024-8</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">001616</idno>
<idno type="wicri:Area/Pmc/Curation">001616</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000B91</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Humans can integrate feedback of discrete events in their sensorimotor control of a robotic hand</title>
<author>
<name sortKey="Cipriani, Christian" sort="Cipriani, Christian" uniqKey="Cipriani C" first="Christian" last="Cipriani">Christian Cipriani</name>
</author>
<author>
<name sortKey="Segil, Jacob L" sort="Segil, Jacob L" uniqKey="Segil J" first="Jacob L." last="Segil">Jacob L. Segil</name>
</author>
<author>
<name sortKey="Clemente, Francesco" sort="Clemente, Francesco" uniqKey="Clemente F" first="Francesco" last="Clemente">Francesco Clemente</name>
</author>
<author>
<name sortKey="Weir, Richard F Ff" sort="Weir, Richard F Ff" uniqKey="Weir R" first="Richard F. Ff" last="Weir">Richard F. Ff Weir</name>
</author>
<author>
<name sortKey="Edin, Benoni" sort="Edin, Benoni" uniqKey="Edin B" first="Benoni" last="Edin">Benoni Edin</name>
</author>
</analytic>
<series>
<title level="j">Experimental brain research</title>
<idno type="ISSN">0014-4819</idno>
<idno type="eISSN">1432-1106</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="P1">Providing functionally effective sensory feedback to users of prosthetics is a largely unsolved challenge. Traditional solutions require high band-widths for providing feedback for the control of manipulation and yet have been largely unsuccessful. In this study, we have explored a strategy that relies on temporally discrete sensory feedback that is technically simple to provide. According to the
<italic>Discrete Event</italic>
-
<italic>driven Sensory feedback Control</italic>
(DESC) policy, motor tasks in humans are organized in phases delimited by means of sensory encoded discrete mechanical events. To explore the applicability of DESC for control, we designed a paradigm in which healthy humans operated an artificial robot hand to lift and replace an instrumented object, a task that can readily be learned and mastered under visual control. Assuming that the central nervous system of humans naturally organizes motor tasks based on a strategy akin to DESC, we delivered short-lasting vibrotactile feedback related to events that are known to forcefully affect progression of the grasp-lift-and-hold task. After training, we determined whether the artificial feedback had been integrated with the sensorimotor control by introducing short delays and we indeed observed that the participants significantly delayed subsequent phases of the task. This study thus gives support to the DESC policy hypothesis. Moreover, it demonstrates that humans can integrate temporally discrete sensory feedback while controlling an artificial hand and invites further studies in which inexpensive, noninvasive technology could be used in clever ways to provide physiologically appropriate sensory feedback in upper limb prosthetics with much lower band-width requirements than with traditional solutions.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<pmc-dir>properties manuscript</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-journal-id">0043312</journal-id>
<journal-id journal-id-type="pubmed-jr-id">3641</journal-id>
<journal-id journal-id-type="nlm-ta">Exp Brain Res</journal-id>
<journal-id journal-id-type="iso-abbrev">Exp Brain Res</journal-id>
<journal-title-group>
<journal-title>Experimental brain research</journal-title>
</journal-title-group>
<issn pub-type="ppub">0014-4819</issn>
<issn pub-type="epub">1432-1106</issn>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24992899</article-id>
<article-id pub-id-type="pmc">4666528</article-id>
<article-id pub-id-type="doi">10.1007/s00221-014-4024-8</article-id>
<article-id pub-id-type="manuscript">VAPA739538</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Humans can integrate feedback of discrete events in their sensorimotor control of a robotic hand</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Cipriani</surname>
<given-names>Christian</given-names>
</name>
<aff id="A1">The BioRobotics Institute, Scuola Superiore Sant’Anna, V.le Piaggio 34, 56025 Pontedera (PI), Italy</aff>
<email>ch.cipriani@sssup.it</email>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Segil</surname>
<given-names>Jacob L.</given-names>
</name>
<aff id="A2">Department of Mechanical Engineering, University of Colorado at Boulder, 427 UCB, Boulder, CO 80309-0427, USA</aff>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Clemente</surname>
<given-names>Francesco</given-names>
</name>
<aff id="A3">The BioRobotics Institute, Scuola Superiore Sant’Anna, V.le Piaggio 34, 56025 Pontedera (PI), Italy</aff>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Weir</surname>
<given-names>Richard F. ff</given-names>
</name>
<aff id="A4">Department of Bioengineering College of Engineering and Applied Science, University of Colorado Denver, Anschutz Medical Campus 12700 E 19th Avenue, Aurora, CO 80045-2560, USA</aff>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Edin</surname>
<given-names>Benoni</given-names>
</name>
<aff id="A5">Department of Integrative Medical Biology, Physiology Section, Umeå University, 901 87 Umeå, Sweden</aff>
</contrib>
</contrib-group>
<author-notes>
<fn id="FN1" fn-type="equal">
<p>Jacob L. Segil and Francesco Clemente have contributed equally to this work.</p>
</fn>
</author-notes>
<pub-date pub-type="nihms-submitted">
<day>21</day>
<month>11</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="epub">
<day>04</day>
<month>7</month>
<year>2014</year>
</pub-date>
<pub-date pub-type="ppub">
<month>11</month>
<year>2014</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>01</day>
<month>12</month>
<year>2015</year>
</pub-date>
<volume>232</volume>
<issue>11</issue>
<fpage>3421</fpage>
<lpage>3429</lpage>
<pmc-comment>elocation-id from pubmed: 10.1007/s00221-014-4024-8</pmc-comment>
<abstract>
<p id="P1">Providing functionally effective sensory feedback to users of prosthetics is a largely unsolved challenge. Traditional solutions require high band-widths for providing feedback for the control of manipulation and yet have been largely unsuccessful. In this study, we have explored a strategy that relies on temporally discrete sensory feedback that is technically simple to provide. According to the
<italic>Discrete Event</italic>
-
<italic>driven Sensory feedback Control</italic>
(DESC) policy, motor tasks in humans are organized in phases delimited by means of sensory encoded discrete mechanical events. To explore the applicability of DESC for control, we designed a paradigm in which healthy humans operated an artificial robot hand to lift and replace an instrumented object, a task that can readily be learned and mastered under visual control. Assuming that the central nervous system of humans naturally organizes motor tasks based on a strategy akin to DESC, we delivered short-lasting vibrotactile feedback related to events that are known to forcefully affect progression of the grasp-lift-and-hold task. After training, we determined whether the artificial feedback had been integrated with the sensorimotor control by introducing short delays and we indeed observed that the participants significantly delayed subsequent phases of the task. This study thus gives support to the DESC policy hypothesis. Moreover, it demonstrates that humans can integrate temporally discrete sensory feedback while controlling an artificial hand and invites further studies in which inexpensive, noninvasive technology could be used in clever ways to provide physiologically appropriate sensory feedback in upper limb prosthetics with much lower band-width requirements than with traditional solutions.</p>
</abstract>
<kwd-group>
<kwd>Sensorimotor control</kwd>
<kwd>Human</kwd>
<kwd>Hand</kwd>
<kwd>Tactile afferents</kwd>
<kwd>Sensory substitution</kwd>
<kwd>Sensory feedback</kwd>
</kwd-group>
</article-meta>
</front>
</pmc>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Cipriani, Christian" sort="Cipriani, Christian" uniqKey="Cipriani C" first="Christian" last="Cipriani">Christian Cipriani</name>
<name sortKey="Clemente, Francesco" sort="Clemente, Francesco" uniqKey="Clemente F" first="Francesco" last="Clemente">Francesco Clemente</name>
<name sortKey="Edin, Benoni" sort="Edin, Benoni" uniqKey="Edin B" first="Benoni" last="Edin">Benoni Edin</name>
<name sortKey="Segil, Jacob L" sort="Segil, Jacob L" uniqKey="Segil J" first="Jacob L." last="Segil">Jacob L. Segil</name>
<name sortKey="Weir, Richard F Ff" sort="Weir, Richard F Ff" uniqKey="Weir R" first="Richard F. Ff" last="Weir">Richard F. Ff Weir</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Pmc/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B91 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd -nk 000B91 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Pmc
   |étape=   Checkpoint
   |type=    RBID
   |clé=     PMC:4666528
   |texte=   Humans can integrate feedback of discrete events in their sensorimotor control of a robotic hand
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/RBID.i   -Sk "pubmed:24992899" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024