Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mechanical Stress Downregulates MHC Class I Expression on Human Cancer Cell Membrane

Identifieur interne : 000B26 ( Pmc/Checkpoint ); précédent : 000B25; suivant : 000B27

Mechanical Stress Downregulates MHC Class I Expression on Human Cancer Cell Membrane

Auteurs : Rosanna La Rocca [Italie] ; Rossana Tallerico [Italie] ; Almosawy Talib Hassan [Italie, Iraq] ; Gobind Das [Italie] ; Lakshmikanth Tadepally [Suède] ; Marco Matteucci [Danemark] ; Carlo Liberale [Italie] ; Maria Mesuraca [Italie] ; Domenica Scumaci [Italie] ; Francesco Gentile [Italie] ; Gheorghe Cojoc [Italie] ; Gerardo Perozziello [Italie] ; Antonio Ammendolia [Italie] ; Adriana Gallo [Italie] ; Klas K Rre [Suède] ; Giovanni Cuda [Italie] ; Patrizio Candeloro [Italie] ; Enzo Di Fabrizio [Italie] ; Ennio Carbone [Italie, Suède]

Source :

RBID : PMC:4277281

Abstract

In our body, cells are continuously exposed to physical forces that can regulate different cell functions such as cell proliferation, differentiation and death. In this work, we employed two different strategies to mechanically stress cancer cells. The cancer and healthy cell populations were treated either with mechanical stress delivered by a micropump (fabricated by deep X-ray nanolithography) or by ultrasound wave stimuli. A specific down-regulation of Major Histocompatibility Complex (MHC) class I molecules expression on cancer cell membrane compared to different kinds of healthy cells (fibroblasts, macrophages, dendritic and lymphocyte cells) was observed, stimulating the cells with forces in the range of nano-newton, and pressures between 1 and 10 bar (1 bar = 100.000 Pascal), depending on the devices used. Moreover, Raman spectroscopy analysis, after mechanical treatment, in the range between 700–1800 cm−1, indicated a relative concentration variation of MHC class I. PCA analysis was also performed to distinguish control and stressed cells within different cell lines. These mechanical induced phenotypic changes increase the tumor immunogenicity, as revealed by the related increased susceptibility to Natural Killer (NK) cells cytotoxic recognition.


Url:
DOI: 10.1371/journal.pone.0111758
PubMed: 25541692
PubMed Central: 4277281


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:4277281

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mechanical Stress Downregulates MHC Class I Expression on Human Cancer Cell Membrane</title>
<author>
<name sortKey="La Rocca, Rosanna" sort="La Rocca, Rosanna" uniqKey="La Rocca R" first="Rosanna" last="La Rocca">Rosanna La Rocca</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<addr-line>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro, Italy</addr-line>
</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro</wicri:regionArea>
<wicri:noRegion>Catanzaro</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff2">
<addr-line>Italian Institute of Technology (IIT), Genova, Italy</addr-line>
</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Italian Institute of Technology (IIT), Genova</wicri:regionArea>
<wicri:noRegion>Genova</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tallerico, Rossana" sort="Tallerico, Rossana" uniqKey="Tallerico R" first="Rossana" last="Tallerico">Rossana Tallerico</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<addr-line>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro, Italy</addr-line>
</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro</wicri:regionArea>
<wicri:noRegion>Catanzaro</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Talib Hassan, Almosawy" sort="Talib Hassan, Almosawy" uniqKey="Talib Hassan A" first="Almosawy" last="Talib Hassan">Almosawy Talib Hassan</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<addr-line>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro, Italy</addr-line>
</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro</wicri:regionArea>
<wicri:noRegion>Catanzaro</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff3">
<addr-line>Department of Microbiology, College of Medicine, University of Thi-Qar, Nasseriah, Iraq</addr-line>
</nlm:aff>
<country xml:lang="fr">Iraq</country>
<wicri:regionArea>Department of Microbiology, College of Medicine, University of Thi-Qar, Nasseriah</wicri:regionArea>
<wicri:noRegion>Nasseriah</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Das, Gobind" sort="Das, Gobind" uniqKey="Das G" first="Gobind" last="Das">Gobind Das</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<addr-line>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro, Italy</addr-line>
</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro</wicri:regionArea>
<wicri:noRegion>Catanzaro</wicri:noRegion>
</affiliation>
<affiliation>
<nlm:aff id="aff4">
<addr-line>King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia</addr-line>
</nlm:aff>
<wicri:noCountry code="subfield">Kingdom of Saudi Arabia</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Tadepally, Lakshmikanth" sort="Tadepally, Lakshmikanth" uniqKey="Tadepally L" first="Lakshmikanth" last="Tadepally">Lakshmikanth Tadepally</name>
<affiliation wicri:level="3">
<nlm:aff id="aff5">
<addr-line>Science for Life Laboratory, Department of Medicine, Karolinska Institute, Stockholm, Sweden</addr-line>
</nlm:aff>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Science for Life Laboratory, Department of Medicine, Karolinska Institute, Stockholm</wicri:regionArea>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="2">Svealand</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Matteucci, Marco" sort="Matteucci, Marco" uniqKey="Matteucci M" first="Marco" last="Matteucci">Marco Matteucci</name>
<affiliation wicri:level="1">
<nlm:aff id="aff6">
<addr-line>Nanotech Department of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby, Denmark</addr-line>
</nlm:aff>
<country xml:lang="fr">Danemark</country>
<wicri:regionArea>Nanotech Department of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby</wicri:regionArea>
<wicri:noRegion>Kongens Lyngby</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liberale, Carlo" sort="Liberale, Carlo" uniqKey="Liberale C" first="Carlo" last="Liberale">Carlo Liberale</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<addr-line>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro, Italy</addr-line>
</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro</wicri:regionArea>
<wicri:noRegion>Catanzaro</wicri:noRegion>
</affiliation>
<affiliation>
<nlm:aff id="aff4">
<addr-line>King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia</addr-line>
</nlm:aff>
<wicri:noCountry code="subfield">Kingdom of Saudi Arabia</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Mesuraca, Maria" sort="Mesuraca, Maria" uniqKey="Mesuraca M" first="Maria" last="Mesuraca">Maria Mesuraca</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<addr-line>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro, Italy</addr-line>
</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro</wicri:regionArea>
<wicri:noRegion>Catanzaro</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Scumaci, Domenica" sort="Scumaci, Domenica" uniqKey="Scumaci D" first="Domenica" last="Scumaci">Domenica Scumaci</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<addr-line>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro, Italy</addr-line>
</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro</wicri:regionArea>
<wicri:noRegion>Catanzaro</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gentile, Francesco" sort="Gentile, Francesco" uniqKey="Gentile F" first="Francesco" last="Gentile">Francesco Gentile</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<addr-line>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro, Italy</addr-line>
</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro</wicri:regionArea>
<wicri:noRegion>Catanzaro</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cojoc, Gheorghe" sort="Cojoc, Gheorghe" uniqKey="Cojoc G" first="Gheorghe" last="Cojoc">Gheorghe Cojoc</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<addr-line>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro, Italy</addr-line>
</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro</wicri:regionArea>
<wicri:noRegion>Catanzaro</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Perozziello, Gerardo" sort="Perozziello, Gerardo" uniqKey="Perozziello G" first="Gerardo" last="Perozziello">Gerardo Perozziello</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<addr-line>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro, Italy</addr-line>
</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro</wicri:regionArea>
<wicri:noRegion>Catanzaro</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ammendolia, Antonio" sort="Ammendolia, Antonio" uniqKey="Ammendolia A" first="Antonio" last="Ammendolia">Antonio Ammendolia</name>
<affiliation wicri:level="1">
<nlm:aff id="aff7">
<addr-line>Department of Surgical and Medical Sciences, University of “Magna Graecia”, Catanzaro, Italy</addr-line>
</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Surgical and Medical Sciences, University of “Magna Graecia”, Catanzaro</wicri:regionArea>
<wicri:noRegion>Catanzaro</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gallo, Adriana" sort="Gallo, Adriana" uniqKey="Gallo A" first="Adriana" last="Gallo">Adriana Gallo</name>
<affiliation wicri:level="1">
<nlm:aff id="aff8">
<addr-line>Endocrinology and Experimental Oncology Institute, CNR, Napoli, Italy</addr-line>
</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Endocrinology and Experimental Oncology Institute, CNR, Napoli</wicri:regionArea>
<wicri:noRegion>Napoli</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="K Rre, Klas" sort="K Rre, Klas" uniqKey="K Rre K" first="Klas" last="K Rre">Klas K Rre</name>
<affiliation wicri:level="3">
<nlm:aff id="aff9">
<addr-line>Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden</addr-line>
</nlm:aff>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm</wicri:regionArea>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="2">Svealand</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cuda, Giovanni" sort="Cuda, Giovanni" uniqKey="Cuda G" first="Giovanni" last="Cuda">Giovanni Cuda</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<addr-line>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro, Italy</addr-line>
</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro</wicri:regionArea>
<wicri:noRegion>Catanzaro</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Candeloro, Patrizio" sort="Candeloro, Patrizio" uniqKey="Candeloro P" first="Patrizio" last="Candeloro">Patrizio Candeloro</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<addr-line>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro, Italy</addr-line>
</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro</wicri:regionArea>
<wicri:noRegion>Catanzaro</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Di Fabrizio, Enzo" sort="Di Fabrizio, Enzo" uniqKey="Di Fabrizio E" first="Enzo" last="Di Fabrizio">Enzo Di Fabrizio</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<addr-line>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro, Italy</addr-line>
</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro</wicri:regionArea>
<wicri:noRegion>Catanzaro</wicri:noRegion>
</affiliation>
<affiliation>
<nlm:aff id="aff4">
<addr-line>King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia</addr-line>
</nlm:aff>
<wicri:noCountry code="subfield">Kingdom of Saudi Arabia</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Carbone, Ennio" sort="Carbone, Ennio" uniqKey="Carbone E" first="Ennio" last="Carbone">Ennio Carbone</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<addr-line>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro, Italy</addr-line>
</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro</wicri:regionArea>
<wicri:noRegion>Catanzaro</wicri:noRegion>
</affiliation>
<affiliation wicri:level="3">
<nlm:aff id="aff9">
<addr-line>Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden</addr-line>
</nlm:aff>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm</wicri:regionArea>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="2">Svealand</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25541692</idno>
<idno type="pmc">4277281</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4277281</idno>
<idno type="RBID">PMC:4277281</idno>
<idno type="doi">10.1371/journal.pone.0111758</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">000365</idno>
<idno type="wicri:Area/Pmc/Curation">000365</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000B26</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Mechanical Stress Downregulates MHC Class I Expression on Human Cancer Cell Membrane</title>
<author>
<name sortKey="La Rocca, Rosanna" sort="La Rocca, Rosanna" uniqKey="La Rocca R" first="Rosanna" last="La Rocca">Rosanna La Rocca</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<addr-line>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro, Italy</addr-line>
</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro</wicri:regionArea>
<wicri:noRegion>Catanzaro</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff2">
<addr-line>Italian Institute of Technology (IIT), Genova, Italy</addr-line>
</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Italian Institute of Technology (IIT), Genova</wicri:regionArea>
<wicri:noRegion>Genova</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tallerico, Rossana" sort="Tallerico, Rossana" uniqKey="Tallerico R" first="Rossana" last="Tallerico">Rossana Tallerico</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<addr-line>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro, Italy</addr-line>
</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro</wicri:regionArea>
<wicri:noRegion>Catanzaro</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Talib Hassan, Almosawy" sort="Talib Hassan, Almosawy" uniqKey="Talib Hassan A" first="Almosawy" last="Talib Hassan">Almosawy Talib Hassan</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<addr-line>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro, Italy</addr-line>
</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro</wicri:regionArea>
<wicri:noRegion>Catanzaro</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff3">
<addr-line>Department of Microbiology, College of Medicine, University of Thi-Qar, Nasseriah, Iraq</addr-line>
</nlm:aff>
<country xml:lang="fr">Iraq</country>
<wicri:regionArea>Department of Microbiology, College of Medicine, University of Thi-Qar, Nasseriah</wicri:regionArea>
<wicri:noRegion>Nasseriah</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Das, Gobind" sort="Das, Gobind" uniqKey="Das G" first="Gobind" last="Das">Gobind Das</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<addr-line>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro, Italy</addr-line>
</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro</wicri:regionArea>
<wicri:noRegion>Catanzaro</wicri:noRegion>
</affiliation>
<affiliation>
<nlm:aff id="aff4">
<addr-line>King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia</addr-line>
</nlm:aff>
<wicri:noCountry code="subfield">Kingdom of Saudi Arabia</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Tadepally, Lakshmikanth" sort="Tadepally, Lakshmikanth" uniqKey="Tadepally L" first="Lakshmikanth" last="Tadepally">Lakshmikanth Tadepally</name>
<affiliation wicri:level="3">
<nlm:aff id="aff5">
<addr-line>Science for Life Laboratory, Department of Medicine, Karolinska Institute, Stockholm, Sweden</addr-line>
</nlm:aff>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Science for Life Laboratory, Department of Medicine, Karolinska Institute, Stockholm</wicri:regionArea>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="2">Svealand</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Matteucci, Marco" sort="Matteucci, Marco" uniqKey="Matteucci M" first="Marco" last="Matteucci">Marco Matteucci</name>
<affiliation wicri:level="1">
<nlm:aff id="aff6">
<addr-line>Nanotech Department of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby, Denmark</addr-line>
</nlm:aff>
<country xml:lang="fr">Danemark</country>
<wicri:regionArea>Nanotech Department of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby</wicri:regionArea>
<wicri:noRegion>Kongens Lyngby</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liberale, Carlo" sort="Liberale, Carlo" uniqKey="Liberale C" first="Carlo" last="Liberale">Carlo Liberale</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<addr-line>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro, Italy</addr-line>
</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro</wicri:regionArea>
<wicri:noRegion>Catanzaro</wicri:noRegion>
</affiliation>
<affiliation>
<nlm:aff id="aff4">
<addr-line>King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia</addr-line>
</nlm:aff>
<wicri:noCountry code="subfield">Kingdom of Saudi Arabia</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Mesuraca, Maria" sort="Mesuraca, Maria" uniqKey="Mesuraca M" first="Maria" last="Mesuraca">Maria Mesuraca</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<addr-line>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro, Italy</addr-line>
</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro</wicri:regionArea>
<wicri:noRegion>Catanzaro</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Scumaci, Domenica" sort="Scumaci, Domenica" uniqKey="Scumaci D" first="Domenica" last="Scumaci">Domenica Scumaci</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<addr-line>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro, Italy</addr-line>
</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro</wicri:regionArea>
<wicri:noRegion>Catanzaro</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gentile, Francesco" sort="Gentile, Francesco" uniqKey="Gentile F" first="Francesco" last="Gentile">Francesco Gentile</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<addr-line>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro, Italy</addr-line>
</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro</wicri:regionArea>
<wicri:noRegion>Catanzaro</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cojoc, Gheorghe" sort="Cojoc, Gheorghe" uniqKey="Cojoc G" first="Gheorghe" last="Cojoc">Gheorghe Cojoc</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<addr-line>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro, Italy</addr-line>
</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro</wicri:regionArea>
<wicri:noRegion>Catanzaro</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Perozziello, Gerardo" sort="Perozziello, Gerardo" uniqKey="Perozziello G" first="Gerardo" last="Perozziello">Gerardo Perozziello</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<addr-line>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro, Italy</addr-line>
</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro</wicri:regionArea>
<wicri:noRegion>Catanzaro</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ammendolia, Antonio" sort="Ammendolia, Antonio" uniqKey="Ammendolia A" first="Antonio" last="Ammendolia">Antonio Ammendolia</name>
<affiliation wicri:level="1">
<nlm:aff id="aff7">
<addr-line>Department of Surgical and Medical Sciences, University of “Magna Graecia”, Catanzaro, Italy</addr-line>
</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Surgical and Medical Sciences, University of “Magna Graecia”, Catanzaro</wicri:regionArea>
<wicri:noRegion>Catanzaro</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gallo, Adriana" sort="Gallo, Adriana" uniqKey="Gallo A" first="Adriana" last="Gallo">Adriana Gallo</name>
<affiliation wicri:level="1">
<nlm:aff id="aff8">
<addr-line>Endocrinology and Experimental Oncology Institute, CNR, Napoli, Italy</addr-line>
</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Endocrinology and Experimental Oncology Institute, CNR, Napoli</wicri:regionArea>
<wicri:noRegion>Napoli</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="K Rre, Klas" sort="K Rre, Klas" uniqKey="K Rre K" first="Klas" last="K Rre">Klas K Rre</name>
<affiliation wicri:level="3">
<nlm:aff id="aff9">
<addr-line>Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden</addr-line>
</nlm:aff>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm</wicri:regionArea>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="2">Svealand</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cuda, Giovanni" sort="Cuda, Giovanni" uniqKey="Cuda G" first="Giovanni" last="Cuda">Giovanni Cuda</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<addr-line>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro, Italy</addr-line>
</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro</wicri:regionArea>
<wicri:noRegion>Catanzaro</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Candeloro, Patrizio" sort="Candeloro, Patrizio" uniqKey="Candeloro P" first="Patrizio" last="Candeloro">Patrizio Candeloro</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<addr-line>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro, Italy</addr-line>
</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro</wicri:regionArea>
<wicri:noRegion>Catanzaro</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Di Fabrizio, Enzo" sort="Di Fabrizio, Enzo" uniqKey="Di Fabrizio E" first="Enzo" last="Di Fabrizio">Enzo Di Fabrizio</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<addr-line>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro, Italy</addr-line>
</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro</wicri:regionArea>
<wicri:noRegion>Catanzaro</wicri:noRegion>
</affiliation>
<affiliation>
<nlm:aff id="aff4">
<addr-line>King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia</addr-line>
</nlm:aff>
<wicri:noCountry code="subfield">Kingdom of Saudi Arabia</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Carbone, Ennio" sort="Carbone, Ennio" uniqKey="Carbone E" first="Ennio" last="Carbone">Ennio Carbone</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<addr-line>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro, Italy</addr-line>
</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro</wicri:regionArea>
<wicri:noRegion>Catanzaro</wicri:noRegion>
</affiliation>
<affiliation wicri:level="3">
<nlm:aff id="aff9">
<addr-line>Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden</addr-line>
</nlm:aff>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm</wicri:regionArea>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="2">Svealand</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS ONE</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>In our body, cells are continuously exposed to physical forces that can regulate different cell functions such as cell proliferation, differentiation and death. In this work, we employed two different strategies to mechanically stress cancer cells. The cancer and healthy cell populations were treated either with mechanical stress delivered by a micropump (fabricated by deep X-ray nanolithography) or by ultrasound wave stimuli. A specific down-regulation of Major Histocompatibility Complex (MHC) class I molecules expression on cancer cell membrane compared to different kinds of healthy cells (fibroblasts, macrophages, dendritic and lymphocyte cells) was observed, stimulating the cells with forces in the range of nano-newton, and pressures between 1 and 10 bar (1 bar = 100.000 Pascal), depending on the devices used. Moreover, Raman spectroscopy analysis, after mechanical treatment, in the range between 700–1800 cm
<sup>−1</sup>
, indicated a relative concentration variation of MHC class I. PCA analysis was also performed to distinguish control and stressed cells within different cell lines. These mechanical induced phenotypic changes increase the tumor immunogenicity, as revealed by the related increased susceptibility to Natural Killer (NK) cells cytotoxic recognition.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, G" uniqKey="Yang G">G Yang</name>
</author>
<author>
<name sortKey="Crawford, Rc" uniqKey="Crawford R">RC Crawford</name>
</author>
<author>
<name sortKey="Wang, Jh" uniqKey="Wang J">JH Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guck, J" uniqKey="Guck J">J Guck</name>
</author>
<author>
<name sortKey="Ananthakrishnan, R" uniqKey="Ananthakrishnan R">R Ananthakrishnan</name>
</author>
<author>
<name sortKey="Mahmood, H" uniqKey="Mahmood H">H Mahmood</name>
</author>
<author>
<name sortKey="Moon, Tj" uniqKey="Moon T">TJ Moon</name>
</author>
<author>
<name sortKey="Cunningham, Cc" uniqKey="Cunningham C">CC Cunningham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ashkin, A" uniqKey="Ashkin A">A Ashkin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Constable, A" uniqKey="Constable A">A Constable</name>
</author>
<author>
<name sortKey="Kim, J" uniqKey="Kim J">J Kim</name>
</author>
<author>
<name sortKey="Mervis, J" uniqKey="Mervis J">J Mervis</name>
</author>
<author>
<name sortKey="Zarinetchi, F" uniqKey="Zarinetchi F">F Zarinetchi</name>
</author>
<author>
<name sortKey="Prentiss, M" uniqKey="Prentiss M">M Prentiss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guck, J" uniqKey="Guck J">J Guck</name>
</author>
<author>
<name sortKey="Ananthakrishnan, R" uniqKey="Ananthakrishnan R">R Ananthakrishnan</name>
</author>
<author>
<name sortKey="Moon, Tj" uniqKey="Moon T">TJ Moon</name>
</author>
<author>
<name sortKey="Cunningham, Cc" uniqKey="Cunningham C">CC Cunningham</name>
</author>
<author>
<name sortKey="K S, J" uniqKey="K S J">J Käs</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guck, J" uniqKey="Guck J">J Guck</name>
</author>
<author>
<name sortKey="Schinkinger, S" uniqKey="Schinkinger S">S Schinkinger</name>
</author>
<author>
<name sortKey="Lincoln, B" uniqKey="Lincoln B">B Lincoln</name>
</author>
<author>
<name sortKey="Wottawah, F" uniqKey="Wottawah F">F Wottawah</name>
</author>
<author>
<name sortKey="Ebert, S" uniqKey="Ebert S">S Ebert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khaled, W" uniqKey="Khaled W">W Khaled</name>
</author>
<author>
<name sortKey="Reichling, S" uniqKey="Reichling S">S Reichling</name>
</author>
<author>
<name sortKey="Bruhns, Ot" uniqKey="Bruhns O">OT Bruhns</name>
</author>
<author>
<name sortKey="Boese, H" uniqKey="Boese H">H Boese</name>
</author>
<author>
<name sortKey="Baumann, M" uniqKey="Baumann M">M Baumann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Paszek, Mj" uniqKey="Paszek M">MJ Paszek</name>
</author>
<author>
<name sortKey="Zahir, N" uniqKey="Zahir N">N Zahir</name>
</author>
<author>
<name sortKey="Johnson, Kr" uniqKey="Johnson K">KR Johnson</name>
</author>
<author>
<name sortKey="Lakins, Jn" uniqKey="Lakins J">JN Lakins</name>
</author>
<author>
<name sortKey="Rozenberg, Gi" uniqKey="Rozenberg G">GI Rozenberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Paszek, Mj" uniqKey="Paszek M">MJ Paszek</name>
</author>
<author>
<name sortKey="Weaver, Vm" uniqKey="Weaver V">VM Weaver</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nausch, N" uniqKey="Nausch N">N Nausch</name>
</author>
<author>
<name sortKey="Cerwenka, A" uniqKey="Cerwenka A">A Cerwenka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Groh, V" uniqKey="Groh V">V Groh</name>
</author>
<author>
<name sortKey="Rhinehart, R" uniqKey="Rhinehart R">R Rhinehart</name>
</author>
<author>
<name sortKey="Randolph Habecker, J" uniqKey="Randolph Habecker J">J Randolph-Habecker</name>
</author>
<author>
<name sortKey="Topp, Ms" uniqKey="Topp M">MS Topp</name>
</author>
<author>
<name sortKey="Riddell, Sr" uniqKey="Riddell S">SR Riddell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bauer, S" uniqKey="Bauer S">S Bauer</name>
</author>
<author>
<name sortKey="Groh, V" uniqKey="Groh V">V Groh</name>
</author>
<author>
<name sortKey="Wu, J" uniqKey="Wu J">J Wu</name>
</author>
<author>
<name sortKey="Steinle, A" uniqKey="Steinle A">A Steinle</name>
</author>
<author>
<name sortKey="Phillips, Jh" uniqKey="Phillips J">JH Phillips</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dunn, Gp" uniqKey="Dunn G">GP Dunn</name>
</author>
<author>
<name sortKey="Koebel, Cm" uniqKey="Koebel C">CM Koebel</name>
</author>
<author>
<name sortKey="Schreiber, Rd" uniqKey="Schreiber R">RD Schreiber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, Jc" uniqKey="Sun J">JC Sun</name>
</author>
<author>
<name sortKey="Lanier, Ll" uniqKey="Lanier L">LL Lanier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Farag, Ss" uniqKey="Farag S">SS Farag</name>
</author>
<author>
<name sortKey="Caligiuri, Ma" uniqKey="Caligiuri M">MA Caligiuri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Trinchieri, G" uniqKey="Trinchieri G">G Trinchieri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lakshmikanth, T" uniqKey="Lakshmikanth T">T Lakshmikanth</name>
</author>
<author>
<name sortKey="Burke, S" uniqKey="Burke S">S Burke</name>
</author>
<author>
<name sortKey="Ali, Th" uniqKey="Ali T">TH Ali</name>
</author>
<author>
<name sortKey="Kimpfler, S" uniqKey="Kimpfler S">S Kimpfler</name>
</author>
<author>
<name sortKey="Ursini, F" uniqKey="Ursini F">F Ursini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fregni, G" uniqKey="Fregni G">G Fregni</name>
</author>
<author>
<name sortKey="Messaoudene, M" uniqKey="Messaoudene M">M Messaoudene</name>
</author>
<author>
<name sortKey="Fourmentraux Neves, E" uniqKey="Fourmentraux Neves E">E Fourmentraux-Neves</name>
</author>
<author>
<name sortKey="Mazouz Dorval, S" uniqKey="Mazouz Dorval S">S Mazouz-Dorval</name>
</author>
<author>
<name sortKey="Chanal, J" uniqKey="Chanal J">J Chanal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jewett, A" uniqKey="Jewett A">A Jewett</name>
</author>
<author>
<name sortKey="Man, Yg" uniqKey="Man Y">YG Man</name>
</author>
<author>
<name sortKey="Tseng, Hc" uniqKey="Tseng H">HC Tseng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bischoff, F" uniqKey="Bischoff F">F Bischoff</name>
</author>
<author>
<name sortKey="Bryson, G" uniqKey="Bryson G">G Bryson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ljunggren, Hg" uniqKey="Ljunggren H">HG Ljunggren</name>
</author>
<author>
<name sortKey="K Rre, K" uniqKey="K Rre K">K Kärre</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matteucci, M" uniqKey="Matteucci M">M Matteucci</name>
</author>
<author>
<name sortKey="Lakshmikanth, T" uniqKey="Lakshmikanth T">T Lakshmikanth</name>
</author>
<author>
<name sortKey="Krishnan, S" uniqKey="Krishnan S">S Krishnan</name>
</author>
<author>
<name sortKey="De Angelis, F" uniqKey="De Angelis F">F De Angelis</name>
</author>
<author>
<name sortKey="Schadendorf, D" uniqKey="Schadendorf D">D Schadendorf</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carbone, E" uniqKey="Carbone E">E Carbone</name>
</author>
<author>
<name sortKey="Terrazzano, G" uniqKey="Terrazzano G">G Terrazzano</name>
</author>
<author>
<name sortKey="Ruggiero, G" uniqKey="Ruggiero G">G Ruggiero</name>
</author>
<author>
<name sortKey="Zanzi, D" uniqKey="Zanzi D">D Zanzi</name>
</author>
<author>
<name sortKey="Ottaiano, A" uniqKey="Ottaiano A">A Ottaiano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ruggeri, L" uniqKey="Ruggeri L">L Ruggeri</name>
</author>
<author>
<name sortKey="Capanni, M" uniqKey="Capanni M">M Capanni</name>
</author>
<author>
<name sortKey="Urbani, E" uniqKey="Urbani E">E Urbani</name>
</author>
<author>
<name sortKey="Perruccio, K" uniqKey="Perruccio K">K Perruccio</name>
</author>
<author>
<name sortKey="Shlomchik, Wd" uniqKey="Shlomchik W">WD Shlomchik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Majzner, K" uniqKey="Majzner K">K Majzner</name>
</author>
<author>
<name sortKey="Kaczor, A" uniqKey="Kaczor A">A Kaczor</name>
</author>
<author>
<name sortKey="Kachamakova Trojanowska, N" uniqKey="Kachamakova Trojanowska N">N Kachamakova-Trojanowska</name>
</author>
<author>
<name sortKey="Fedorowicz, A" uniqKey="Fedorowicz A">A Fedorowicz</name>
</author>
<author>
<name sortKey="Chlopicki, S" uniqKey="Chlopicki S">S Chlopicki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bonnier, F" uniqKey="Bonnier F">F Bonnier</name>
</author>
<author>
<name sortKey="Knief, P" uniqKey="Knief P">P Knief</name>
</author>
<author>
<name sortKey="Lim, B" uniqKey="Lim B">B Lim</name>
</author>
<author>
<name sortKey="Meade, Ad" uniqKey="Meade A">AD Meade</name>
</author>
<author>
<name sortKey="Dorney, J" uniqKey="Dorney J">J Dorney</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Gelder, J" uniqKey="De Gelder J">J De Gelder</name>
</author>
<author>
<name sortKey="De Gussem, K" uniqKey="De Gussem K">K De Gussem</name>
</author>
<author>
<name sortKey="Vandenabeele, P" uniqKey="Vandenabeele P">P Vandenabeele</name>
</author>
<author>
<name sortKey="De Vos, P" uniqKey="De Vos P">P De Vos</name>
</author>
<author>
<name sortKey="Moens, L" uniqKey="Moens L">L Moens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matthaus, C" uniqKey="Matthaus C">C Matthaus</name>
</author>
<author>
<name sortKey="Chernenko, T" uniqKey="Chernenko T">T Chernenko</name>
</author>
<author>
<name sortKey="Newmark, Ja" uniqKey="Newmark J">JA Newmark</name>
</author>
<author>
<name sortKey="Warner, Cm" uniqKey="Warner C">CM Warner</name>
</author>
<author>
<name sortKey="Diem, M" uniqKey="Diem M">M Diem</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chan, Jw" uniqKey="Chan J">JW Chan</name>
</author>
<author>
<name sortKey="Taylor, Ds" uniqKey="Taylor D">DS Taylor</name>
</author>
<author>
<name sortKey="Zwerdling, T" uniqKey="Zwerdling T">T Zwerdling</name>
</author>
<author>
<name sortKey="Lane, Sm" uniqKey="Lane S">SM Lane</name>
</author>
<author>
<name sortKey="Ihara, K" uniqKey="Ihara K">K Ihara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Das, G" uniqKey="Das G">G Das</name>
</author>
<author>
<name sortKey="Gentile, F" uniqKey="Gentile F">F Gentile</name>
</author>
<author>
<name sortKey="Coluccio, Ml" uniqKey="Coluccio M">ML Coluccio</name>
</author>
<author>
<name sortKey="Perri, Am" uniqKey="Perri A">AM Perri</name>
</author>
<author>
<name sortKey="Nicastri, A" uniqKey="Nicastri A">A Nicastri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Candeloro, P" uniqKey="Candeloro P">P Candeloro</name>
</author>
<author>
<name sortKey="Grande, E" uniqKey="Grande E">E Grande</name>
</author>
<author>
<name sortKey="Raimondo, R" uniqKey="Raimondo R">R Raimondo</name>
</author>
<author>
<name sortKey="Di Mascolo, D" uniqKey="Di Mascolo D">D Di Mascolo</name>
</author>
<author>
<name sortKey="Gentile, F" uniqKey="Gentile F">F Gentile</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcginnes, K" uniqKey="Mcginnes K">K McGinnes</name>
</author>
<author>
<name sortKey="Chapman, G" uniqKey="Chapman G">G Chapman</name>
</author>
<author>
<name sortKey="Marks, R" uniqKey="Marks R">R Marks</name>
</author>
<author>
<name sortKey="Penny, R" uniqKey="Penny R">R Penny</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carbone, E" uniqKey="Carbone E">E Carbone</name>
</author>
<author>
<name sortKey="Neri, P" uniqKey="Neri P">P Neri</name>
</author>
<author>
<name sortKey="Mesuraca, M" uniqKey="Mesuraca M">M Mesuraca</name>
</author>
<author>
<name sortKey="Fulciniti, Mt" uniqKey="Fulciniti M">MT Fulciniti</name>
</author>
<author>
<name sortKey="Otsuki, T" uniqKey="Otsuki T">T Otsuki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pfaffl, Mw" uniqKey="Pfaffl M">MW Pfaffl</name>
</author>
<author>
<name sortKey="Tichopad, A" uniqKey="Tichopad A">A Tichopad</name>
</author>
<author>
<name sortKey="Prgomet, C" uniqKey="Prgomet C">C Prgomet</name>
</author>
<author>
<name sortKey="Neuvians, Tp" uniqKey="Neuvians T">TP Neuvians</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Klein, D" uniqKey="Klein D">D Klein</name>
</author>
<author>
<name sortKey="Kern, Rm" uniqKey="Kern R">RM Kern</name>
</author>
<author>
<name sortKey="Sokol, Rz" uniqKey="Sokol R">RZ Sokol</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thomas, Gj" uniqKey="Thomas G">GJ Thomas</name>
</author>
<author>
<name sortKey="Prescott, B" uniqKey="Prescott B">B Prescott</name>
</author>
<author>
<name sortKey="Day, La" uniqKey="Day L">LA Day</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Das, G" uniqKey="Das G">G Das</name>
</author>
<author>
<name sortKey="Mecarini, F" uniqKey="Mecarini F">F Mecarini</name>
</author>
<author>
<name sortKey="Gentile, F" uniqKey="Gentile F">F Gentile</name>
</author>
<author>
<name sortKey="De Angelis, F" uniqKey="De Angelis F">F De Angelis</name>
</author>
<author>
<name sortKey="Mohan Kumar, H" uniqKey="Mohan Kumar H">H Mohan Kumar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Das, G" uniqKey="Das G">G Das</name>
</author>
<author>
<name sortKey="La Rocca, R" uniqKey="La Rocca R">R La Rocca</name>
</author>
<author>
<name sortKey="Lakshmikanth, T" uniqKey="Lakshmikanth T">T Lakshmikanth</name>
</author>
<author>
<name sortKey="Gentile, F" uniqKey="Gentile F">F Gentile</name>
</author>
<author>
<name sortKey="Tallerico, R" uniqKey="Tallerico R">R Tallerico</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kohri, K" uniqKey="Kohri K">K Kohri</name>
</author>
<author>
<name sortKey="Uemura, T" uniqKey="Uemura T">T Uemura</name>
</author>
<author>
<name sortKey="Iguchi, M" uniqKey="Iguchi M">M Iguchi</name>
</author>
<author>
<name sortKey="Kurita, T" uniqKey="Kurita T">T Kurita</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Clayman, Rv" uniqKey="Clayman R">RV Clayman</name>
</author>
<author>
<name sortKey="Long, S" uniqKey="Long S">S Long</name>
</author>
<author>
<name sortKey="Marcus, M" uniqKey="Marcus M">M Marcus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gasser, S" uniqKey="Gasser S">S Gasser</name>
</author>
<author>
<name sortKey="Orsulic, S" uniqKey="Orsulic S">S Orsulic</name>
</author>
<author>
<name sortKey="Brown, Ej" uniqKey="Brown E">EJ Brown</name>
</author>
<author>
<name sortKey="Raulet, Dh" uniqKey="Raulet D">DH Raulet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arthur, Js" uniqKey="Arthur J">JS Arthur</name>
</author>
<author>
<name sortKey="Ley, Sc" uniqKey="Ley S">SC Ley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rathje, Ls" uniqKey="Rathje L">LS Rathje</name>
</author>
<author>
<name sortKey="Nordgren, N" uniqKey="Nordgren N">N Nordgren</name>
</author>
<author>
<name sortKey="Pettersson, T" uniqKey="Pettersson T">T Pettersson</name>
</author>
<author>
<name sortKey="Ronnlund, D" uniqKey="Ronnlund D">D Rönnlund</name>
</author>
<author>
<name sortKey="Widengren, J" uniqKey="Widengren J">J Widengren</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Szachowicz Petelska, B" uniqKey="Szachowicz Petelska B">B Szachowicz-Petelska</name>
</author>
<author>
<name sortKey="Dobrzy Ska, I" uniqKey="Dobrzy Ska I">I Dobrzyńska</name>
</author>
<author>
<name sortKey="Skrodzka, M" uniqKey="Skrodzka M">M Skrodzka</name>
</author>
<author>
<name sortKey="Darewicz, B" uniqKey="Darewicz B">B Darewicz</name>
</author>
<author>
<name sortKey="Figaszewski, Za" uniqKey="Figaszewski Z">ZA Figaszewski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Perozziello, G" uniqKey="Perozziello G">G Perozziello</name>
</author>
<author>
<name sortKey="La Rocca, R" uniqKey="La Rocca R">R La Rocca</name>
</author>
<author>
<name sortKey="Cojoc, G" uniqKey="Cojoc G">G Cojoc</name>
</author>
<author>
<name sortKey="Liberale, C" uniqKey="Liberale C">C Liberale</name>
</author>
<author>
<name sortKey="Malara, N" uniqKey="Malara N">N Malara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Perozziello, G" uniqKey="Perozziello G">G Perozziello</name>
</author>
<author>
<name sortKey="Simone, G" uniqKey="Simone G">G Simone</name>
</author>
<author>
<name sortKey="Malara, N" uniqKey="Malara N">N Malara</name>
</author>
<author>
<name sortKey="La Rocca, R" uniqKey="La Rocca R">R La Rocca</name>
</author>
<author>
<name sortKey="Tallerico, R" uniqKey="Tallerico R">R Tallerico</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Podo, F" uniqKey="Podo F">F Podo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Winzer, Bm" uniqKey="Winzer B">BM Winzer</name>
</author>
<author>
<name sortKey="Whiteman, Dc" uniqKey="Whiteman D">DC Whiteman</name>
</author>
<author>
<name sortKey="Reeves, Mm" uniqKey="Reeves M">MM Reeves</name>
</author>
<author>
<name sortKey="Paratz, Jd" uniqKey="Paratz J">JD Paratz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mctiernan, A" uniqKey="Mctiernan A">A McTiernan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bussani, R" uniqKey="Bussani R">R Bussani</name>
</author>
<author>
<name sortKey="De Giorgio, F" uniqKey="De Giorgio F">F De-Giorgio</name>
</author>
<author>
<name sortKey="Abbate, A" uniqKey="Abbate A">A Abbate</name>
</author>
<author>
<name sortKey="Silvestri, F" uniqKey="Silvestri F">F Silvestri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reynen, K" uniqKey="Reynen K">K Reynen</name>
</author>
<author>
<name sortKey="Kockeritz, U" uniqKey="Kockeritz U">U Köckeritz</name>
</author>
<author>
<name sortKey="Strasser, Rh" uniqKey="Strasser R">RH Strasser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ferlay, J" uniqKey="Ferlay J">J Ferlay</name>
</author>
<author>
<name sortKey="Autier, P" uniqKey="Autier P">P Autier</name>
</author>
<author>
<name sortKey="Boniol, M" uniqKey="Boniol M">M Boniol</name>
</author>
<author>
<name sortKey="Heanue, M" uniqKey="Heanue M">M Heanue</name>
</author>
<author>
<name sortKey="Colombet, M" uniqKey="Colombet M">M Colombet</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PLoS One</journal-id>
<journal-id journal-id-type="iso-abbrev">PLoS ONE</journal-id>
<journal-id journal-id-type="publisher-id">plos</journal-id>
<journal-id journal-id-type="pmc">plosone</journal-id>
<journal-title-group>
<journal-title>PLoS ONE</journal-title>
</journal-title-group>
<issn pub-type="epub">1932-6203</issn>
<publisher>
<publisher-name>Public Library of Science</publisher-name>
<publisher-loc>San Francisco, USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25541692</article-id>
<article-id pub-id-type="pmc">4277281</article-id>
<article-id pub-id-type="publisher-id">PONE-D-14-16089</article-id>
<article-id pub-id-type="doi">10.1371/journal.pone.0111758</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
<subj-group subj-group-type="Discipline-v2">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Immunology</subject>
<subj-group>
<subject>Clinical Immunology</subject>
<subj-group>
<subject>Tumor Immunology</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Immunity</subject>
<subj-group>
<subject>Cell-Mediated Immunity</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v2">
<subject>Medicine and Health Sciences</subject>
</subj-group>
<subj-group subj-group-type="Discipline-v2">
<subject>Physical Sciences</subject>
<subj-group>
<subject>Physics</subject>
<subj-group>
<subject>Classical Mechanics</subject>
<subj-group>
<subject>Mechanical Stress</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v2">
<subject>Research and Analysis Methods</subject>
<subj-group>
<subject>Spectrum Analysis Techniques</subject>
<subj-group>
<subject>Raman Spectroscopy</subject>
</subj-group>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Mechanical Stress Downregulates MHC Class I Expression on Human Cancer Cell Membrane</article-title>
<alt-title alt-title-type="running-head">Mechanical Stress and Tumor Immunogenicity</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" equal-contrib="yes">
<name>
<surname>La Rocca</surname>
<given-names>Rosanna</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author" equal-contrib="yes">
<name>
<surname>Tallerico</surname>
<given-names>Rossana</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Talib Hassan</surname>
<given-names>Almosawy</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Das</surname>
<given-names>Gobind</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Tadepally</surname>
<given-names>Lakshmikanth</given-names>
</name>
<xref ref-type="aff" rid="aff5">
<sup>5</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Matteucci</surname>
<given-names>Marco</given-names>
</name>
<xref ref-type="aff" rid="aff6">
<sup>6</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Liberale</surname>
<given-names>Carlo</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Mesuraca</surname>
<given-names>Maria</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Scumaci</surname>
<given-names>Domenica</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Gentile</surname>
<given-names>Francesco</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Cojoc</surname>
<given-names>Gheorghe</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Perozziello</surname>
<given-names>Gerardo</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ammendolia</surname>
<given-names>Antonio</given-names>
</name>
<xref ref-type="aff" rid="aff7">
<sup>7</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Gallo</surname>
<given-names>Adriana</given-names>
</name>
<xref ref-type="aff" rid="aff8">
<sup>8</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kärre</surname>
<given-names>Klas</given-names>
</name>
<xref ref-type="aff" rid="aff9">
<sup>9</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Cuda</surname>
<given-names>Giovanni</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Candeloro</surname>
<given-names>Patrizio</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Di Fabrizio</surname>
<given-names>Enzo</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
<xref ref-type="corresp" rid="cor1">
<sup>*</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Carbone</surname>
<given-names>Ennio</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff9">
<sup>9</sup>
</xref>
<xref ref-type="corresp" rid="cor1">
<sup>*</sup>
</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
<addr-line>Department of Experimental and Clinical Medicine, University of “Magna Graecia”, Catanzaro, Italy</addr-line>
</aff>
<aff id="aff2">
<label>2</label>
<addr-line>Italian Institute of Technology (IIT), Genova, Italy</addr-line>
</aff>
<aff id="aff3">
<label>3</label>
<addr-line>Department of Microbiology, College of Medicine, University of Thi-Qar, Nasseriah, Iraq</addr-line>
</aff>
<aff id="aff4">
<label>4</label>
<addr-line>King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia</addr-line>
</aff>
<aff id="aff5">
<label>5</label>
<addr-line>Science for Life Laboratory, Department of Medicine, Karolinska Institute, Stockholm, Sweden</addr-line>
</aff>
<aff id="aff6">
<label>6</label>
<addr-line>Nanotech Department of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby, Denmark</addr-line>
</aff>
<aff id="aff7">
<label>7</label>
<addr-line>Department of Surgical and Medical Sciences, University of “Magna Graecia”, Catanzaro, Italy</addr-line>
</aff>
<aff id="aff8">
<label>8</label>
<addr-line>Endocrinology and Experimental Oncology Institute, CNR, Napoli, Italy</addr-line>
</aff>
<aff id="aff9">
<label>9</label>
<addr-line>Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden</addr-line>
</aff>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Kreplak</surname>
<given-names>Laurent</given-names>
</name>
<role>Editor</role>
<xref ref-type="aff" rid="edit1"></xref>
</contrib>
</contrib-group>
<aff id="edit1">
<addr-line>Dalhousie University, Canada</addr-line>
</aff>
<author-notes>
<corresp id="cor1">* E-mail:
<email>ennio.carbone@ki.se</email>
(EC);
<email>enzo.difabrizio@kaust.edu.sa</email>
(EDF)</corresp>
<fn fn-type="conflict">
<p>
<bold>Competing Interests: </bold>
The authors have declared that no competing interests exist.</p>
</fn>
<fn fn-type="con">
<p>Conceived and designed the experiments: EC EDF. Performed the experiments: RT RLR ATH DS AG M. Mesuraca G. Cojoc LT M. Matteucci CL. Analyzed the data: EC EDF G. Cuda GD FG PC GP KK. Contributed reagents/materials/analysis tools: AA. Wrote the paper: EC EDF G. Cuda RT RLR GD LT.</p>
</fn>
</author-notes>
<pub-date pub-type="collection">
<year>2014</year>
</pub-date>
<pub-date pub-type="epub">
<day>26</day>
<month>12</month>
<year>2014</year>
</pub-date>
<volume>9</volume>
<issue>12</issue>
<elocation-id>e111758</elocation-id>
<history>
<date date-type="received">
<day>17</day>
<month>4</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>30</day>
<month>9</month>
<year>2014</year>
</date>
</history>
<permissions>
<copyright-year>2014</copyright-year>
<copyright-holder>La Rocca et al</copyright-holder>
<license>
<license-p>This is an open-access article distributed under the terms of the
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution License</ext-link>
, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</license-p>
</license>
</permissions>
<abstract>
<p>In our body, cells are continuously exposed to physical forces that can regulate different cell functions such as cell proliferation, differentiation and death. In this work, we employed two different strategies to mechanically stress cancer cells. The cancer and healthy cell populations were treated either with mechanical stress delivered by a micropump (fabricated by deep X-ray nanolithography) or by ultrasound wave stimuli. A specific down-regulation of Major Histocompatibility Complex (MHC) class I molecules expression on cancer cell membrane compared to different kinds of healthy cells (fibroblasts, macrophages, dendritic and lymphocyte cells) was observed, stimulating the cells with forces in the range of nano-newton, and pressures between 1 and 10 bar (1 bar = 100.000 Pascal), depending on the devices used. Moreover, Raman spectroscopy analysis, after mechanical treatment, in the range between 700–1800 cm
<sup>−1</sup>
, indicated a relative concentration variation of MHC class I. PCA analysis was also performed to distinguish control and stressed cells within different cell lines. These mechanical induced phenotypic changes increase the tumor immunogenicity, as revealed by the related increased susceptibility to Natural Killer (NK) cells cytotoxic recognition.</p>
</abstract>
<funding-group>
<funding-statement>Ennio Carbone's work has been supported by a UICC International Cancer Technology Transfer Fellowship, grant AIRC-IG 10189, and grant AIRC 15521. Rossana Tallerico is a Post Doc awarded by triennial fellowships “Luciana Selce” FIRC. Giovanni Cuda has been supported by PON01_02834 Prometeo (Ministry of Education and Research) and PONa3_00435
<email>Biomedpark@UMG</email>
(Ministry of Education and Research). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</funding-statement>
</funding-group>
<counts>
<page-count count="20"></page-count>
</counts>
<custom-meta-group>
<custom-meta id="data-availability">
<meta-name>Data Availability</meta-name>
<meta-value>The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
<notes>
<title>Data Availability</title>
<p>The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.</p>
</notes>
</front>
<body>
<sec id="s1">
<title>Introduction</title>
<p>In nature, cells are continually exposed to physical, chemical and biological stresses. In the past, physical changes occurring in pathological tissues were taken into account by the physicians as valuable diagnostic indicators. Physical stress is involved in the pathophysiology of several human diseases, such as inflammation and cancer. In both conditions, an alteration in the chemical-physical extracellular matrix (ECM) environment is associated with the pathogenesis of these diseases. Moreover, physical forces play a significant role in metastatic progression. In recent years, novel tools, such as atomic force microscopy, have been developed to analyse changes in cells elasticity related to physical changes in the extracellular matrix compartment
<xref rid="pone.0111758-Yang1" ref-type="bibr">[1]</xref>
. Furthermore, to determine how much a cell can be deformed, a device called “optical stretcher” was developed
<xref rid="pone.0111758-Guck1" ref-type="bibr">[2]</xref>
. Unlike other tools, the optical stretcher is based on a double-beam optical trap
<xref rid="pone.0111758-Ashkin1" ref-type="bibr">[3]</xref>
,
<xref rid="pone.0111758-Constable1" ref-type="bibr">[4]</xref>
in which two opponent and identical laser beams trap a cell in the middle. This method can be used to measure the elastic and contractile properties of many cells, as it is known that the cell's ability to contract is very important for migration and proliferation
<xref rid="pone.0111758-Guck2" ref-type="bibr">[5]</xref>
. Furthermore, elasticity and contractility of different tumor cells may change with the progression of the disease, with an increased elasticity of the cancerous compared with the healthy cells
<xref rid="pone.0111758-Guck3" ref-type="bibr">[6]</xref>
. A relationship between ECM stiffness and tumor transformation has been described
<xref rid="pone.0111758-Khaled1" ref-type="bibr">[7]</xref>
. It has been shown that ECM-mediated isometric forces are sensed by integrins, which regulate the phosphorylation of mechano-transducer kinases, such as ERK and Rho
<xref rid="pone.0111758-Paszek1" ref-type="bibr">[8]</xref>
. It has been also demonstrated that the increment of exogenous forces lead to an increased cell proliferation rate and induce tumor-like phenotypic changes. Finally, inflammatory breast cancer is known to exert a mechanical load due to the ECM changes, potentially leading to a higher metastatic potential
<xref rid="pone.0111758-Paszek2" ref-type="bibr">[9]</xref>
.</p>
<p>On this basis, we hypothesized that mechanical stress could either affect the expression of cell antigens or induce the expression of stress-inducible molecules such as NKG2D receptor ligands
<xref rid="pone.0111758-Nausch1" ref-type="bibr">[10]</xref>
able to prime cytotoxic effector lymphocytes cell functions.</p>
<p>In the last years the discovery of immunoreceptors recognizing stress inducible proteins have broadened our knowledge on how the immune system is primed
<xref rid="pone.0111758-Groh1" ref-type="bibr">[11]</xref>
,
<xref rid="pone.0111758-Bauer1" ref-type="bibr">[12]</xref>
. These observations have fostered our interest in controlled stress delivery devices that could elicit a tumor immunogenic phenotype able to evoke an immune response, especially when the tumor has already been edited by cytotoxic lymphocytes
<xref rid="pone.0111758-Dunn1" ref-type="bibr">[13]</xref>
.</p>
<p>Natural Killer cells are potent cytotoxic lymphocytes able to recognize freshly explanted cancer cells
<xref rid="pone.0111758-Sun1" ref-type="bibr">[14]</xref>
<xref rid="pone.0111758-Trinchieri1" ref-type="bibr">[16]</xref>
and to spontaneously lyse certain tumor targets
<xref rid="pone.0111758-Lakshmikanth1" ref-type="bibr">[17]</xref>
<xref rid="pone.0111758-Jewett1" ref-type="bibr">[19]</xref>
. They are regulated by a delicate balance between inhibitory receptors, recognizing self MHC class I molecules, and activating receptors for stress-inducible molecules
<xref rid="pone.0111758-Bischoff1" ref-type="bibr">[20]</xref>
. NK cells have the ability to identify and kill virally infected and malignant cells while sparing normal cells. The NK cells regulation was poorly understood until the late 1980's when the “missing self” hypothesis was proposed
<xref rid="pone.0111758-Ljunggren1" ref-type="bibr">[21]</xref>
. According to this hypothesis, down-regulation of MHC class I molecules during viral infection or malignant transformation triggers NK activation.</p>
<p>Here we ask whether the treatment of NK resistant cancer cells by mechanical stress could tip the balance between inhibitory and activating tumor expressing molecules in favour of the latter, leading to NK cell activation. In this work, we used two different procedures to mechanically stress cancer and normal cells under controlled conditions. We compared the biological effects of mechanical stimuli delivered either by a micropump device engineered expressly for this purpose
<xref rid="pone.0111758-Matteucci1" ref-type="bibr">[22]</xref>
, to the ones delivered by a shock waves pulse equipment. The variation in MHC class I molecules before and after mechanical stress was monitored both by means of Raman spectroscopy (in combination with principal component analysis (PCA)) and by means of cytotoxic measurements. The ultimate goal of our study was to understand if the applied mechanical forces could elicit and/or modulate relevant biological cell features, such as their immunogenicity. Moreover, we explored the possibility to use adoptively mechanical manipulations toswitch a tumor NK cell resistant phenotype into a susceptible one.</p>
</sec>
<sec sec-type="materials|methods" id="s2">
<title>Materials and Methods</title>
<sec id="s2a">
<title>Micropump device</title>
<p>To deliver mechanical stress to tumor cell populations, we used a previously described micropump
<xref rid="pone.0111758-Matteucci1" ref-type="bibr">[22]</xref>
(
<xref ref-type="supplementary-material" rid="pone.0111758.s001">S1A Fig.</xref>
) fabricated by means ofdeep X-ray lithography (DXRL) technique to specifically treat eukaryotic cells without destroying them. Three million cells/ml were mechanically stressed for 1 hour at 48 cycles and the strength of the maximum pressure applied was about 10 bars. This was evaluated by measuring the pump prevalence by using water as a fluid. Afterwards the cells were collected in a 15 mL tubes and were analysed by flow cytometry and micro Raman spectroscopy.</p>
</sec>
<sec id="s2b">
<title>Shock Waves device</title>
<p>Shock waves are applied in orthopaedics and are essentially acoustic waves with a mechanical effect. When the shock waves pass through a fluid, create differences in pressure responsible for the formation of gas bubbles (cavitation) that are affected by subsequent shock waves and are deformed until the implosion. Asymmetric collapse of the bubble causes the formation of a jet of water “jet stream”. This phenomenon further enhances the mechanical effect of the shock wave causing micro-lesions whose size is a function of the number of pulses and flux of energy. For the treatment of tumor cell lines was used the
<italic>Swiss Dolorclast device</italic>
(Electro Medical System-EMS, Italy) with a hand-piece high-energy (
<xref ref-type="supplementary-material" rid="pone.0111758.s001">S1B Fig.</xref>
).</p>
<p>Cancer cells were grown in Petri dishes and treated with shock waves (500 shots) applying a flux of energy of 1 bar. After treatment the cells were collected and analysed, and the data obtained were compared to respective controls.</p>
</sec>
<sec id="s2c">
<title>Cells isolation and culture</title>
<p>For mechanical stress experiments we used different kinds of cell lines. Primary cells Mel 59c, Mel 42a, Mel 42b, Mel 66b, Mel 137a and Mel 103b were obtained from freshly explanted melanoma skin metastatic cells with few in vitro passages, respectively from patients 59, 42, 66, 137 and 103. All patients gave written informed consent according to the Declaration of Helsinki and the Ethics Committee II of Heidelberg University (0198.3/2002). Healthy donors PBL and related purified NK cells were generated accordingly with the Ethics Committee of University Magna Graecia of Catanzaro (49/2003). The study was approved by the UMG Ethics Committee (49/2003). Human kidney carcinoma cell line (293T), human B lymphoblastoid cell line (IM9), and fibroblast cells were obtained from the American Type Culture Collection (ATCC). Peripheral Blood Lymphocytes (PBLs) were obtained from healthy donors by Ficoll-Paque (Biochrom AG, Berlin, Germany) density gradient centrifugation the human samples were collected accordingly with the Ethics Committee of University Magna Graecia of Catanzaro (49/2003). Cells were grown in RPMI 1640 medium and in Dulbecco's Modified Eagle's medium (DMEM) supplemented with 10% of fetal bovine serum (FBS) (SIGMA Aldrich, St. Louis) and penicillin (100 IU/mL) and streptomycin (100 mg/mL) (SIGMA Aldrich, St. Louis) and were maintained at 37°C in a humidified 5% CO
<sub>2</sub>
atmosphere. Macrophages and dendritic cells (DC) were obtained from blood mononuclear cells. Macrophages were generated from monocytes adherent on the plate. Dendritic cells (DC) were established from monocytes supplemented for 7 days with 50 ng/ml granulocyte/macrophage colony-stimulating factor (GM-CSF) (Santa Cruz Biotechnology, Texas, U.S.A.) and 1000 U/ml IL-4
<xref rid="pone.0111758-Carbone1" ref-type="bibr">[23]</xref>
.</p>
</sec>
<sec id="s2d">
<title>Natural Killer cell purification</title>
<p>NK cells were obtained as described
<xref rid="pone.0111758-Ruggeri1" ref-type="bibr">[24]</xref>
. Briefly, human NK lymphocytes were purified from peripheral blood mononuclear cells (PBMC), obtained from healthy donors by Ficoll-Paque density gradient centrifugation, using the NK Cell Isolation kit and Vario MACS for the depletion of non-NK cells (Miltenyi Biotec). Cells were resuspended in RPMI 1640 medium supplemented with 10% FBS, 3% human serum, penicillin (100 IU/ml), and streptomycin (100 µg/ml) and were used for cytotoxicity assay. NK cell purity was at least 95%.</p>
</sec>
<sec id="s2e">
<title>Raman Spectroscopy</title>
<p>Microprobe Raman spectra were excited by near IR laser with 830 nm laser line at room temperature (RT) in backscattering geometry through a 100X objective (
<italic>NA</italic>
 = 0.95) of Leica microscope (Model - DMLM). All data were collected with a laser power of 70–130 mW. The laser power was always chosen in such a way to avoid any damage of cell. This laser power is not expected to cause any significant increase in sample temperature due to the extremely low absorption coefficient of cells at 830 nm. In addition, the cell conditions were verified through optical image before and after the measurements. Several cells of each cell line were probed in the range of 700–1800 cm
<sup>−1</sup>
by point mapping measurements, which collect various spectra at different location covering the entire cell surface. For each cell line 5 cells were randomly chosen for point mapping. Raman spectra of different cells of each cell lines were then collected and used for statistical analysis (Spectra don't show significant different to each other
<xref rid="pone.0111758-Majzner1" ref-type="bibr">[25]</xref>
,
<xref rid="pone.0111758-Bonnier1" ref-type="bibr">[26]</xref>
). The statistical analysis (with standard deviation error) was performed for 10 Raman spectra for each cell line. It is noteworthy to point it out that the measurements for control and stressed cells of each cell line were performed on the same day to avoid any variation in instrumental response. Spectral smoothing was performed for all individual Raman spectra using the WiRE 2.0 PS9 software provided with the Renishaw Raman spectrometer. The curve fitting of the spectra were carried out using combined Gaussian and Lorentzian function.</p>
</sec>
<sec id="s2f">
<title>Principal Component Analysis</title>
<p>In the last decade multivariate techniques have been widely employed for analysis of large Raman datasets
<xref rid="pone.0111758-DeGelder1" ref-type="bibr">[27]</xref>
,
<xref rid="pone.0111758-Matthaus1" ref-type="bibr">[28]</xref>
. Among these techniques, principal component analysis (PCA) has proven to be one of the most robust and reliable methods
<xref rid="pone.0111758-Chan1" ref-type="bibr">[29]</xref>
,
<xref rid="pone.0111758-Das1" ref-type="bibr">[30]</xref>
. When PCA is applied to Raman spectra, each Raman frequency is considered as a variable whose value changes across the recorded spectra, so that the whole dataset constitutes an
<italic>N</italic>
-dimensional space where
<italic>N</italic>
is the number of measured frequencies (
<italic>N</italic>
is typically very large). The main aim of PCA is dimensionality-reduction without loss of information. This is achieved through the diagonalization of the covariance matrix of spectra: the eigenvectors define one-dimensional (1D) axes in the
<italic>N</italic>
-space and the corresponding eigenvalues express the amount of total variance explained by each eigenvector. The eigenvectors are the so-called principal components (PCs), while the eigenvalues are named latents. The first principal component is 1D axis along which the largest amount of variance is taken into account (i.e. the axis with the largest latent value); the second principal component is the axis (orthogonal to the first one), which accounts for the largest residual variance (i.e. the axis with the second largest latent), and so on for the following components. In this way, from a
<italic>N</italic>
-variables dataset we are reduced to a few-variables dataset, without losing the significant part of information. PCA analysis was performed using the software developed by P. Candeloro et al.
<xref rid="pone.0111758-Candeloro1" ref-type="bibr">[31]</xref>
.</p>
</sec>
<sec id="s2g">
<title>Immunofluorescence assay</title>
<p>After each treatment, cells were collected in tubes and were incubated with human serum for 15 minutes at RT. Then, cells were washed three times in PBS 1X and subsequently incubated for 30 minutes in dark at 4°C, with the following mAbs: W6/32 (anti-MHC class I, IgG2a; BioLegend, San Diego, CA); clone BAM 195 (anti-MICA, IgG1) and mAb 6D4 (anti-MICA/B, IgG1), were kindly provided by Veronika Groh (Fred Hutchinson Cancer Research Center, Seattle, WA); M295 (anti-ULBP1, IgG1), M310 (anti-ULBP2, IgG1), M550 (anti-ULBP3, IgG3) and M478 (anti-ULBP4, IgG1) were kindly gifted by D. Cosman, (Amgen Inc. Seattle, WA); mAb L95 (anti-PVR, IgG1) and mAb L14 (anti-Nectin-2, IgG2a) kindly provided by A. Moretta (University of Genoa, Genoa, Italy). After washing twice, cells were stained with the secondary mAbs FITC goat anti-mouse IgG (Jackson Immuno Research, Baltimore, USA) for 30 min at 4°C in the dark. Then, cells were again washed twice and analysed by FACSCalibur flow cytometry (BD Bioscience, San Diego, CA, USA). For intracellular staining, cells were fixed in Cytofix and permeabilized by Cytoperm (BD Biosciences). The cells were stained with the specific mAbs followed by FITC conjugated anti-mouse IgG antibodies (Jackson Immuno Research, Baltimore, USA) and were analysed. The results were analyzed using Cell Quest (BD Biosciences) or FlowJo software version 9.3.1.</p>
</sec>
<sec id="s2h">
<title>Cytotoxicity assay</title>
<p>For the cytotoxicity assays the tumor or healthy cells as target and the NK lymphocytes as effector cells were used. After mechanical stress treatment, the target cells were incubated with the fluorescent CFDA (carboxyfluorescein diacetate, Life Technologies, NY, USA) for 30 min at 37°C, then washed twice and incubated with NK cells for three hours in incubator at 37°C and 5% CO
<sub>2</sub>
. The details of the protocol were described from McGinnes et al
<xref rid="pone.0111758-McGinnes1" ref-type="bibr">[32]</xref>
. The flow cytometer was used to analyze the samples.</p>
</sec>
<sec id="s2i">
<title>Real Time</title>
<p>Total cellular RNAs from four different melanoma primary cells and two healthy cells were isolated using Trizol (Life Technologies).</p>
<p>Briefly, 1 µg of total RNA was reverse transcribed using the Superscript III Reverse Transcript Kit (Life Technologies) according to the manufacturer's recommendations; the cDNAs were amplified using iTaq Universal SYBER Green Supermix (BioRad, Segrate (MI), Italy) in the presence of specific primers as described previously
<xref rid="pone.0111758-Carbone2" ref-type="bibr">[33]</xref>
. The following primers were used: MHC-I- FW,
<named-content content-type="gene">5′- CCTTGTGTGGGACTGAGAGG</named-content>
-3; MHC-I- RV,
<named-content content-type="gene">5′- CAGAGATGGAGACACCTCAGC -3′</named-content>
. The expression of housekeeping gene glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used to normalize samples, and the relative quantification of HLA class I was performed applying the 2
<sup>−ΔΔCt</sup>
method
<xref rid="pone.0111758-Pfaffl1" ref-type="bibr">[34]</xref>
. The following primers were used: GAPDH-FW,
<named-content content-type="gene">5′-CACCATCTTCCAGGAGCGAG-3′</named-content>
, GAPDH-RV
<named-content content-type="gene">5′-TCACGCCACAGTTTCCCGGA -3′</named-content>
.</p>
</sec>
<sec id="s2j">
<title>Western Blotting</title>
<p>The secretion of MHC class I molecules into the conditioned medium was confirmed by Western blot analysis. For Western blotting, cells cultured in 100 cm dishes were washed with 0.1 M phosphate-buffered saline (pH 7.4) (Life Technologies) and, thereafter, 2 mL of serum-free RPMI was added. After stress treatment, the medium was harvested. Cells medium proteins concentration for each stressed sample was measured in triplicate using the dye-binding protein (Bio-Rad) with human serum albumin (Life Technologies) as standard curve.</p>
<p>For each experimental point, 50 µg of cell-culture medium proteins were transferred to sterile tubes containing cold acetone (20%, w/v) and precipitated for 30 min on ice followed by centrifugation at 15000 rpm for 15 min at 4°C.</p>
<p>The supernatant was decanted, and the pellet washed with chilled acetone followed by removal of all the acetone. The pellet was subsequently solubilized in LB [31.25 mmol/L Tris-HCl (pH 6.8), 1.25% SDS, 6.25% glycerol, 0.06% bromophenol blue, and 5% h-mercaptoethanol], resolved by SDS-PAGE, and transferred to nitrocellulose membranes.</p>
<p>After addition of the blocking mixture [5% (w/v) milk in PBS (pH 7.4) and 0.05%Tween 20], the membrane was incubated with a 1∶100 dilution of mouse anti-HLA antibody, clone W6/32 (BioLegend,). The signal was detected with anti-mouse horseradish peroxidase-conjugated secondary antibody (1∶5000; Santa Cruz Biotechnology). The membrane was developed by enhanced chemiluminescence-Western blot detection reagents according to the manufacturer's instructions (Santa Cruz Biotechnology).</p>
<p>The membrane was incubated with Ponceau S red staining solution (Sigma-Aldrich) to ensure uniform gel loading. An internal control was not used because it is basically impossible to find a “housekeeping” protein in the serum free medium cells that could be used as a constant reference. Ponceau S can be used advantageously over actin detection for quality or equal loading control in Western blotting; moreover, it has an additional advantage, i.e. that it does not rely on a single protein for normalization or loading control. This circumvents the possibility that the “housekeeping” proteins used for this purpose may actually vary in some conditions or that they are saturated at the levels of loading necessary for detection of low-expression products or that they are not detectable as in our example
<xref rid="pone.0111758-Klein1" ref-type="bibr">[35]</xref>
.</p>
</sec>
<sec id="s2k">
<title>ATM/ATR signaling cascade analysis</title>
<p>Etoposide (Sigma, St. Louis, MO, USA) was dissolved in DMSO and added at the final concentration 5 µM for 1 h. Whole cell lysates were prepared from freshly collected cells by using a lysis buffer (20 mM Tris-HCl pH 7.5, 10 mM EDTA, 0,5% Nonidet P-40, 400 mM NaCl) supplemented with protease inhibitor mixture (Calbiochem, Merck Darmstadt, Germany), 0.5 mM PMSF and 2 mM sodium orthovanadate. Lysates were incubated on ice for 15 minutes and centrifuged at 13000 rpm for 10 min. Protein concentration from supernatants was determined by Biorad assay (Bio-Rad Laboratories, CA, USA). For immunoblots, samples were loaded in Laemmli buffer on 6% or 10% Tris-glycine SDS/PAGE gels, transferred to nitrocellulose membranes and hybridized with appropriate antibodies at 1∶1000 dilution. Blots were developed by enhanced chemiluminescence (Roche Diagnostic GmbH, Mannheim, Germany). Antibodies: mouse anti-phosphoAtm (Ser 1981) rabbit anti-phosphoChk1 (Ser 345), rabbit anti-phosphoChk2 (Thr 387), rabbit anti-phospho JNK (Thr183/Tyr185) (Cell Signaling, New York, NY, USA), rabbit anti -p53 and mouse anti-MCM7 (Santa Cruz).</p>
</sec>
<sec id="s2l">
<title>Statistical analysis</title>
<p>All results were reported as mean ± SEM. Significance level was determined by Mann – Whitney test. A value *p≤0.05, **p≤0,001 and ****p≤0,0001 was considered statistically significant. Data were expressed as fold change respect to the control, set as 1.</p>
</sec>
</sec>
<sec id="s3">
<title>Results</title>
<p>To understand the potential effects of mechanical stress on cell immunogenicity, cancer and healthy cells were mechanically stressed with a micropump device and shock waves.</p>
<p>The changes induced by the micropump-delivered stress were analysed by Raman spectroscopy. Raman measurements were performed for the respective cells (Mel 59c, Mel 42a, Mel 103a and 293 T cell line) in PBS solution in the spectral range between 700–1800 cm
<sup>−1</sup>
. Raman spectra with standard deviation error bar for control (unstressed) cells and mechanically stressed cells in PBS buffer solution are shown in
<xref ref-type="fig" rid="pone-0111758-g001">Fig. 1</xref>
. Raman spectra of these cells are similar to characteristic Raman spectra of most living cells. All the spectra show different peaks at about 780, 850, 1003, 1125, 1445, and 1660 cm
<sup>−1</sup>
. Typical bands in these spectra (
<xref ref-type="fig" rid="pone-0111758-g001">Fig. 1</xref>
) are associated to the nucleotide conformation (600–800 cm
<sup>−1</sup>
), molecular skeleton geometry and phosphate-related vibrations (800–1200 cm
<sup>−1</sup>
), nucleotides (1200–1600 cm
<sup>−1</sup>
), and C-C and C-H
<sub>x</sub>
modes due to proteins and lipids
<xref rid="pone.0111758-Thomas1" ref-type="bibr">[36]</xref>
. The amide vibrations, such as the amide I-band (due to C = O stretching, 1650–1700 cm
<sup>−1</sup>
) and amide III band (due to C-N stretching, and N-H bending, about 1250 cm
<sup>−1</sup>
) in proteins are easily distinguishable
<xref rid="pone.0111758-Das2" ref-type="bibr">[37]</xref>
. The amide I bands in the range between 1650–1700 cm
<sup>−1</sup>
give also very important information about the confirmation status of secondary structure (α-helix, β-sheet and random coil structure) of proteins. Different amino acids can be recognized explicitly at about 1003, 1011 and 1032 cm
<sup>−1</sup>
in the Raman spectra
<xref rid="pone.0111758-Das2" ref-type="bibr">[37]</xref>
.</p>
<fig id="pone-0111758-g001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0111758.g001</object-id>
<label>Figure 1</label>
<caption>
<title>Raman spectroscopy of different cell lines.</title>
<p>Raman spectra for control and stressed cancer cell lines (Mel 59c (A), Mel 42a (B), Mel 103b(C) and 293T(D)) with standard deviation error bar. The spectra were performed before and after mechanical stress with micropump.</p>
</caption>
<graphic xlink:href="pone.0111758.g001"></graphic>
</fig>
<p>The variation of relative concentration of protein in different cells was calculated by using curve fitting these two regions of protein bands at about 1440 and 1650 cm
<sup>−1</sup>
.
<xref ref-type="fig" rid="pone-0111758-g002">Fig. 2</xref>
shows, for various cell types, the variation in relative intensity of cell membrane protein/lipid (1440 cm
<sup>−1</sup>
) and α-helix (1650 cm
<sup>−1</sup>
) band before and after the application of mechanical stress. A clear decrease of protein quantity and its α-helix secondary structure was observed upon mechanical stress cell treatment.</p>
<fig id="pone-0111758-g002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0111758.g002</object-id>
<label>Figure 2</label>
<caption>
<title>Protein concentration in different cell lines.</title>
<p>Normalized area of band centred at around 1440 (top) and 1670 cm
<sup>−1</sup>
(down) for all the cell lines, showing the variation of protein concentration and relative α-helix content over the cell surface.</p>
</caption>
<graphic xlink:href="pone.0111758.g002"></graphic>
</fig>
<p>A very clear picture can be revealed from the variation of secondary structure after employing mechanical stress. It shows the reduction of α-helix secondary structure of amide I band for all the cells with mechanical stress. This trend is not clearly observed in Mel 42a cells for which the spectrum is very noisy (
<xref ref-type="fig" rid="pone-0111758-g001">Fig. 1B</xref>
). Furthermore, on deep analysis, it is found that the Mel 59c and 293 T cells behave in similar way. All the investigated cell lines show a diminishing secondary structure on mechanical stress. Quenching of α-helix structure and an enhancement of fluorescence background as well can be clearly observed. These alterations in the Raman spectra are consistent with our previously reported findings on the MHC class I detection by Raman spectroscopy
<xref rid="pone.0111758-Das3" ref-type="bibr">[38]</xref>
.</p>
<p>Furthermore, Principal Component Analysis (PCA) is performed to discriminate the stressed to control cells of each cell lines. PCA, a statistical analysis, reduces the dimensionality of multi-dimensional data set, keeping the characteristic of all the spectra
<xref rid="pone.0111758-Candeloro1" ref-type="bibr">[31]</xref>
. The reduced dimension points of each spectrum is described by a limited number of variables, called principal components (PCs). These PCs incorporate most of the spectral information.
<xref ref-type="fig" rid="pone-0111758-g003">Fig. 3</xref>
represents the PCA analysis (PC1 vs. PC2, PC2 vs. PC3 and PC1 vs. PC3) of all the cell lines in the range of 700–1800 cm
<sup>−1</sup>
. The filled blocks are for control cells whereas the empty blocks are associated to stress cells. The stress cells can be well distinguished from control cells and further each cell lines can be found in-grouped clearly in the Figure. These results reveal an interesting and important way to distinguish between cells and also if the cells have been perturbed externally.</p>
<fig id="pone-0111758-g003" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0111758.g003</object-id>
<label>Figure 3</label>
<caption>
<title>Principal component analysis.</title>
<p>PCA analysis on control and stress cells for various cell lines; Mel 42a, Mel 59c, Mel 103b and 293T. a) PC1 vs. PC2, b) PC2 vs. PC3 and c) PC1 vs. PC3.</p>
</caption>
<graphic xlink:href="pone.0111758.g003"></graphic>
</fig>
<p>To confirm that the mechanical stress induces a down-regulation of the MHC class I on the cells surface, we performed an immunophenotype assay for all the different cell types.</p>
<p>After a 1 bar power treatment, by micropump and shock waves, a clear reduction of MHC class I levels on the tumor cells membrane was observed (
<xref ref-type="fig" rid="pone-0111758-g004">Fig. 4A</xref>
), while no changes were observed when healthy cells, fibroblast, macrophage, dendritic and lymphocytes cells, were stressed (
<xref ref-type="fig" rid="pone-0111758-g004">Fig. 4B</xref>
). Statistical analyses were performed on tumor cells (melanoma and IM9 cell lines,
<xref ref-type="fig" rid="pone-0111758-g004">fig. 4C</xref>
) and healthy cells (fibroblast, macrophage, dendritic and lymphocytes cells,
<xref ref-type="fig" rid="pone-0111758-g004">fig. 4D</xref>
).</p>
<fig id="pone-0111758-g004" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0111758.g004</object-id>
<label>Figure 4</label>
<caption>
<title>Median Fluorescence Intensity (MFI) of MHC-I, before and after mechanical stress.</title>
<p>Panel A shows the decrease of the MHC class I molecules expression on cancer cells (5 melanoma and one lymphoblastoid cell lines) after mechanical stress treatment by means of the micropump (upper part) and the shock waves (lower part) compared with untreated cells. Panel B reports the effect of mechanical stress on some healthy cells (fibroblasts and macrophages) of the MHC class I with the two mentioned treatments. The related isotopic control MFI gave the same overlap signal for all cell lines used, therefore have been omitted. Panel C represents the statistical values of fold decrease of the MHC-I performed on melanoma cells (n = 4 separate experiment with micropump and n = 4 separate experiment with shock waves; p<0.05) and IM9 cells (n = 10 separate experiment with shock waves; p<0.0001). The fold decrease of MHC-I was derived from the Median Fluorescence Intensity (MFI) of MHC-I molecules before and after treatment of Melanoma and IM9 cell lines. The panel D shows the statistical values obtained from different experiment (n = 3) for each type of healthy cells. The fibroblasts and the PBLs were stressed with the micropump while, the macrophages and dendritic cells were treated with shock waves. The value reported in panel D is not statistically significant.</p>
</caption>
<graphic xlink:href="pone.0111758.g004"></graphic>
</fig>
<p>The other immunogenic molecules analysed, such as MICA, MICB, ULBPs, PVR and Nectin-2, did not show significant changes between control and stressed cells with shock waves (
<xref ref-type="supplementary-material" rid="pone.0111758.s002">S2 Fig</xref>
.). To understand the effect of the decreased MHC class I expression on mechanically stressed tumor cells immunogenicity, functional assays were performed using both devices, micropump and shock waves. Herein, the NK cells susceptibility of mechanically stressed tumor target cells was compared with their unstressed controls by classic cytotoxicity assays. A clear and reproducible increase in the NK susceptibility was observed after mechanical stress treatment. The range of increasing NK lysis percentage on tumor cells was between 30–70% (
<xref ref-type="fig" rid="pone-0111758-g005">Fig. 5A-E</xref>
), while healthy cells, i.e. fibroblast (
<xref ref-type="fig" rid="pone-0111758-g005">Fig. 5F</xref>
), did not respond to mechanical stress treatment. The results show that mechanical stress improves the NK recognition for tumor with statistical significance (
<xref ref-type="fig" rid="pone-0111758-g005">Fig. 5G-H</xref>
), but not for healthy cells. Mechanical stress switches the tumor phenotype from being NK resistant to NK susceptible. This change in NK susceptibility correlates with tumor specific MHC-class I loss. The MHC class I molecules are the most potent inhibitory ligands for NK receptors. The MHC class I down-regulation on tumor cells trigger the NK response accordingly with the “Missing self hypothesis”
<xref rid="pone.0111758-Ljunggren1" ref-type="bibr">[21]</xref>
. The data here collected indicate that a shedding of MHC-I occurs after mechanical stress from tumor cell surface, this is not the case for healthy cells. Our finding indicates an immunologically relevant effect of mechanical stress on the tumor susceptibility to cytotoxic attack.</p>
<fig id="pone-0111758-g005" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0111758.g005</object-id>
<label>Figure 5</label>
<caption>
<title>Increased NK susceptibility on mechanical stressed tumor cells.</title>
<p>NK cell recognition of different tumor cell targets at different E/T (effector/target) ratio: 59c, 42a, 66b (melanoma cell lines), 293T (kidney carcinoma) and IM9 (lymphoblastoidcell lines) before (grey) and after (black) mechanical stress. The Mel 42a, Mel 66b, fibroblasts cells (panels B, E, and F) were treated with the micropump, the Mel 59c, IM9, 293 T cells (panels A, C and D) were stressed with the shock waves. As healthy target cells, in this case fibroblasts are shown. Representative experiments are reported for each cell type. Panels G and H show the statistics derived from three different functional assays, using NK lymphocytes as effectors cells (E) and IM9 and Melanoma cells as targets (T). The IM9 target cells were treated with the shock waves (panel G: n = 3, p = 0.0325), while the Melanoma target cells were stressed with the micropump (panel H, n = 3, p = 0.0186). E/T ratio 12/1, p<0.05.</p>
</caption>
<graphic xlink:href="pone.0111758.g005"></graphic>
</fig>
<p>The increased cell cytotoxicity observed in classical NK cytotoxicity assays was not due by passive target cell death induced by mechanical stress treatments, but rather by active NK cells cytolitic program as witnessed by the reduction of mechanical stress target cells killing after NK cell's activating receptors blockade.</p>
<p>Next, we investigated the mechanism by which the mechanical stress, induced either with the micropump that with shock waves, may lead to MHC class I down regulation.</p>
<p>
<xref ref-type="fig" rid="pone-0111758-g006">Fig. 6</xref>
shows the quantification of MHC class I mRNA levels in treated cells, compared with controls. The data demonstrate that, in melanoma cells, there is an increased level of transcripts after treatment, compared to the unstressed cells. We hypothesize that the reduction of MHC-I protein on treated cells surface might be followed by a reactivation of MHC-I gene transcription in order to restore the protein levels on cell membrane. Moreover, these data strongly suggest that the mechanical regulation of membrane associated MHC class I occurs at a post-transcriptional level.</p>
<fig id="pone-0111758-g006" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0111758.g006</object-id>
<label>Figure 6</label>
<caption>
<title>Fold increase of MHC-I mRNA from cancer and healthy cells after mechanical stress: Relative expression level of the MHC class I molecule was measured by qPCR on cells before and after applying micropump mechanical stress.</title>
<p>Expression changes were related to unstressed samples. The results shown are the average of duplicates from 2 independent experiments. Error bars indicate standard deviations.</p>
</caption>
<graphic xlink:href="pone.0111758.g006"></graphic>
</fig>
<p>In a distinct set of experiments, we investigated the possibility that the mechanical stress could induce the shedding of MHC class I from the cell membrane. In the
<xref ref-type="fig" rid="pone-0111758-g007">Fig. 7A and B</xref>
, the Mel 137a and the fibroblasts cells were treated whit shock waves at 0.3 and 1 Bar of power. Supernatant from stressed cells and related controls were harvested. Their protein content was analysed by western blotting using an anti MHC class I monoclonal antibody as probe (
<xref ref-type="fig" rid="pone-0111758-g007">Fig. 7A-B</xref>
). The presence of bands at 0.3 and 1 Bar is correlated to the shedding of MHC-I from the cell membrane. Our data show that a high amount of MHC class I is lost from the tumor cell membrane upon mechanical stress.</p>
<fig id="pone-0111758-g007" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0111758.g007</object-id>
<label>Figure 7</label>
<caption>
<title>Western Blotting of MHC class I expression on the supernatants of treated samples: Tumor (A) and healthy cells (B) were analysed before and after mechanical stress by shock waves.</title>
<p>MHC-I has molecular weight of 45 kDa. (C) Membrane incubated with Ponceau S red staining solution, as loading controls.</p>
</caption>
<graphic xlink:href="pone.0111758.g007"></graphic>
</fig>
</sec>
<sec id="s4">
<title>Discussion</title>
<p>Both devices used to stress cancer cells, i.e. the micropump and the shock waves
<xref rid="pone.0111758-Matteucci1" ref-type="bibr">[22]</xref>
,
<xref rid="pone.0111758-Kohri1" ref-type="bibr">[39]</xref>
<xref rid="pone.0111758-Clayman1" ref-type="bibr">[40]</xref>
, were capable to specifically down-modulate the MHC class I. This effect is disease specific, since only tumor cells reduce their surface MHC class I levels upon mechanical stress stimulation. Moreover, we found that the controlled administration of stress increases the susceptibility of tumour cells to cytotoxic lymphocytes NK recognition.</p>
<p>Our data indicate that the mechanism by which mechanical stress induces the loss of MHC class I is not transcriptional but rather associated to the direct shedding of the molecule from the tumor cell membrane. We have indeed analysed the effect of mechanical stress on ATM/ATR signalling cascade
<xref rid="pone.0111758-Gasser1" ref-type="bibr">[41]</xref>
and on the SAPK/JNK pathway
<xref rid="pone.0111758-Arthur1" ref-type="bibr">[42]</xref>
. We found that mechanical stress did not affect the activation status of ATM, Chk1, Chk2, p53 and neither of JNK (
<xref ref-type="supplementary-material" rid="pone.0111758.s003">S3 Fig</xref>
.).</p>
<p>PCA analysis is found an effective statistical for biological samples such as proteins, cells, etc.
<xref rid="pone.0111758-Das1" ref-type="bibr">[30]</xref>
,
<xref rid="pone.0111758-Das3" ref-type="bibr">[38]</xref>
. The results, shown in
<xref ref-type="fig" rid="pone-0111758-g003">Fig. 3</xref>
, on Raman spectra in the range of 700–1800 cm
<sup>−1</sup>
discriminates the stress cell to control cells of each cell lines. In addition, the Raman analysis with the verification of flow cytometry findings regarding the reduction of MHC-I confirms the variation of α-helix is predominately from MHC-I in the spectral range of 1550–1750 cm
<sup>−1</sup>
.</p>
<p>The mechanical stress forces were titrated using 0.3, 0.6 and 1 bar and their effect on the down-regulation of MHC-I molecules and DNAM-1 ligands expression on cancer cells was analysed (
<xref ref-type="supplementary-material" rid="pone.0111758.s004">S4A-C Fig</xref>
). While a clear dose dependent effect on MHC class I down-regulation was found (
<xref ref-type="supplementary-material" rid="pone.0111758.s004">S4A Fig.</xref>
), no changes in DNAM-1 ligands expression were observed (
<xref ref-type="supplementary-material" rid="pone.0111758.s004">S4C Fig.</xref>
).</p>
<p>However, it is intriguing to observe that, in both experimental approaches, 1 Bar was the optimal pressure (force/surface) intensity to obtain the decrease of MHC class I expression and the enhancement of the NK cells recognition. A clear increase in the amount of shedding MHC class I soluble form was measured in the stressed cells supernatants, where 1 Bar pressure was the most effective. Western blotting analysis of the supernatant (
<xref ref-type="supplementary-material" rid="pone.0111758.s004">S4B Fig.</xref>
) shows a reciprocal effect of the mechanical stress forces. It remains to be addressed whether the physiologic forces associated with the human blood pressure ejection from the aortic arch may affect the MHC class I membrane expression of metastatic tumor cells during their hematological spreading with the mechanism above described. Mechanical stress switches the tumor phenotype from being NK resistant to NK susceptible. Our findings indicate an immunologically relevant effect of mechanical stress on the tumor susceptibility to lymphocytotoxic attack. We incidentally observed that the different behaviour in MHC class I shedding between healthy and cancer cell could be correlated with their different mechanical rigidity. In fact, as well known and measured in optical stretchers, cancer cells systematically show a higher deformability under mechanical forces
<xref rid="pone.0111758-Guck3" ref-type="bibr">[6]</xref>
. The poorer rigidity of cancer cell, due to cytoskeleton reshuffling
<xref rid="pone.0111758-Rathje1" ref-type="bibr">[43]</xref>
, induces a higher local membrane deformation that increases the detachment and the shedding of MHC class I. In our vision, this mechanism is responsible for the increased concentration of MHC class I in the supernatant.</p>
<p>Several reports indicate that tumorigenesis is mainly associated with changes in the phospholipids and protein content on biological membranes
<xref rid="pone.0111758-SzachowiczPetelska1" ref-type="bibr">[44]</xref>
<xref rid="pone.0111758-Podo1" ref-type="bibr">[47]</xref>
. The data reported here provide further support to these observations, highlighting the distinct physical and chemical properties of cancer cell membranes compared to the normal ones and directly relate this observation with the cell immunogenicity. Moreover, it is possible to speculate that MHC class I molecules could differ for their biological properties (surface life span) accordingly with the chemical physical feature of the cell membrane lipid bilayers where they are expressed.</p>
<p>We further speculate that organs such as heart, and related tissues such as muscles, that posses mechanical activity in their normal function, and could generate mechanical stress, show a minor or absent presence of tumours
<xref rid="pone.0111758-Winzer1" ref-type="bibr">[48]</xref>
<xref rid="pone.0111758-Ferlay1" ref-type="bibr">[52]</xref>
. The inherent mechano-kinetic activity could generate a self-healing mechanism as described above. In the future we are planning to further investigate along this direction.</p>
<p>We finally point out here that the use of ultrasound is particularly interesting for therapy treatments, due to their intrinsic macroscopic penetration depth (several centimetres) in human and animal tissues.</p>
</sec>
<sec sec-type="supplementary-material" id="s5">
<title>Supporting Information</title>
<supplementary-material content-type="local-data" id="pone.0111758.s001">
<label>S1 Fig</label>
<caption>
<p>
<bold>Experimental set up for mechanical stress of tumor cells.</bold>
1A: on the left, graphical representation of the mechanism for treating the cells by stressing them in between the gears of the micropump; left-bottom: SEM image of the micropump; on the right, scheme of the set-up used for treating the cells: A-micropump, B-motor activating the magnets inside the micropump allowing the gears to rotate; C-sample reservoir; E-sample inlet; F-Sample outlet. 1B: The instrument is equipped with a handpiece high-energy A and C, a manometer for operating pressure, an operating pressure control and a handpiece connection, B. Cell lines were treated in liquid, PBS or complete Medium, in petri dish, C.</p>
<p>(TIFF)</p>
</caption>
<media xlink:href="pone.0111758.s001.tiff">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0111758.s002">
<label>S2 Fig</label>
<caption>
<p>
<bold>Immunophenotypic analysis of 293T and IM9 cell lines under mechanical stress condition.</bold>
Expression on 293T of MICA, MICB, ULBP1–4, and the free heavy chain of MHC class I (A) and PVR and Nectin-2 on IM9 (B) were compared between stressed and not stressed cells. Data were expressed as fold decrease respect to the control, set as 1. In brief, each sample value was divided against the average of the control values. The so obtained data were used in statistical analysis. Statistical significance was measured used Mann – Whitney test.</p>
<p>(TIFF)</p>
</caption>
<media xlink:href="pone.0111758.s002.tiff">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0111758.s003">
<label>S3 Fig</label>
<caption>
<p>
<bold>Effect of mechanical stress on ATM/ATR signalling cascade and on stress-activated kinase.</bold>
Western blot of total extract from 293 T cells mechanically stressed or not for 1 h; the treatment with the damaging agent etoposide 5 µM for 1 h is shown as positive control; phospho-ATM, pChk1, pChk2, p53 and pJNK were analysed and MCM7 was used as loading control.</p>
<p>(TIFF)</p>
</caption>
<media xlink:href="pone.0111758.s003.tiff">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0111758.s004">
<label>S4 Fig</label>
<caption>
<p>
<bold>Mechanical stress effect on IM9 cell line immunophenotype.</bold>
A) Decrease at 0.3 and 0.6 Bar of MHC-I molecules expression on IM9 cell line. (n = 7 separate experiments, p = 0,0202; n = 7 separate experiments, p = 0,0010; p<0.05 respectively); B) MHC class I expression of IM9 cell supernatants was analysed with western blotting at different powers, compared to control cells. MHC-I has molecular weight of 45 kDa. C) No variation for PVR and Nectin-2 activator ligands after 0.3, 0.6 and 1Bar pressure treatments (n = 3 separate experiments). Statistical significance was measured used Mann – Whitney test.</p>
<p>(TIFF)</p>
</caption>
<media xlink:href="pone.0111758.s004.tiff">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<p>We thank Annamaria Musti, Enrico Avvedimento for their advices and suggestions, and we thank Andrea Dominijanni and the Blood Transfusion Centre “Pugliese-Ciaccio” Hospital of Catanzaro to provide with healthy donor's blood samples. Dr Dirk Schadendorf for the melanoma cell lines. The work was conceived by Ennio Carbone and Enzo di Fabrizio.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="pone.0111758-Yang1">
<label>1</label>
<mixed-citation publication-type="journal">
<name>
<surname>Yang</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Crawford</surname>
<given-names>RC</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>JH</given-names>
</name>
(
<year>2004</year>
)
<article-title>Proliferation and collagen production of human patellar tendon fibroblasts in response to cyclic uniaxial stretching in serum-free conditions</article-title>
.
<source>J Biomech</source>
<volume>37</volume>
:
<fpage>1543</fpage>
<lpage>1550</lpage>
.
<pub-id pub-id-type="pmid">15336929</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Guck1">
<label>2</label>
<mixed-citation publication-type="journal">
<name>
<surname>Guck</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Ananthakrishnan</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Mahmood</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Moon</surname>
<given-names>TJ</given-names>
</name>
,
<name>
<surname>Cunningham</surname>
<given-names>CC</given-names>
</name>
,
<etal>et al</etal>
(
<year>2001</year>
)
<article-title>The optical stretcher: a novel laser tool to micromanipulate cells</article-title>
.
<source>Biophys J</source>
<volume>81</volume>
:
<fpage>767</fpage>
<lpage>84</lpage>
.
<pub-id pub-id-type="pmid">11463624</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Ashkin1">
<label>3</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ashkin</surname>
<given-names>A</given-names>
</name>
(
<year>1970</year>
)
<article-title>Acceleration and trapping of particles by radiation pressure</article-title>
.
<source>Phys Rev Lett</source>
<volume>24</volume>
:
<fpage>156</fpage>
<lpage>159</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0111758-Constable1">
<label>4</label>
<mixed-citation publication-type="journal">
<name>
<surname>Constable</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Kim</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Mervis</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Zarinetchi</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Prentiss</surname>
<given-names>M</given-names>
</name>
(
<year>1993</year>
)
<article-title>Demonstration of a fiber-optical light-force trap</article-title>
.
<source>Opt Lett</source>
<volume>18</volume>
:
<fpage>1867</fpage>
<lpage>1869</lpage>
.
<pub-id pub-id-type="pmid">19829431</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Guck2">
<label>5</label>
<mixed-citation publication-type="journal">
<name>
<surname>Guck</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Ananthakrishnan</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Moon</surname>
<given-names>TJ</given-names>
</name>
,
<name>
<surname>Cunningham</surname>
<given-names>CC</given-names>
</name>
,
<name>
<surname>Käs</surname>
<given-names>J</given-names>
</name>
(
<year>2000</year>
)
<article-title>Optical deformability of soft biological dielectrics</article-title>
.
<source>Phys Rev Lett</source>
<volume>84</volume>
:
<fpage>5451</fpage>
<lpage>5454</lpage>
.
<pub-id pub-id-type="pmid">10990966</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Guck3">
<label>6</label>
<mixed-citation publication-type="journal">
<name>
<surname>Guck</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Schinkinger</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Lincoln</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Wottawah</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Ebert</surname>
<given-names>S</given-names>
</name>
,
<etal>et al</etal>
(
<year>2005</year>
)
<article-title>Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence</article-title>
.
<source>Biophys J</source>
<volume>88</volume>
:
<fpage>3689</fpage>
<lpage>3698</lpage>
.
<pub-id pub-id-type="pmid">15722433</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Khaled1">
<label>7</label>
<mixed-citation publication-type="journal">
<name>
<surname>Khaled</surname>
<given-names>W</given-names>
</name>
,
<name>
<surname>Reichling</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Bruhns</surname>
<given-names>OT</given-names>
</name>
,
<name>
<surname>Boese</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Baumann</surname>
<given-names>M</given-names>
</name>
,
<etal>et al</etal>
(
<year>2004</year>
)
<article-title>Palpation imaging using a haptic system for virtual reality applications in medicine</article-title>
.
<source>Stud Health Technol Inform</source>
<volume>98</volume>
:
<fpage>147</fpage>
<lpage>153</lpage>
.
<pub-id pub-id-type="pmid">15544261</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Paszek1">
<label>8</label>
<mixed-citation publication-type="journal">
<name>
<surname>Paszek</surname>
<given-names>MJ</given-names>
</name>
,
<name>
<surname>Zahir</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Johnson</surname>
<given-names>KR</given-names>
</name>
,
<name>
<surname>Lakins</surname>
<given-names>JN</given-names>
</name>
,
<name>
<surname>Rozenberg</surname>
<given-names>GI</given-names>
</name>
,
<etal>et al</etal>
(
<year>2005</year>
)
<article-title>Tensional homeostasis and the malignant phenotype</article-title>
.
<source>Cancer Cell</source>
<volume>8</volume>
:
<fpage>241</fpage>
<lpage>254</lpage>
.
<pub-id pub-id-type="pmid">16169468</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Paszek2">
<label>9</label>
<mixed-citation publication-type="journal">
<name>
<surname>Paszek</surname>
<given-names>MJ</given-names>
</name>
,
<name>
<surname>Weaver</surname>
<given-names>VM</given-names>
</name>
(
<year>2004</year>
)
<article-title>The tension mounts: mechanics meets morphogenesis and malignancy. J Mammary Gland Biol</article-title>
.
<source>Neoplasia</source>
<volume>9</volume>
:
<fpage>325</fpage>
<lpage>342</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0111758-Nausch1">
<label>10</label>
<mixed-citation publication-type="journal">
<name>
<surname>Nausch</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Cerwenka</surname>
<given-names>A</given-names>
</name>
(
<year>2008</year>
)
<article-title>NKG2D ligands in tumor immunity</article-title>
.
<source>Oncogene</source>
<volume>27</volume>
:
<fpage>5944</fpage>
<lpage>5958</lpage>
.
<pub-id pub-id-type="pmid">18836475</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Groh1">
<label>11</label>
<mixed-citation publication-type="journal">
<name>
<surname>Groh</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Rhinehart</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Randolph-Habecker</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Topp</surname>
<given-names>MS</given-names>
</name>
,
<name>
<surname>Riddell</surname>
<given-names>SR</given-names>
</name>
,
<etal>et al</etal>
(
<year>2001</year>
)
<article-title>Costimulation of CD8alphabeta T cells by NKG2D via engagement by MIC induced on virus-infected cells</article-title>
.
<source>Nat Immunol</source>
<volume>2</volume>
:
<fpage>255</fpage>
<lpage>260</lpage>
.
<pub-id pub-id-type="pmid">11224526</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Bauer1">
<label>12</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bauer</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Groh</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Wu</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Steinle</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Phillips</surname>
<given-names>JH</given-names>
</name>
,
<etal>et al</etal>
(
<year>1999</year>
)
<article-title>Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA</article-title>
.
<source>Science</source>
<volume>285</volume>
:
<fpage>727</fpage>
<lpage>729</lpage>
.
<pub-id pub-id-type="pmid">10426993</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Dunn1">
<label>13</label>
<mixed-citation publication-type="journal">
<name>
<surname>Dunn</surname>
<given-names>GP</given-names>
</name>
,
<name>
<surname>Koebel</surname>
<given-names>CM</given-names>
</name>
,
<name>
<surname>Schreiber</surname>
<given-names>RD</given-names>
</name>
(
<year>2006</year>
)
<article-title>Interferons, immunity and cancer immunoediting</article-title>
.
<source>Nat Rev Immunol</source>
<volume>6</volume>
:
<fpage>836</fpage>
<lpage>848</lpage>
.
<pub-id pub-id-type="pmid">17063185</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Sun1">
<label>14</label>
<mixed-citation publication-type="journal">
<name>
<surname>Sun</surname>
<given-names>JC</given-names>
</name>
,
<name>
<surname>Lanier</surname>
<given-names>LL</given-names>
</name>
(
<year>2011</year>
)
<article-title>NK cell development, homeostasis and function: parallels with CD8+ T cells</article-title>
.
<source>Nat Rev Immunol</source>
<volume>11</volume>
:
<fpage>645</fpage>
<lpage>657</lpage>
.
<pub-id pub-id-type="pmid">21869816</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Farag1">
<label>15</label>
<mixed-citation publication-type="journal">
<name>
<surname>Farag</surname>
<given-names>SS</given-names>
</name>
,
<name>
<surname>Caligiuri</surname>
<given-names>MA</given-names>
</name>
(
<year>2006</year>
)
<article-title>Human natural killer cell development and biology</article-title>
.
<source>Blood Rev</source>
<volume>20</volume>
:
<fpage>123</fpage>
<lpage>137</lpage>
.
<pub-id pub-id-type="pmid">16364519</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Trinchieri1">
<label>16</label>
<mixed-citation publication-type="journal">
<name>
<surname>Trinchieri</surname>
<given-names>G</given-names>
</name>
(
<year>1989</year>
)
<article-title>Biology of natural killer cells</article-title>
.
<source>Adv Immunol</source>
<volume>47</volume>
:
<fpage>187</fpage>
<lpage>376</lpage>
.
<pub-id pub-id-type="pmid">2683611</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Lakshmikanth1">
<label>17</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lakshmikanth</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Burke</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Ali</surname>
<given-names>TH</given-names>
</name>
,
<name>
<surname>Kimpfler</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Ursini</surname>
<given-names>F</given-names>
</name>
,
<etal>et al</etal>
(
<year>2009</year>
)
<article-title>NCRs and DNAM-1 mediate NK cell recognition and lysis of human and mouse melanoma cell lines in vitro and in vivo</article-title>
.
<source>J Clin Invest</source>
<volume>119</volume>
:
<fpage>1251</fpage>
<lpage>1263</lpage>
.
<pub-id pub-id-type="pmid">19349689</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Fregni1">
<label>18</label>
<mixed-citation publication-type="journal">
<name>
<surname>Fregni</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Messaoudene</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Fourmentraux-Neves</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Mazouz-Dorval</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Chanal</surname>
<given-names>J</given-names>
</name>
,
<etal>et al</etal>
(
<year>2013</year>
)
<article-title>Phenotypic and functional characteristics of blood natural killer cells from melanoma patients at different clinical stages</article-title>
.
<source>PLoS One</source>
<volume>8</volume>
:
<fpage>e76928</fpage>
.
<pub-id pub-id-type="pmid">24204708</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Jewett1">
<label>19</label>
<mixed-citation publication-type="journal">
<name>
<surname>Jewett</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Man</surname>
<given-names>YG</given-names>
</name>
,
<name>
<surname>Tseng</surname>
<given-names>HC</given-names>
</name>
(
<year>2013</year>
)
<article-title>Dual functions of natural killer cells in selection and differentiation of stem cells; role in regulation of inflammation and regeneration of tissues</article-title>
.
<source>J Cancer</source>
<volume>4</volume>
:
<fpage>12</fpage>
<lpage>24</lpage>
.
<pub-id pub-id-type="pmid">23386901</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Bischoff1">
<label>20</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bischoff</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Bryson</surname>
<given-names>G</given-names>
</name>
(
<year>1964</year>
)
<article-title>Carcinogenesis through solid state surfaces</article-title>
.
<source>Prog Exp Tumor Res</source>
<volume>5</volume>
:
<fpage>85</fpage>
<lpage>133</lpage>
.
<pub-id pub-id-type="pmid">14317768</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Ljunggren1">
<label>21</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ljunggren</surname>
<given-names>HG</given-names>
</name>
,
<name>
<surname>Kärre</surname>
<given-names>K</given-names>
</name>
(
<year>1990</year>
)
<article-title>In search of the ‘missing self’: MHC molecules and NK cell recognition</article-title>
.
<source>Immunol Today</source>
<volume>11</volume>
:
<fpage>237</fpage>
<lpage>244</lpage>
.
<pub-id pub-id-type="pmid">2201309</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Matteucci1">
<label>22</label>
<mixed-citation publication-type="journal">
<name>
<surname>Matteucci</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Lakshmikanth</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Krishnan</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>De Angelis</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Schadendorf</surname>
<given-names>D</given-names>
</name>
,
<etal>et al</etal>
(
<year>2007</year>
)
<article-title>Preliminary study of micromechanical stress delivery for cell biology studies. Microelec</article-title>
.
<source>Eng</source>
.
<volume>84</volume>
:
<fpage>1729</fpage>
<lpage>1732</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0111758-Carbone1">
<label>23</label>
<mixed-citation publication-type="journal">
<name>
<surname>Carbone</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Terrazzano</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Ruggiero</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Zanzi</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Ottaiano</surname>
<given-names>A</given-names>
</name>
,
<etal>et al</etal>
(
<year>1999</year>
)
<article-title>Recognition of autologous dendritic cells by human NK cells</article-title>
.
<source>Eur J Immunol</source>
<volume>29</volume>
:
<fpage>4022</fpage>
<lpage>4029</lpage>
.
<pub-id pub-id-type="pmid">10602012</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Ruggeri1">
<label>24</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ruggeri</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Capanni</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Urbani</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Perruccio</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Shlomchik</surname>
<given-names>WD</given-names>
</name>
,
<etal>et al</etal>
(
<year>2002</year>
)
<article-title>Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants</article-title>
.
<source>Science</source>
<volume>295</volume>
:
<fpage>2097</fpage>
<lpage>2100</lpage>
.
<pub-id pub-id-type="pmid">11896281</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Majzner1">
<label>25</label>
<mixed-citation publication-type="journal">
<name>
<surname>Majzner</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Kaczor</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Kachamakova-Trojanowska</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Fedorowicz</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Chlopicki</surname>
<given-names>S</given-names>
</name>
,
<etal>et al</etal>
(
<year>2013</year>
)
<article-title>3D confocal Raman imaging of endothelial cells and vascular wall: perspectives in analytical spectroscopy of biomedical research</article-title>
.
<source>Analyst</source>
<volume>138</volume>
:
<fpage>603</fpage>
<lpage>610</lpage>
.
<pub-id pub-id-type="pmid">23172339</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Bonnier1">
<label>26</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bonnier</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Knief</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Lim</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Meade</surname>
<given-names>AD</given-names>
</name>
,
<name>
<surname>Dorney</surname>
<given-names>J</given-names>
</name>
,
<etal>et al</etal>
(
<year>2010</year>
)
<article-title>Imaging live cells grown on a three dimensional collagen matrix using Raman microspectroscopy</article-title>
.
<source>Analyst</source>
<volume>135</volume>
:
<fpage>3169</fpage>
<lpage>3177</lpage>
.
<pub-id pub-id-type="pmid">20941442</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-DeGelder1">
<label>27</label>
<mixed-citation publication-type="journal">
<name>
<surname>De Gelder</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>De Gussem</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Vandenabeele</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>De Vos</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Moens</surname>
<given-names>L</given-names>
</name>
(
<year>2007</year>
)
<article-title>Methods for extracting biochemical information from bacterial Raman spectra: An explorative study on Cupriavidusmetallidurans</article-title>
.
<source>Anal Chim Acta</source>
<volume>585</volume>
:
<fpage>234</fpage>
<lpage>240</lpage>
.
<pub-id pub-id-type="pmid">17386670</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Matthaus1">
<label>28</label>
<mixed-citation publication-type="journal">
<name>
<surname>Matthaus</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Chernenko</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Newmark</surname>
<given-names>JA</given-names>
</name>
,
<name>
<surname>Warner</surname>
<given-names>CM</given-names>
</name>
,
<name>
<surname>Diem</surname>
<given-names>M</given-names>
</name>
(
<year>2007</year>
)
<article-title>Label-Free Detection of Mitochondrial Distribution in Cells by Nonresonant Raman Microspectroscopy</article-title>
.
<source>Biophys J</source>
<volume>93</volume>
:
<fpage>668</fpage>
<lpage>673</lpage>
.
<pub-id pub-id-type="pmid">17468162</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Chan1">
<label>29</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chan</surname>
<given-names>JW</given-names>
</name>
,
<name>
<surname>Taylor</surname>
<given-names>DS</given-names>
</name>
,
<name>
<surname>Zwerdling</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Lane</surname>
<given-names>SM</given-names>
</name>
,
<name>
<surname>Ihara</surname>
<given-names>K</given-names>
</name>
,
<etal>et al</etal>
(
<year>2006</year>
)
<article-title>Micro-Raman Spectroscopy Detects Individual Neoplastic and Normal Hematopoietic Cells</article-title>
.
<source>Biophys J</source>
<volume>90</volume>
:
<fpage>648</fpage>
<lpage>656</lpage>
.
<pub-id pub-id-type="pmid">16239327</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Das1">
<label>30</label>
<mixed-citation publication-type="journal">
<name>
<surname>Das</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Gentile</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Coluccio</surname>
<given-names>ML</given-names>
</name>
,
<name>
<surname>Perri</surname>
<given-names>AM</given-names>
</name>
,
<name>
<surname>Nicastri</surname>
<given-names>A</given-names>
</name>
,
<etal>et al</etal>
(
<year>2011</year>
)
<article-title>Principal component analysis based methodology to distinguish protein SERS spectra</article-title>
.
<source>J Mol Strc</source>
<volume>993</volume>
:
<fpage>500</fpage>
<lpage>505</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0111758-Candeloro1">
<label>31</label>
<mixed-citation publication-type="journal">
<name>
<surname>Candeloro</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Grande</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Raimondo</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Di Mascolo</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Gentile</surname>
<given-names>F</given-names>
</name>
,
<etal>et al</etal>
(
<year>2013</year>
)
<article-title>Raman database of amino acids solutions: a critical study of Extended Multiplicative Signal Correction</article-title>
.
<source>Analyst</source>
<volume>138</volume>
:
<fpage>7331</fpage>
<lpage>7340</lpage>
.
<pub-id pub-id-type="pmid">24153318</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-McGinnes1">
<label>32</label>
<mixed-citation publication-type="journal">
<name>
<surname>McGinnes</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Chapman</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Marks</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Penny</surname>
<given-names>R</given-names>
</name>
(
<year>1986</year>
)
<article-title>A fluorescence NK assay using flow cytometry</article-title>
.
<source>J Immunol Methods</source>
<volume>86</volume>
:
<fpage>7</fpage>
<lpage>15</lpage>
.
<pub-id pub-id-type="pmid">3944470</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Carbone2">
<label>33</label>
<mixed-citation publication-type="journal">
<name>
<surname>Carbone</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Neri</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Mesuraca</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Fulciniti</surname>
<given-names>MT</given-names>
</name>
,
<name>
<surname>Otsuki</surname>
<given-names>T</given-names>
</name>
,
<etal>et al</etal>
(
<year>2005</year>
)
<article-title>HLA class I, NKG2D, and natural cytotoxicity receptors regulate multiple myeloma cell recognition by natural killer cells</article-title>
.
<source>Blood</source>
<volume>105</volume>
:
<fpage>251</fpage>
<lpage>258</lpage>
.
<pub-id pub-id-type="pmid">15328155</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Pfaffl1">
<label>34</label>
<mixed-citation publication-type="journal">
<name>
<surname>Pfaffl</surname>
<given-names>MW</given-names>
</name>
,
<name>
<surname>Tichopad</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Prgomet</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Neuvians</surname>
<given-names>TP</given-names>
</name>
(
<year>2004</year>
)
<article-title>Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: Best Keeper–Excel-based tool using pair-wise correlations</article-title>
.
<source>Biotechnol Lett</source>
<volume>26</volume>
:
<fpage>509</fpage>
<lpage>515</lpage>
.
<pub-id pub-id-type="pmid">15127793</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Klein1">
<label>35</label>
<mixed-citation publication-type="journal">
<name>
<surname>Klein</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Kern</surname>
<given-names>RM</given-names>
</name>
,
<name>
<surname>Sokol</surname>
<given-names>RZ</given-names>
</name>
(
<year>1995</year>
)
<article-title>A method for quantification and correction of proteins after transfer to immobilization membranes</article-title>
.
<source>Biochem Mol Biol Int</source>
<volume>36</volume>
:
<fpage>59</fpage>
<lpage>66</lpage>
.
<pub-id pub-id-type="pmid">7545052</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Thomas1">
<label>36</label>
<mixed-citation publication-type="journal">
<name>
<surname>Thomas</surname>
<given-names>GJ</given-names>
<suffix>Jr</suffix>
</name>
,
<name>
<surname>Prescott</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Day</surname>
<given-names>LA</given-names>
</name>
(
<year>1983</year>
)
<article-title>Structure similarity, difference and variability in the filamentous viruses fd, If1, IKe, Pf1 and Xf. Investigation by laser Raman spectroscopy</article-title>
.
<source>J Mol Biol</source>
<volume>165</volume>
:
<fpage>321</fpage>
<lpage>356</lpage>
.
<pub-id pub-id-type="pmid">6405045</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Das2">
<label>37</label>
<mixed-citation publication-type="journal">
<name>
<surname>Das</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Mecarini</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Gentile</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>De Angelis</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Mohan Kumar</surname>
<given-names>H</given-names>
</name>
,
<etal>et al</etal>
(
<year>2009</year>
)
<article-title>Nano-patterned SERS substrate: application for protein analysis vs. temperature</article-title>
.
<source>Biosens Bioelectron</source>
<volume>24</volume>
:
<fpage>1693</fpage>
<lpage>1699</lpage>
.
<pub-id pub-id-type="pmid">18976899</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Das3">
<label>38</label>
<mixed-citation publication-type="journal">
<name>
<surname>Das</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>La Rocca</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Lakshmikanth</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Gentile</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Tallerico</surname>
<given-names>R</given-names>
</name>
,
<etal>et al</etal>
(
<year>2010</year>
)
<article-title>Monitoring human leukocyte antigen class I molecules by micro-Raman spectroscopy at single-cell level</article-title>
.
<source>J Biomed Opt</source>
<volume>15</volume>
:
<fpage>027007</fpage>
.
<pub-id pub-id-type="pmid">20459281</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Kohri1">
<label>39</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kohri</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Uemura</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Iguchi</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Kurita</surname>
<given-names>T</given-names>
</name>
(
<year>1990</year>
)
<article-title>Effect of high energy shock waves on tumorcells</article-title>
.
<source>Urol</source>
<volume>Res18</volume>
:
<fpage>101</fpage>
<lpage>105</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0111758-Clayman1">
<label>40</label>
<mixed-citation publication-type="journal">
<name>
<surname>Clayman</surname>
<given-names>RV</given-names>
</name>
,
<name>
<surname>Long</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Marcus</surname>
<given-names>M</given-names>
</name>
(
<year>1991</year>
)
<article-title>High-energy shock waves: in vitro effects</article-title>
.
<source>Am J Kidney Dis</source>
<volume>17</volume>
:
<fpage>436</fpage>
<lpage>444</lpage>
.
<pub-id pub-id-type="pmid">2008913</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Gasser1">
<label>41</label>
<mixed-citation publication-type="journal">
<name>
<surname>Gasser</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Orsulic</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Brown</surname>
<given-names>EJ</given-names>
</name>
,
<name>
<surname>Raulet</surname>
<given-names>DH</given-names>
</name>
(
<year>2005</year>
)
<article-title>The DNA damage pathway regulates innate immune system ligands for the NKG2D receptor</article-title>
.
<source>Nature</source>
<volume>436</volume>
:
<fpage>1186</fpage>
<lpage>1190</lpage>
.
<pub-id pub-id-type="pmid">15995699</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Arthur1">
<label>42</label>
<mixed-citation publication-type="journal">
<name>
<surname>Arthur</surname>
<given-names>JS</given-names>
</name>
,
<name>
<surname>Ley</surname>
<given-names>SC</given-names>
</name>
(
<year>2013</year>
)
<article-title>Mitogen-activated protein kinases in innate immunity</article-title>
.
<source>Nat Rev Immunol</source>
<volume>13</volume>
:
<fpage>679</fpage>
<lpage>692</lpage>
.
<pub-id pub-id-type="pmid">23954936</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Rathje1">
<label>43</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rathje</surname>
<given-names>LS</given-names>
</name>
,
<name>
<surname>Nordgren</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Pettersson</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Rönnlund</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Widengren</surname>
<given-names>J</given-names>
</name>
,
<etal>et al</etal>
(
<year>2014</year>
)
<article-title>Oncogenes induce a vimentin filament collapse mediated by HDAC6 that is linked to cell stiffness</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
<volume>111</volume>
:
<fpage>1515</fpage>
<lpage>1520</lpage>
.
<pub-id pub-id-type="pmid">24474778</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-SzachowiczPetelska1">
<label>44</label>
<mixed-citation publication-type="journal">
<name>
<surname>Szachowicz-Petelska</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Dobrzyńska</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Skrodzka</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Darewicz</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Figaszewski</surname>
<given-names>ZA</given-names>
</name>
,
<etal>et al</etal>
(
<year>2013</year>
)
<article-title>Phospholipid composition and electric charge in healthy and cancerous parts of human kidneys</article-title>
.
<source>J Membr Biol</source>
<volume>246</volume>
:
<fpage>421</fpage>
<lpage>425</lpage>
.
<pub-id pub-id-type="pmid">23649039</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Perozziello1">
<label>45</label>
<mixed-citation publication-type="journal">
<name>
<surname>Perozziello</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>La Rocca</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Cojoc</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Liberale</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Malara</surname>
<given-names>N</given-names>
</name>
,
<etal>et al</etal>
(
<year>2012</year>
)
<article-title>Microfluidic devices modulate tumor cell line susceptibility to NK cell recognition</article-title>
.
<source>Small</source>
<volume>8</volume>
:
<fpage>2886</fpage>
<lpage>2894</lpage>
.
<pub-id pub-id-type="pmid">22761002</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Perozziello2">
<label>46</label>
<mixed-citation publication-type="journal">
<name>
<surname>Perozziello</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Simone</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Malara</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>La Rocca</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Tallerico</surname>
<given-names>R</given-names>
</name>
,
<etal>et al</etal>
(
<year>2013</year>
)
<article-title>Micro fluidic biofunctionalisation protocols to form multivalent interactions for cell rolling and phenotype modification investigations</article-title>
.
<source>Electrophoresis</source>
<volume>34</volume>
:
<fpage>1845</fpage>
<lpage>1851</lpage>
.
<pub-id pub-id-type="pmid">23616364</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Podo1">
<label>47</label>
<mixed-citation publication-type="journal">
<name>
<surname>Podo</surname>
<given-names>F</given-names>
</name>
(
<year>1999</year>
)
<article-title>Tumour phospholipid metabolism</article-title>
.
<source>NMR Biomed</source>
<volume>12</volume>
:
<fpage>413</fpage>
<lpage>439</lpage>
.
<pub-id pub-id-type="pmid">10654290</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Winzer1">
<label>48</label>
<mixed-citation publication-type="journal">
<name>
<surname>Winzer</surname>
<given-names>BM</given-names>
</name>
,
<name>
<surname>Whiteman</surname>
<given-names>DC</given-names>
</name>
,
<name>
<surname>Reeves</surname>
<given-names>MM</given-names>
</name>
,
<name>
<surname>Paratz</surname>
<given-names>JD</given-names>
</name>
(
<year>2011</year>
)
<article-title>Physical activity and cancer prevention: a systematic review of clinical trials</article-title>
.
<source>Cancer Causes Control</source>
<volume>22</volume>
:
<fpage>811</fpage>
<lpage>826</lpage>
.
<pub-id pub-id-type="pmid">21461921</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-McTiernan1">
<label>49</label>
<mixed-citation publication-type="journal">
<name>
<surname>McTiernan</surname>
<given-names>A</given-names>
</name>
(
<year>2008</year>
)
<article-title>Mechanisms linking physical activity with cancer</article-title>
.
<source>Nat Rev Cancer</source>
<volume>8</volume>
:
<fpage>205</fpage>
<lpage>211</lpage>
.
<pub-id pub-id-type="pmid">18235448</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Bussani1">
<label>50</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bussani</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>De-Giorgio</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Abbate</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Silvestri</surname>
<given-names>F</given-names>
</name>
(
<year>2007</year>
)
<article-title>Cardiac Metastases</article-title>
.
<source>J Clin Pathol</source>
<volume>60</volume>
:
<fpage>27</fpage>
<lpage>34</lpage>
.
<pub-id pub-id-type="pmid">17098886</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Reynen1">
<label>51</label>
<mixed-citation publication-type="journal">
<name>
<surname>Reynen</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Köckeritz</surname>
<given-names>U</given-names>
</name>
,
<name>
<surname>Strasser</surname>
<given-names>RH</given-names>
</name>
(
<year>2004</year>
)
<article-title>Metastases to the heart</article-title>
.
<source>Annals of Oncology</source>
<volume>15</volume>
:
<fpage>375</fpage>
<lpage>381</lpage>
.
<pub-id pub-id-type="pmid">14998838</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0111758-Ferlay1">
<label>52</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ferlay</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Autier</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Boniol</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Heanue</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Colombet</surname>
<given-names>M</given-names>
</name>
,
<etal>et al</etal>
(
<year>2007</year>
)
<article-title>Estimates of the cancer incidence and mortality in Europe in 2006</article-title>
.
<source>Annals of Oncology</source>
<volume>18</volume>
:
<fpage>581</fpage>
<lpage>592</lpage>
.
<pub-id pub-id-type="pmid">17287242</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
<affiliations>
<list>
<country>
<li>Danemark</li>
<li>Iraq</li>
<li>Italie</li>
<li>Suède</li>
</country>
<region>
<li>Svealand</li>
</region>
<settlement>
<li>Stockholm</li>
</settlement>
</list>
<tree>
<country name="Italie">
<noRegion>
<name sortKey="La Rocca, Rosanna" sort="La Rocca, Rosanna" uniqKey="La Rocca R" first="Rosanna" last="La Rocca">Rosanna La Rocca</name>
</noRegion>
<name sortKey="Ammendolia, Antonio" sort="Ammendolia, Antonio" uniqKey="Ammendolia A" first="Antonio" last="Ammendolia">Antonio Ammendolia</name>
<name sortKey="Candeloro, Patrizio" sort="Candeloro, Patrizio" uniqKey="Candeloro P" first="Patrizio" last="Candeloro">Patrizio Candeloro</name>
<name sortKey="Carbone, Ennio" sort="Carbone, Ennio" uniqKey="Carbone E" first="Ennio" last="Carbone">Ennio Carbone</name>
<name sortKey="Cojoc, Gheorghe" sort="Cojoc, Gheorghe" uniqKey="Cojoc G" first="Gheorghe" last="Cojoc">Gheorghe Cojoc</name>
<name sortKey="Cuda, Giovanni" sort="Cuda, Giovanni" uniqKey="Cuda G" first="Giovanni" last="Cuda">Giovanni Cuda</name>
<name sortKey="Das, Gobind" sort="Das, Gobind" uniqKey="Das G" first="Gobind" last="Das">Gobind Das</name>
<name sortKey="Di Fabrizio, Enzo" sort="Di Fabrizio, Enzo" uniqKey="Di Fabrizio E" first="Enzo" last="Di Fabrizio">Enzo Di Fabrizio</name>
<name sortKey="Gallo, Adriana" sort="Gallo, Adriana" uniqKey="Gallo A" first="Adriana" last="Gallo">Adriana Gallo</name>
<name sortKey="Gentile, Francesco" sort="Gentile, Francesco" uniqKey="Gentile F" first="Francesco" last="Gentile">Francesco Gentile</name>
<name sortKey="La Rocca, Rosanna" sort="La Rocca, Rosanna" uniqKey="La Rocca R" first="Rosanna" last="La Rocca">Rosanna La Rocca</name>
<name sortKey="Liberale, Carlo" sort="Liberale, Carlo" uniqKey="Liberale C" first="Carlo" last="Liberale">Carlo Liberale</name>
<name sortKey="Mesuraca, Maria" sort="Mesuraca, Maria" uniqKey="Mesuraca M" first="Maria" last="Mesuraca">Maria Mesuraca</name>
<name sortKey="Perozziello, Gerardo" sort="Perozziello, Gerardo" uniqKey="Perozziello G" first="Gerardo" last="Perozziello">Gerardo Perozziello</name>
<name sortKey="Scumaci, Domenica" sort="Scumaci, Domenica" uniqKey="Scumaci D" first="Domenica" last="Scumaci">Domenica Scumaci</name>
<name sortKey="Talib Hassan, Almosawy" sort="Talib Hassan, Almosawy" uniqKey="Talib Hassan A" first="Almosawy" last="Talib Hassan">Almosawy Talib Hassan</name>
<name sortKey="Tallerico, Rossana" sort="Tallerico, Rossana" uniqKey="Tallerico R" first="Rossana" last="Tallerico">Rossana Tallerico</name>
</country>
<country name="Iraq">
<noRegion>
<name sortKey="Talib Hassan, Almosawy" sort="Talib Hassan, Almosawy" uniqKey="Talib Hassan A" first="Almosawy" last="Talib Hassan">Almosawy Talib Hassan</name>
</noRegion>
</country>
<country name="Suède">
<region name="Svealand">
<name sortKey="Tadepally, Lakshmikanth" sort="Tadepally, Lakshmikanth" uniqKey="Tadepally L" first="Lakshmikanth" last="Tadepally">Lakshmikanth Tadepally</name>
</region>
<name sortKey="Carbone, Ennio" sort="Carbone, Ennio" uniqKey="Carbone E" first="Ennio" last="Carbone">Ennio Carbone</name>
<name sortKey="K Rre, Klas" sort="K Rre, Klas" uniqKey="K Rre K" first="Klas" last="K Rre">Klas K Rre</name>
</country>
<country name="Danemark">
<noRegion>
<name sortKey="Matteucci, Marco" sort="Matteucci, Marco" uniqKey="Matteucci M" first="Marco" last="Matteucci">Marco Matteucci</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Pmc/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B26 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd -nk 000B26 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Pmc
   |étape=   Checkpoint
   |type=    RBID
   |clé=     PMC:4277281
   |texte=   Mechanical Stress Downregulates MHC Class I Expression on Human Cancer Cell Membrane
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/RBID.i   -Sk "pubmed:25541692" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024