Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modeling the human hand as it interacts with a telemanipulation system

Identifieur interne : 000655 ( PascalFrancis/Curation ); précédent : 000654; suivant : 000656

Modeling the human hand as it interacts with a telemanipulation system

Auteurs : John E. Speich [États-Unis] ; LIANG SHAO [États-Unis] ; Michael Goldfarb [États-Unis]

Source :

RBID : Pascal:05-0437237

Descripteurs français

English descriptors

Abstract

This paper describes the development of a linear lumped-parameter hand/arm model for the operator of a telemanipulation system. The authors previously developed a control architecture that implements frequency-domain loop-shaping compensators to improve the transparency or "feel" of a telemanipulation system, and a human model is used when simulating this architecture. Typically, the human is modeled as a second order mass-spring-damper system. The five-parameter model presented in this paper, however, includes an additional spring and damper to better approximate the dynamics within the specific frequency range for which compensators will be designed, typically below 20-30 Hz. The model form and parameters were determined from experimental data taken from a telemanipulation system with a single translational degree-of-freedom. Additional data was taken from a system with three actuated degrees-of-freedom, and a set of model parameters was determined for each direction of motion. Each set of model parameters presented in this paper is for the specific grip type and hand/arm orientation used during interaction with each particular telemanipulation system, however similar sets of parameters using this human model could be obtained for interaction with other telemanipulation systems and haptic interfaces. A comparison of the five-parameter model with a two-parameter spring-damper model suggests that in some cases the use of additional model parameters may not offer a significant improvement.
pA  
A01 01  1    @0 0957-4158
A03   1    @0 Mechatronics : (Oxf.)
A05       @2 15
A06       @2 9
A08 01  1  ENG  @1 Modeling the human hand as it interacts with a telemanipulation system
A11 01  1    @1 SPEICH (John E.)
A11 02  1    @1 LIANG SHAO
A11 03  1    @1 GOLDFARB (Michael)
A14 01      @1 Mechanical Engineering, Virginia Commonwealth University @2 Richmond, VA, 23284-3015 @3 USA @Z 1 aut.
A14 02      @1 Mechanical Engineering, Vanderbilt University @2 Nashville, TN 37235-1592 @3 USA @Z 2 aut. @Z 3 aut.
A20       @1 1127-1142
A21       @1 2005
A23 01      @0 ENG
A43 01      @1 INIST @2 22113 @5 354000131791070070
A44       @0 0000 @1 © 2005 INIST-CNRS. All rights reserved.
A45       @0 18 ref.
A47 01  1    @0 05-0437237
A60       @1 P
A61       @0 A
A64 01  1    @0 Mechatronics : (Oxford)
A66 01      @0 GBR
C01 01    ENG  @0 This paper describes the development of a linear lumped-parameter hand/arm model for the operator of a telemanipulation system. The authors previously developed a control architecture that implements frequency-domain loop-shaping compensators to improve the transparency or "feel" of a telemanipulation system, and a human model is used when simulating this architecture. Typically, the human is modeled as a second order mass-spring-damper system. The five-parameter model presented in this paper, however, includes an additional spring and damper to better approximate the dynamics within the specific frequency range for which compensators will be designed, typically below 20-30 Hz. The model form and parameters were determined from experimental data taken from a telemanipulation system with a single translational degree-of-freedom. Additional data was taken from a system with three actuated degrees-of-freedom, and a set of model parameters was determined for each direction of motion. Each set of model parameters presented in this paper is for the specific grip type and hand/arm orientation used during interaction with each particular telemanipulation system, however similar sets of parameters using this human model could be obtained for interaction with other telemanipulation systems and haptic interfaces. A comparison of the five-parameter model with a two-parameter spring-damper model suggests that in some cases the use of additional model parameters may not offer a significant improvement.
C02 01  X    @0 001D12
C03 01  X  FRE  @0 Homme @5 06
C03 01  X  ENG  @0 Human @5 06
C03 01  X  SPA  @0 Hombre @5 06
C03 02  X  FRE  @0 Téléopération @5 07
C03 02  X  ENG  @0 Remote operation @5 07
C03 02  X  SPA  @0 Teleacción @5 07
C03 03  X  FRE  @0 Main @5 20
C03 03  X  ENG  @0 Hand @5 20
C03 03  X  SPA  @0 Mano @5 20
C03 04  X  FRE  @0 Bras @5 21
C03 04  X  ENG  @0 Arm @5 21
C03 04  X  SPA  @0 Brazo @5 21
C03 05  X  FRE  @0 Système masse ressort @5 22
C03 05  X  ENG  @0 Spring mass system @5 22
C03 05  X  SPA  @0 Sistema masa muelle @5 22
C03 06  X  FRE  @0 Système 3 degrés liberté @5 23
C03 06  X  ENG  @0 System with three degrees of freedom @5 23
C03 06  X  SPA  @0 Sistema 3 grados libertad @5 23
C03 07  X  FRE  @0 Interface utilisateur @5 24
C03 07  X  ENG  @0 User interface @5 24
C03 07  X  SPA  @0 Interfase usuario @5 24
C03 08  X  FRE  @0 Système homme machine @5 25
C03 08  X  ENG  @0 Man machine system @5 25
C03 08  X  SPA  @0 Sistema hombre máquina @5 25
C03 09  X  FRE  @0 Doigt @5 26
C03 09  X  ENG  @0 Finger @5 26
C03 09  X  SPA  @0 Dedo @5 26
C03 10  X  FRE  @0 Modélisation @5 27
C03 10  X  ENG  @0 Modeling @5 27
C03 10  X  SPA  @0 Modelización @5 27
C03 11  X  FRE  @0 Système paramètre localisé @5 28
C03 11  X  ENG  @0 Lumped parameter system @5 28
C03 11  X  SPA  @0 Sistema parámetro localizado @5 28
C03 12  X  FRE  @0 Méthode domaine fréquence @5 29
C03 12  X  ENG  @0 Frequency domain method @5 29
C03 12  X  SPA  @0 Método dominio frecuencia @5 29
C03 13  X  FRE  @0 Ordre 2 @5 30
C03 13  X  ENG  @0 Second order @5 30
C03 13  X  SPA  @0 Orden 2 @5 30
C03 14  X  FRE  @0 Amortisseur @5 33
C03 14  X  ENG  @0 Damper @5 33
C03 14  X  SPA  @0 Amortiguador @5 33
C03 15  X  FRE  @0 Etude expérimentale @5 34
C03 15  X  ENG  @0 Experimental study @5 34
C03 15  X  SPA  @0 Estudio experimental @5 34
N21       @1 305
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:05-0437237

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Modeling the human hand as it interacts with a telemanipulation system</title>
<author>
<name sortKey="Speich, John E" sort="Speich, John E" uniqKey="Speich J" first="John E." last="Speich">John E. Speich</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Mechanical Engineering, Virginia Commonwealth University</s1>
<s2>Richmond, VA, 23284-3015</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Liang Shao" sort="Liang Shao" uniqKey="Liang Shao" last="Liang Shao">LIANG SHAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Mechanical Engineering, Vanderbilt University</s1>
<s2>Nashville, TN 37235-1592</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Goldfarb, Michael" sort="Goldfarb, Michael" uniqKey="Goldfarb M" first="Michael" last="Goldfarb">Michael Goldfarb</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Mechanical Engineering, Vanderbilt University</s1>
<s2>Nashville, TN 37235-1592</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">05-0437237</idno>
<date when="2005">2005</date>
<idno type="stanalyst">PASCAL 05-0437237 INIST</idno>
<idno type="RBID">Pascal:05-0437237</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000E53</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000655</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Modeling the human hand as it interacts with a telemanipulation system</title>
<author>
<name sortKey="Speich, John E" sort="Speich, John E" uniqKey="Speich J" first="John E." last="Speich">John E. Speich</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Mechanical Engineering, Virginia Commonwealth University</s1>
<s2>Richmond, VA, 23284-3015</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Liang Shao" sort="Liang Shao" uniqKey="Liang Shao" last="Liang Shao">LIANG SHAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Mechanical Engineering, Vanderbilt University</s1>
<s2>Nashville, TN 37235-1592</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Goldfarb, Michael" sort="Goldfarb, Michael" uniqKey="Goldfarb M" first="Michael" last="Goldfarb">Michael Goldfarb</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Mechanical Engineering, Vanderbilt University</s1>
<s2>Nashville, TN 37235-1592</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Mechatronics : (Oxford)</title>
<title level="j" type="abbreviated">Mechatronics : (Oxf.)</title>
<idno type="ISSN">0957-4158</idno>
<imprint>
<date when="2005">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Mechatronics : (Oxford)</title>
<title level="j" type="abbreviated">Mechatronics : (Oxf.)</title>
<idno type="ISSN">0957-4158</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arm</term>
<term>Damper</term>
<term>Experimental study</term>
<term>Finger</term>
<term>Frequency domain method</term>
<term>Hand</term>
<term>Human</term>
<term>Lumped parameter system</term>
<term>Man machine system</term>
<term>Modeling</term>
<term>Remote operation</term>
<term>Second order</term>
<term>Spring mass system</term>
<term>System with three degrees of freedom</term>
<term>User interface</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Homme</term>
<term>Téléopération</term>
<term>Main</term>
<term>Bras</term>
<term>Système masse ressort</term>
<term>Système 3 degrés liberté</term>
<term>Interface utilisateur</term>
<term>Système homme machine</term>
<term>Doigt</term>
<term>Modélisation</term>
<term>Système paramètre localisé</term>
<term>Méthode domaine fréquence</term>
<term>Ordre 2</term>
<term>Amortisseur</term>
<term>Etude expérimentale</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Homme</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper describes the development of a linear lumped-parameter hand/arm model for the operator of a telemanipulation system. The authors previously developed a control architecture that implements frequency-domain loop-shaping compensators to improve the transparency or "feel" of a telemanipulation system, and a human model is used when simulating this architecture. Typically, the human is modeled as a second order mass-spring-damper system. The five-parameter model presented in this paper, however, includes an additional spring and damper to better approximate the dynamics within the specific frequency range for which compensators will be designed, typically below 20-30 Hz. The model form and parameters were determined from experimental data taken from a telemanipulation system with a single translational degree-of-freedom. Additional data was taken from a system with three actuated degrees-of-freedom, and a set of model parameters was determined for each direction of motion. Each set of model parameters presented in this paper is for the specific grip type and hand/arm orientation used during interaction with each particular telemanipulation system, however similar sets of parameters using this human model could be obtained for interaction with other telemanipulation systems and haptic interfaces. A comparison of the five-parameter model with a two-parameter spring-damper model suggests that in some cases the use of additional model parameters may not offer a significant improvement.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0957-4158</s0>
</fA01>
<fA03 i2="1">
<s0>Mechatronics : (Oxf.)</s0>
</fA03>
<fA05>
<s2>15</s2>
</fA05>
<fA06>
<s2>9</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Modeling the human hand as it interacts with a telemanipulation system</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SPEICH (John E.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LIANG SHAO</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>GOLDFARB (Michael)</s1>
</fA11>
<fA14 i1="01">
<s1>Mechanical Engineering, Virginia Commonwealth University</s1>
<s2>Richmond, VA, 23284-3015</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Mechanical Engineering, Vanderbilt University</s1>
<s2>Nashville, TN 37235-1592</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>1127-1142</s1>
</fA20>
<fA21>
<s1>2005</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>22113</s2>
<s5>354000131791070070</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2005 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>18 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>05-0437237</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Mechatronics : (Oxford)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This paper describes the development of a linear lumped-parameter hand/arm model for the operator of a telemanipulation system. The authors previously developed a control architecture that implements frequency-domain loop-shaping compensators to improve the transparency or "feel" of a telemanipulation system, and a human model is used when simulating this architecture. Typically, the human is modeled as a second order mass-spring-damper system. The five-parameter model presented in this paper, however, includes an additional spring and damper to better approximate the dynamics within the specific frequency range for which compensators will be designed, typically below 20-30 Hz. The model form and parameters were determined from experimental data taken from a telemanipulation system with a single translational degree-of-freedom. Additional data was taken from a system with three actuated degrees-of-freedom, and a set of model parameters was determined for each direction of motion. Each set of model parameters presented in this paper is for the specific grip type and hand/arm orientation used during interaction with each particular telemanipulation system, however similar sets of parameters using this human model could be obtained for interaction with other telemanipulation systems and haptic interfaces. A comparison of the five-parameter model with a two-parameter spring-damper model suggests that in some cases the use of additional model parameters may not offer a significant improvement.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D12</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Homme</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Human</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Hombre</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Téléopération</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Remote operation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Teleacción</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Main</s0>
<s5>20</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Hand</s0>
<s5>20</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Mano</s0>
<s5>20</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Bras</s0>
<s5>21</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Arm</s0>
<s5>21</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Brazo</s0>
<s5>21</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Système masse ressort</s0>
<s5>22</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Spring mass system</s0>
<s5>22</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Sistema masa muelle</s0>
<s5>22</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Système 3 degrés liberté</s0>
<s5>23</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>System with three degrees of freedom</s0>
<s5>23</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Sistema 3 grados libertad</s0>
<s5>23</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Interface utilisateur</s0>
<s5>24</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>User interface</s0>
<s5>24</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Interfase usuario</s0>
<s5>24</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Système homme machine</s0>
<s5>25</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Man machine system</s0>
<s5>25</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Sistema hombre máquina</s0>
<s5>25</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Doigt</s0>
<s5>26</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Finger</s0>
<s5>26</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Dedo</s0>
<s5>26</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>27</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>27</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>27</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Système paramètre localisé</s0>
<s5>28</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Lumped parameter system</s0>
<s5>28</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Sistema parámetro localizado</s0>
<s5>28</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Méthode domaine fréquence</s0>
<s5>29</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Frequency domain method</s0>
<s5>29</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Método dominio frecuencia</s0>
<s5>29</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Ordre 2</s0>
<s5>30</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Second order</s0>
<s5>30</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Orden 2</s0>
<s5>30</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Amortisseur</s0>
<s5>33</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Damper</s0>
<s5>33</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Amortiguador</s0>
<s5>33</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Etude expérimentale</s0>
<s5>34</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Experimental study</s0>
<s5>34</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Estudio experimental</s0>
<s5>34</s5>
</fC03>
<fN21>
<s1>305</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000655 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000655 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:05-0437237
   |texte=   Modeling the human hand as it interacts with a telemanipulation system
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024