Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Loop memory of haptic materials in posterior chamber intraocular lenses

Identifieur interne : 001252 ( PascalFrancis/Corpus ); précédent : 001251; suivant : 001253

Loop memory of haptic materials in posterior chamber intraocular lenses

Auteurs : Andrea M. Izak ; Liliana Werner ; David J. Apple ; Tamer A. Macky ; Rupal H. Trivedi ; Suresh K. Pandey

Source :

RBID : Pascal:02-0421668

Descripteurs français

English descriptors

Abstract

Purpose: To compare the shape recovery ratios after compression of haptic materials used in the manufacture of intraocular lenses (IOLs). Setting: Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina, USA. Methods: The loop memory of 40 silicone-optic posterior chamber lOLs was studied. All the lOLs had modified-C haptics made of poly(methyl methacrylate) (PMMA; n = 10), polyimide (n = 10), polyvinylidene fluoride (PVDF; n = 10), and polypropylene (PP; n = 10). After the overall diameter of each lens was measured (day 0), the lenses were inserted into plastic wells (9.5 mm in diameter) and immersed in water (37°C) for 1 month. They were then placed on an open plate and allowed to reexpand for 2 months. Overall diameter measurements were performed within 5 minutes of the lOLs' removal from the wells and at subsequent time points (days 14, 28, 30, 60, 74, 88, and 95). Results: The loop memory of each lens was expressed as the difference between the initial overall diameter measurement (pretest) and the measurement at each time point; the lower the value, the higher the memory. The overall difference among the 4 groups was statistically significant at each time point (P ≤.001). From days 30 to 95, silicone-PMMA, silicone-elastimide, and silicone-PVDF lOLs had similar loop memory mean values, which were significantly lower than the mean value of silicone-PP lOLs (P <.05). The latter design tended to be deformed after removal from the wells, with increased optic-haptic angulation. Conclusion: Studying the loop memory of haptic materials (PMMA, polyimide, PVDF, and PP) used in the manufacture of posterior chamber lOLs can help surgeons choose an appropriate IOL for each patient.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0886-3350
A02 01      @0 JCSUEV
A03   1    @0 J. cataract refractive surg.
A05       @2 28
A06       @2 7
A08 01  1  ENG  @1 Loop memory of haptic materials in posterior chamber intraocular lenses
A11 01  1    @1 IZAK (Andrea M.)
A11 02  1    @1 WERNER (Liliana)
A11 03  1    @1 APPLE (David J.)
A11 04  1    @1 MACKY (Tamer A.)
A11 05  1    @1 TRIVEDI (Rupal H.)
A11 06  1    @1 PANDEY (Suresh K.)
A14 01      @1 Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Medical University of South Carolina @2 Charleston, South Carolina @3 USA @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 5 aut. @Z 6 aut.
A20       @1 1229-1235
A21       @1 2002
A23 01      @0 ENG
A43 01      @1 INIST @2 20937 @5 354000108890470180
A44       @0 0000 @1 © 2002 INIST-CNRS. All rights reserved.
A45       @0 16 ref.
A47 01  1    @0 02-0421668
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of cataract and refractive surgery
A66 01      @0 USA
C01 01    ENG  @0 Purpose: To compare the shape recovery ratios after compression of haptic materials used in the manufacture of intraocular lenses (IOLs). Setting: Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina, USA. Methods: The loop memory of 40 silicone-optic posterior chamber lOLs was studied. All the lOLs had modified-C haptics made of poly(methyl methacrylate) (PMMA; n = 10), polyimide (n = 10), polyvinylidene fluoride (PVDF; n = 10), and polypropylene (PP; n = 10). After the overall diameter of each lens was measured (day 0), the lenses were inserted into plastic wells (9.5 mm in diameter) and immersed in water (37°C) for 1 month. They were then placed on an open plate and allowed to reexpand for 2 months. Overall diameter measurements were performed within 5 minutes of the lOLs' removal from the wells and at subsequent time points (days 14, 28, 30, 60, 74, 88, and 95). Results: The loop memory of each lens was expressed as the difference between the initial overall diameter measurement (pretest) and the measurement at each time point; the lower the value, the higher the memory. The overall difference among the 4 groups was statistically significant at each time point (P ≤.001). From days 30 to 95, silicone-PMMA, silicone-elastimide, and silicone-PVDF lOLs had similar loop memory mean values, which were significantly lower than the mean value of silicone-PP lOLs (P <.05). The latter design tended to be deformed after removal from the wells, with increased optic-haptic angulation. Conclusion: Studying the loop memory of haptic materials (PMMA, polyimide, PVDF, and PP) used in the manufacture of posterior chamber lOLs can help surgeons choose an appropriate IOL for each patient.
C02 01  X    @0 002B25B
C03 01  X  FRE  @0 Lentille intraoculaire @5 01
C03 01  X  ENG  @0 Intraocular lens @5 01
C03 01  X  SPA  @0 Lente intraocular @5 01
C03 02  X  FRE  @0 Implantation @5 02
C03 02  X  ENG  @0 Implantation @5 02
C03 02  X  SPA  @0 Implantación @5 02
C03 03  X  FRE  @0 Chambre postérieure @5 03
C03 03  X  ENG  @0 Posterior chamber @5 03
C03 03  X  SPA  @0 Cámara posterior @5 03
C03 04  X  FRE  @0 Méthacrylate de méthyle polymère @2 NK @5 04
C03 04  X  ENG  @0 Methyl methacrylate polymer @2 NK @5 04
C03 04  X  SPA  @0 Metacrilato de metilo polímero @2 NK @5 04
C03 05  X  FRE  @0 Biomatériau @5 05
C03 05  X  ENG  @0 Biomaterial @5 05
C03 05  X  SPA  @0 Biomaterial @5 05
C03 06  X  FRE  @0 Intraoculaire @5 06
C03 06  X  ENG  @0 Intraocular @5 06
C03 06  X  SPA  @0 Intraocular @5 06
C03 07  X  FRE  @0 Equipement @5 07
C03 07  X  ENG  @0 Equipment @5 07
C03 07  X  SPA  @0 Equipo @5 07
C03 08  X  FRE  @0 Fixation @5 08
C03 08  X  ENG  @0 Fixation @5 08
C03 08  X  SPA  @0 Fijación @5 08
C03 09  X  FRE  @0 Etude comparative @5 09
C03 09  X  ENG  @0 Comparative study @5 09
C03 09  X  SPA  @0 Estudio comparativo @5 09
C03 10  X  FRE  @0 Homme @5 10
C03 10  X  ENG  @0 Human @5 10
C03 10  X  SPA  @0 Hombre @5 10
C07 01  X  FRE  @0 Chirurgie @5 37
C07 01  X  ENG  @0 Surgery @5 37
C07 01  X  SPA  @0 Cirugía @5 37
N21       @1 245
N82       @1 PSI

Format Inist (serveur)

NO : PASCAL 02-0421668 INIST
ET : Loop memory of haptic materials in posterior chamber intraocular lenses
AU : IZAK (Andrea M.); WERNER (Liliana); APPLE (David J.); MACKY (Tamer A.); TRIVEDI (Rupal H.); PANDEY (Suresh K.)
AF : Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Medical University of South Carolina/Charleston, South Carolina/Etats-Unis (1 aut., 2 aut., 3 aut., 4 aut., 5 aut., 6 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of cataract and refractive surgery; ISSN 0886-3350; Coden JCSUEV; Etats-Unis; Da. 2002; Vol. 28; No. 7; Pp. 1229-1235; Bibl. 16 ref.
LA : Anglais
EA : Purpose: To compare the shape recovery ratios after compression of haptic materials used in the manufacture of intraocular lenses (IOLs). Setting: Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina, USA. Methods: The loop memory of 40 silicone-optic posterior chamber lOLs was studied. All the lOLs had modified-C haptics made of poly(methyl methacrylate) (PMMA; n = 10), polyimide (n = 10), polyvinylidene fluoride (PVDF; n = 10), and polypropylene (PP; n = 10). After the overall diameter of each lens was measured (day 0), the lenses were inserted into plastic wells (9.5 mm in diameter) and immersed in water (37°C) for 1 month. They were then placed on an open plate and allowed to reexpand for 2 months. Overall diameter measurements were performed within 5 minutes of the lOLs' removal from the wells and at subsequent time points (days 14, 28, 30, 60, 74, 88, and 95). Results: The loop memory of each lens was expressed as the difference between the initial overall diameter measurement (pretest) and the measurement at each time point; the lower the value, the higher the memory. The overall difference among the 4 groups was statistically significant at each time point (P ≤.001). From days 30 to 95, silicone-PMMA, silicone-elastimide, and silicone-PVDF lOLs had similar loop memory mean values, which were significantly lower than the mean value of silicone-PP lOLs (P <.05). The latter design tended to be deformed after removal from the wells, with increased optic-haptic angulation. Conclusion: Studying the loop memory of haptic materials (PMMA, polyimide, PVDF, and PP) used in the manufacture of posterior chamber lOLs can help surgeons choose an appropriate IOL for each patient.
CC : 002B25B
FD : Lentille intraoculaire; Implantation; Chambre postérieure; Méthacrylate de méthyle polymère; Biomatériau; Intraoculaire; Equipement; Fixation; Etude comparative; Homme
FG : Chirurgie
ED : Intraocular lens; Implantation; Posterior chamber; Methyl methacrylate polymer; Biomaterial; Intraocular; Equipment; Fixation; Comparative study; Human
EG : Surgery
SD : Lente intraocular; Implantación; Cámara posterior; Metacrilato de metilo polímero; Biomaterial; Intraocular; Equipo; Fijación; Estudio comparativo; Hombre
LO : INIST-20937.354000108890470180
ID : 02-0421668

Links to Exploration step

Pascal:02-0421668

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Loop memory of haptic materials in posterior chamber intraocular lenses</title>
<author>
<name sortKey="Izak, Andrea M" sort="Izak, Andrea M" uniqKey="Izak A" first="Andrea M." last="Izak">Andrea M. Izak</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Medical University of South Carolina</s1>
<s2>Charleston, South Carolina</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Werner, Liliana" sort="Werner, Liliana" uniqKey="Werner L" first="Liliana" last="Werner">Liliana Werner</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Medical University of South Carolina</s1>
<s2>Charleston, South Carolina</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Apple, David J" sort="Apple, David J" uniqKey="Apple D" first="David J." last="Apple">David J. Apple</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Medical University of South Carolina</s1>
<s2>Charleston, South Carolina</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Macky, Tamer A" sort="Macky, Tamer A" uniqKey="Macky T" first="Tamer A." last="Macky">Tamer A. Macky</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Medical University of South Carolina</s1>
<s2>Charleston, South Carolina</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Trivedi, Rupal H" sort="Trivedi, Rupal H" uniqKey="Trivedi R" first="Rupal H." last="Trivedi">Rupal H. Trivedi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Medical University of South Carolina</s1>
<s2>Charleston, South Carolina</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Pandey, Suresh K" sort="Pandey, Suresh K" uniqKey="Pandey S" first="Suresh K." last="Pandey">Suresh K. Pandey</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Medical University of South Carolina</s1>
<s2>Charleston, South Carolina</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">02-0421668</idno>
<date when="2002">2002</date>
<idno type="stanalyst">PASCAL 02-0421668 INIST</idno>
<idno type="RBID">Pascal:02-0421668</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001252</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Loop memory of haptic materials in posterior chamber intraocular lenses</title>
<author>
<name sortKey="Izak, Andrea M" sort="Izak, Andrea M" uniqKey="Izak A" first="Andrea M." last="Izak">Andrea M. Izak</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Medical University of South Carolina</s1>
<s2>Charleston, South Carolina</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Werner, Liliana" sort="Werner, Liliana" uniqKey="Werner L" first="Liliana" last="Werner">Liliana Werner</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Medical University of South Carolina</s1>
<s2>Charleston, South Carolina</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Apple, David J" sort="Apple, David J" uniqKey="Apple D" first="David J." last="Apple">David J. Apple</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Medical University of South Carolina</s1>
<s2>Charleston, South Carolina</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Macky, Tamer A" sort="Macky, Tamer A" uniqKey="Macky T" first="Tamer A." last="Macky">Tamer A. Macky</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Medical University of South Carolina</s1>
<s2>Charleston, South Carolina</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Trivedi, Rupal H" sort="Trivedi, Rupal H" uniqKey="Trivedi R" first="Rupal H." last="Trivedi">Rupal H. Trivedi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Medical University of South Carolina</s1>
<s2>Charleston, South Carolina</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Pandey, Suresh K" sort="Pandey, Suresh K" uniqKey="Pandey S" first="Suresh K." last="Pandey">Suresh K. Pandey</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Medical University of South Carolina</s1>
<s2>Charleston, South Carolina</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of cataract and refractive surgery</title>
<title level="j" type="abbreviated">J. cataract refractive surg.</title>
<idno type="ISSN">0886-3350</idno>
<imprint>
<date when="2002">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of cataract and refractive surgery</title>
<title level="j" type="abbreviated">J. cataract refractive surg.</title>
<idno type="ISSN">0886-3350</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biomaterial</term>
<term>Comparative study</term>
<term>Equipment</term>
<term>Fixation</term>
<term>Human</term>
<term>Implantation</term>
<term>Intraocular</term>
<term>Intraocular lens</term>
<term>Methyl methacrylate polymer</term>
<term>Posterior chamber</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Lentille intraoculaire</term>
<term>Implantation</term>
<term>Chambre postérieure</term>
<term>Méthacrylate de méthyle polymère</term>
<term>Biomatériau</term>
<term>Intraoculaire</term>
<term>Equipement</term>
<term>Fixation</term>
<term>Etude comparative</term>
<term>Homme</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Purpose: To compare the shape recovery ratios after compression of haptic materials used in the manufacture of intraocular lenses (IOLs). Setting: Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina, USA. Methods: The loop memory of 40 silicone-optic posterior chamber lOLs was studied. All the lOLs had modified-C haptics made of poly(methyl methacrylate) (PMMA; n = 10), polyimide (n = 10), polyvinylidene fluoride (PVDF; n = 10), and polypropylene (PP; n = 10). After the overall diameter of each lens was measured (day 0), the lenses were inserted into plastic wells (9.5 mm in diameter) and immersed in water (37°C) for 1 month. They were then placed on an open plate and allowed to reexpand for 2 months. Overall diameter measurements were performed within 5 minutes of the lOLs' removal from the wells and at subsequent time points (days 14, 28, 30, 60, 74, 88, and 95). Results: The loop memory of each lens was expressed as the difference between the initial overall diameter measurement (pretest) and the measurement at each time point; the lower the value, the higher the memory. The overall difference among the 4 groups was statistically significant at each time point (P ≤.001). From days 30 to 95, silicone-PMMA, silicone-elastimide, and silicone-PVDF lOLs had similar loop memory mean values, which were significantly lower than the mean value of silicone-PP lOLs (P <.05). The latter design tended to be deformed after removal from the wells, with increased optic-haptic angulation. Conclusion: Studying the loop memory of haptic materials (PMMA, polyimide, PVDF, and PP) used in the manufacture of posterior chamber lOLs can help surgeons choose an appropriate IOL for each patient.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0886-3350</s0>
</fA01>
<fA02 i1="01">
<s0>JCSUEV</s0>
</fA02>
<fA03 i2="1">
<s0>J. cataract refractive surg.</s0>
</fA03>
<fA05>
<s2>28</s2>
</fA05>
<fA06>
<s2>7</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Loop memory of haptic materials in posterior chamber intraocular lenses</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>IZAK (Andrea M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>WERNER (Liliana)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>APPLE (David J.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>MACKY (Tamer A.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>TRIVEDI (Rupal H.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>PANDEY (Suresh K.)</s1>
</fA11>
<fA14 i1="01">
<s1>Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Medical University of South Carolina</s1>
<s2>Charleston, South Carolina</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>1229-1235</s1>
</fA20>
<fA21>
<s1>2002</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>20937</s2>
<s5>354000108890470180</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2002 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>16 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>02-0421668</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of cataract and refractive surgery</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Purpose: To compare the shape recovery ratios after compression of haptic materials used in the manufacture of intraocular lenses (IOLs). Setting: Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina, USA. Methods: The loop memory of 40 silicone-optic posterior chamber lOLs was studied. All the lOLs had modified-C haptics made of poly(methyl methacrylate) (PMMA; n = 10), polyimide (n = 10), polyvinylidene fluoride (PVDF; n = 10), and polypropylene (PP; n = 10). After the overall diameter of each lens was measured (day 0), the lenses were inserted into plastic wells (9.5 mm in diameter) and immersed in water (37°C) for 1 month. They were then placed on an open plate and allowed to reexpand for 2 months. Overall diameter measurements were performed within 5 minutes of the lOLs' removal from the wells and at subsequent time points (days 14, 28, 30, 60, 74, 88, and 95). Results: The loop memory of each lens was expressed as the difference between the initial overall diameter measurement (pretest) and the measurement at each time point; the lower the value, the higher the memory. The overall difference among the 4 groups was statistically significant at each time point (P ≤.001). From days 30 to 95, silicone-PMMA, silicone-elastimide, and silicone-PVDF lOLs had similar loop memory mean values, which were significantly lower than the mean value of silicone-PP lOLs (P <.05). The latter design tended to be deformed after removal from the wells, with increased optic-haptic angulation. Conclusion: Studying the loop memory of haptic materials (PMMA, polyimide, PVDF, and PP) used in the manufacture of posterior chamber lOLs can help surgeons choose an appropriate IOL for each patient.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002B25B</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Lentille intraoculaire</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Intraocular lens</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Lente intraocular</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Implantation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Implantation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Implantación</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Chambre postérieure</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Posterior chamber</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Cámara posterior</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Méthacrylate de méthyle polymère</s0>
<s2>NK</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Methyl methacrylate polymer</s0>
<s2>NK</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Metacrilato de metilo polímero</s0>
<s2>NK</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Biomatériau</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Biomaterial</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Biomaterial</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Intraoculaire</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Intraocular</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Intraocular</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Equipement</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Equipment</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Equipo</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Fixation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Fixation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Fijación</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Etude comparative</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Comparative study</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Estudio comparativo</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Homme</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Human</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Hombre</s0>
<s5>10</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Chirurgie</s0>
<s5>37</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Surgery</s0>
<s5>37</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Cirugía</s0>
<s5>37</s5>
</fC07>
<fN21>
<s1>245</s1>
</fN21>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 02-0421668 INIST</NO>
<ET>Loop memory of haptic materials in posterior chamber intraocular lenses</ET>
<AU>IZAK (Andrea M.); WERNER (Liliana); APPLE (David J.); MACKY (Tamer A.); TRIVEDI (Rupal H.); PANDEY (Suresh K.)</AU>
<AF>Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Medical University of South Carolina/Charleston, South Carolina/Etats-Unis (1 aut., 2 aut., 3 aut., 4 aut., 5 aut., 6 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of cataract and refractive surgery; ISSN 0886-3350; Coden JCSUEV; Etats-Unis; Da. 2002; Vol. 28; No. 7; Pp. 1229-1235; Bibl. 16 ref.</SO>
<LA>Anglais</LA>
<EA>Purpose: To compare the shape recovery ratios after compression of haptic materials used in the manufacture of intraocular lenses (IOLs). Setting: Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina, USA. Methods: The loop memory of 40 silicone-optic posterior chamber lOLs was studied. All the lOLs had modified-C haptics made of poly(methyl methacrylate) (PMMA; n = 10), polyimide (n = 10), polyvinylidene fluoride (PVDF; n = 10), and polypropylene (PP; n = 10). After the overall diameter of each lens was measured (day 0), the lenses were inserted into plastic wells (9.5 mm in diameter) and immersed in water (37°C) for 1 month. They were then placed on an open plate and allowed to reexpand for 2 months. Overall diameter measurements were performed within 5 minutes of the lOLs' removal from the wells and at subsequent time points (days 14, 28, 30, 60, 74, 88, and 95). Results: The loop memory of each lens was expressed as the difference between the initial overall diameter measurement (pretest) and the measurement at each time point; the lower the value, the higher the memory. The overall difference among the 4 groups was statistically significant at each time point (P ≤.001). From days 30 to 95, silicone-PMMA, silicone-elastimide, and silicone-PVDF lOLs had similar loop memory mean values, which were significantly lower than the mean value of silicone-PP lOLs (P <.05). The latter design tended to be deformed after removal from the wells, with increased optic-haptic angulation. Conclusion: Studying the loop memory of haptic materials (PMMA, polyimide, PVDF, and PP) used in the manufacture of posterior chamber lOLs can help surgeons choose an appropriate IOL for each patient.</EA>
<CC>002B25B</CC>
<FD>Lentille intraoculaire; Implantation; Chambre postérieure; Méthacrylate de méthyle polymère; Biomatériau; Intraoculaire; Equipement; Fixation; Etude comparative; Homme</FD>
<FG>Chirurgie</FG>
<ED>Intraocular lens; Implantation; Posterior chamber; Methyl methacrylate polymer; Biomaterial; Intraocular; Equipment; Fixation; Comparative study; Human</ED>
<EG>Surgery</EG>
<SD>Lente intraocular; Implantación; Cámara posterior; Metacrilato de metilo polímero; Biomaterial; Intraocular; Equipo; Fijación; Estudio comparativo; Hombre</SD>
<LO>INIST-20937.354000108890470180</LO>
<ID>02-0421668</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001252 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 001252 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:02-0421668
   |texte=   Loop memory of haptic materials in posterior chamber intraocular lenses
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024