Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Force sensing microinstrument for measuring tissue properties and pulse in microsurgery : The new frontier of mechatronics

Identifieur interne : 001159 ( PascalFrancis/Corpus ); précédent : 001158; suivant : 001160

Force sensing microinstrument for measuring tissue properties and pulse in microsurgery : The new frontier of mechatronics

Auteurs : Arianna Menciassi ; Anna Eisinberg ; Maria Chiara Carrozza ; Paolo Dario

Source :

RBID : Pascal:03-0339402

Descripteurs français

Abstract

Miniaturized and "smart" instruments capable of characterizing the mechanical properties of tiny biological tissues are needed for research in biology, physiology, and biomechanics, and can find very important clinical applications for diagnostics and minimally invasive surgery (MIS). We are developing a set of robotic microinstruments designed to augment the performance of surgeons and clinicians during MIS. These microtools are intended to restore (or even enhance) the finger palpation capabilities that the surgeon exploits to characterize tissue hardness and to measure pulsating vessels in traditional surgery, but which are substantially reduced in MIS. This paper describes the main applications and the performance of a prototype miniature robotic instrument consisting of a microfabricated microgripper, instrumented with semiconductor strain-gauges as force sensors. The experimental set-up used for the in vitro tests reported in this paper consists of the microprobe mounted on a workstation and teleoperated. A haptic interface provides force feedback to the operator. We have demonstrated that the system can discriminate, both qualitatively and quantitatively, tiny skin samples based on their different elastic properties, and "feel" microvessels on the basis of pulsating fluid flowing through them.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1083-4435
A03   1    @0 IEEE/ASME trans. mechatron.
A05       @2 8
A06       @2 1
A08 01  1  ENG  @1 Force sensing microinstrument for measuring tissue properties and pulse in microsurgery : The new frontier of mechatronics
A11 01  1    @1 MENCIASSI (Arianna)
A11 02  1    @1 EISINBERG (Anna)
A11 03  1    @1 CARROZZA (Maria Chiara)
A11 04  1    @1 DARIO (Paolo)
A14 01      @1 Scuola Superiore Sant'Anna - CRIM Laboratory, 33 @2 56127 Pisa @3 ITA @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut.
A20       @1 10-17
A21       @1 2003
A23 01      @0 ENG
A43 01      @1 INIST @2 26423 @5 354000104248600020
A44       @0 0000 @1 © 2003 INIST-CNRS. All rights reserved.
A45       @0 18 ref.
A47 01  1    @0 03-0339402
A60       @1 P
A61       @0 A
A64 01  1    @0 IEEE/ASME transactions on mechatronics
A66 01      @0 USA
C01 01    ENG  @0 Miniaturized and "smart" instruments capable of characterizing the mechanical properties of tiny biological tissues are needed for research in biology, physiology, and biomechanics, and can find very important clinical applications for diagnostics and minimally invasive surgery (MIS). We are developing a set of robotic microinstruments designed to augment the performance of surgeons and clinicians during MIS. These microtools are intended to restore (or even enhance) the finger palpation capabilities that the surgeon exploits to characterize tissue hardness and to measure pulsating vessels in traditional surgery, but which are substantially reduced in MIS. This paper describes the main applications and the performance of a prototype miniature robotic instrument consisting of a microfabricated microgripper, instrumented with semiconductor strain-gauges as force sensors. The experimental set-up used for the in vitro tests reported in this paper consists of the microprobe mounted on a workstation and teleoperated. A haptic interface provides force feedback to the operator. We have demonstrated that the system can discriminate, both qualitatively and quantitatively, tiny skin samples based on their different elastic properties, and "feel" microvessels on the basis of pulsating fluid flowing through them.
C02 01  3    @0 001B00G07D
C02 02  3    @0 001B00G10C
C02 03  X    @0 002B24O14
C03 01  3  FRE  @0 0707D @2 PAC @4 INC @5 56
C03 02  3  FRE  @0 0710C @2 PAC @4 INC @5 57
N21       @1 237
N82       @1 PSI

Format Inist (serveur)

NO : PASCAL 03-0339402 INIST
ET : Force sensing microinstrument for measuring tissue properties and pulse in microsurgery : The new frontier of mechatronics
AU : MENCIASSI (Arianna); EISINBERG (Anna); CARROZZA (Maria Chiara); DARIO (Paolo)
AF : Scuola Superiore Sant'Anna - CRIM Laboratory, 33/56127 Pisa/Italie (1 aut., 2 aut., 3 aut., 4 aut.)
DT : Publication en série; Niveau analytique
SO : IEEE/ASME transactions on mechatronics; ISSN 1083-4435; Etats-Unis; Da. 2003; Vol. 8; No. 1; Pp. 10-17; Bibl. 18 ref.
LA : Anglais
EA : Miniaturized and "smart" instruments capable of characterizing the mechanical properties of tiny biological tissues are needed for research in biology, physiology, and biomechanics, and can find very important clinical applications for diagnostics and minimally invasive surgery (MIS). We are developing a set of robotic microinstruments designed to augment the performance of surgeons and clinicians during MIS. These microtools are intended to restore (or even enhance) the finger palpation capabilities that the surgeon exploits to characterize tissue hardness and to measure pulsating vessels in traditional surgery, but which are substantially reduced in MIS. This paper describes the main applications and the performance of a prototype miniature robotic instrument consisting of a microfabricated microgripper, instrumented with semiconductor strain-gauges as force sensors. The experimental set-up used for the in vitro tests reported in this paper consists of the microprobe mounted on a workstation and teleoperated. A haptic interface provides force feedback to the operator. We have demonstrated that the system can discriminate, both qualitatively and quantitatively, tiny skin samples based on their different elastic properties, and "feel" microvessels on the basis of pulsating fluid flowing through them.
CC : 001B00G07D; 001B00G10C; 002B24O14
FD : 0707D; 0710C
LO : INIST-26423.354000104248600020
ID : 03-0339402

Links to Exploration step

Pascal:03-0339402

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Force sensing microinstrument for measuring tissue properties and pulse in microsurgery : The new frontier of mechatronics</title>
<author>
<name sortKey="Menciassi, Arianna" sort="Menciassi, Arianna" uniqKey="Menciassi A" first="Arianna" last="Menciassi">Arianna Menciassi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Scuola Superiore Sant'Anna - CRIM Laboratory, 33</s1>
<s2>56127 Pisa</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Eisinberg, Anna" sort="Eisinberg, Anna" uniqKey="Eisinberg A" first="Anna" last="Eisinberg">Anna Eisinberg</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Scuola Superiore Sant'Anna - CRIM Laboratory, 33</s1>
<s2>56127 Pisa</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Carrozza, Maria Chiara" sort="Carrozza, Maria Chiara" uniqKey="Carrozza M" first="Maria Chiara" last="Carrozza">Maria Chiara Carrozza</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Scuola Superiore Sant'Anna - CRIM Laboratory, 33</s1>
<s2>56127 Pisa</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Dario, Paolo" sort="Dario, Paolo" uniqKey="Dario P" first="Paolo" last="Dario">Paolo Dario</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Scuola Superiore Sant'Anna - CRIM Laboratory, 33</s1>
<s2>56127 Pisa</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">03-0339402</idno>
<date when="2003">2003</date>
<idno type="stanalyst">PASCAL 03-0339402 INIST</idno>
<idno type="RBID">Pascal:03-0339402</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001159</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Force sensing microinstrument for measuring tissue properties and pulse in microsurgery : The new frontier of mechatronics</title>
<author>
<name sortKey="Menciassi, Arianna" sort="Menciassi, Arianna" uniqKey="Menciassi A" first="Arianna" last="Menciassi">Arianna Menciassi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Scuola Superiore Sant'Anna - CRIM Laboratory, 33</s1>
<s2>56127 Pisa</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Eisinberg, Anna" sort="Eisinberg, Anna" uniqKey="Eisinberg A" first="Anna" last="Eisinberg">Anna Eisinberg</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Scuola Superiore Sant'Anna - CRIM Laboratory, 33</s1>
<s2>56127 Pisa</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Carrozza, Maria Chiara" sort="Carrozza, Maria Chiara" uniqKey="Carrozza M" first="Maria Chiara" last="Carrozza">Maria Chiara Carrozza</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Scuola Superiore Sant'Anna - CRIM Laboratory, 33</s1>
<s2>56127 Pisa</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Dario, Paolo" sort="Dario, Paolo" uniqKey="Dario P" first="Paolo" last="Dario">Paolo Dario</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Scuola Superiore Sant'Anna - CRIM Laboratory, 33</s1>
<s2>56127 Pisa</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">IEEE/ASME transactions on mechatronics</title>
<title level="j" type="abbreviated">IEEE/ASME trans. mechatron.</title>
<idno type="ISSN">1083-4435</idno>
<imprint>
<date when="2003">2003</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">IEEE/ASME transactions on mechatronics</title>
<title level="j" type="abbreviated">IEEE/ASME trans. mechatron.</title>
<idno type="ISSN">1083-4435</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Pascal" xml:lang="fr">
<term>0707D</term>
<term>0710C</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Miniaturized and "smart" instruments capable of characterizing the mechanical properties of tiny biological tissues are needed for research in biology, physiology, and biomechanics, and can find very important clinical applications for diagnostics and minimally invasive surgery (MIS). We are developing a set of robotic microinstruments designed to augment the performance of surgeons and clinicians during MIS. These microtools are intended to restore (or even enhance) the finger palpation capabilities that the surgeon exploits to characterize tissue hardness and to measure pulsating vessels in traditional surgery, but which are substantially reduced in MIS. This paper describes the main applications and the performance of a prototype miniature robotic instrument consisting of a microfabricated microgripper, instrumented with semiconductor strain-gauges as force sensors. The experimental set-up used for the in vitro tests reported in this paper consists of the microprobe mounted on a workstation and teleoperated. A haptic interface provides force feedback to the operator. We have demonstrated that the system can discriminate, both qualitatively and quantitatively, tiny skin samples based on their different elastic properties, and "feel" microvessels on the basis of pulsating fluid flowing through them.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1083-4435</s0>
</fA01>
<fA03 i2="1">
<s0>IEEE/ASME trans. mechatron.</s0>
</fA03>
<fA05>
<s2>8</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Force sensing microinstrument for measuring tissue properties and pulse in microsurgery : The new frontier of mechatronics</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MENCIASSI (Arianna)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>EISINBERG (Anna)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>CARROZZA (Maria Chiara)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>DARIO (Paolo)</s1>
</fA11>
<fA14 i1="01">
<s1>Scuola Superiore Sant'Anna - CRIM Laboratory, 33</s1>
<s2>56127 Pisa</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>10-17</s1>
</fA20>
<fA21>
<s1>2003</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>26423</s2>
<s5>354000104248600020</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2003 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>18 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>03-0339402</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IEEE/ASME transactions on mechatronics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Miniaturized and "smart" instruments capable of characterizing the mechanical properties of tiny biological tissues are needed for research in biology, physiology, and biomechanics, and can find very important clinical applications for diagnostics and minimally invasive surgery (MIS). We are developing a set of robotic microinstruments designed to augment the performance of surgeons and clinicians during MIS. These microtools are intended to restore (or even enhance) the finger palpation capabilities that the surgeon exploits to characterize tissue hardness and to measure pulsating vessels in traditional surgery, but which are substantially reduced in MIS. This paper describes the main applications and the performance of a prototype miniature robotic instrument consisting of a microfabricated microgripper, instrumented with semiconductor strain-gauges as force sensors. The experimental set-up used for the in vitro tests reported in this paper consists of the microprobe mounted on a workstation and teleoperated. A haptic interface provides force feedback to the operator. We have demonstrated that the system can discriminate, both qualitatively and quantitatively, tiny skin samples based on their different elastic properties, and "feel" microvessels on the basis of pulsating fluid flowing through them.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00G07D</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B00G10C</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>002B24O14</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>0707D</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>0710C</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fN21>
<s1>237</s1>
</fN21>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 03-0339402 INIST</NO>
<ET>Force sensing microinstrument for measuring tissue properties and pulse in microsurgery : The new frontier of mechatronics</ET>
<AU>MENCIASSI (Arianna); EISINBERG (Anna); CARROZZA (Maria Chiara); DARIO (Paolo)</AU>
<AF>Scuola Superiore Sant'Anna - CRIM Laboratory, 33/56127 Pisa/Italie (1 aut., 2 aut., 3 aut., 4 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>IEEE/ASME transactions on mechatronics; ISSN 1083-4435; Etats-Unis; Da. 2003; Vol. 8; No. 1; Pp. 10-17; Bibl. 18 ref.</SO>
<LA>Anglais</LA>
<EA>Miniaturized and "smart" instruments capable of characterizing the mechanical properties of tiny biological tissues are needed for research in biology, physiology, and biomechanics, and can find very important clinical applications for diagnostics and minimally invasive surgery (MIS). We are developing a set of robotic microinstruments designed to augment the performance of surgeons and clinicians during MIS. These microtools are intended to restore (or even enhance) the finger palpation capabilities that the surgeon exploits to characterize tissue hardness and to measure pulsating vessels in traditional surgery, but which are substantially reduced in MIS. This paper describes the main applications and the performance of a prototype miniature robotic instrument consisting of a microfabricated microgripper, instrumented with semiconductor strain-gauges as force sensors. The experimental set-up used for the in vitro tests reported in this paper consists of the microprobe mounted on a workstation and teleoperated. A haptic interface provides force feedback to the operator. We have demonstrated that the system can discriminate, both qualitatively and quantitatively, tiny skin samples based on their different elastic properties, and "feel" microvessels on the basis of pulsating fluid flowing through them.</EA>
<CC>001B00G07D; 001B00G10C; 002B24O14</CC>
<FD>0707D; 0710C</FD>
<LO>INIST-26423.354000104248600020</LO>
<ID>03-0339402</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001159 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 001159 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:03-0339402
   |texte=   Force sensing microinstrument for measuring tissue properties and pulse in microsurgery : The new frontier of mechatronics
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024