Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Remote atomic force microscopy of microscopic organisms: Technological innovations for hands-on science with middle and high school students

Identifieur interne : 001126 ( PascalFrancis/Corpus ); précédent : 001125; suivant : 001127

Remote atomic force microscopy of microscopic organisms: Technological innovations for hands-on science with middle and high school students

Auteurs : M. G. Jones ; T. Andre ; D. Kubasko ; A. Bokinsky ; T. Tretter ; A. Negishi ; R. Taylor ; R. Superfine

Source :

RBID : Francis:520-04-11661

Descripteurs français

English descriptors

Abstract

This study examined hands-on experiences in the context of an investigation of viruses and explored how and why hands-on experiences may be effective. We sought to understand whether or not touching and manipulating materials and objects could lead to a deeper, more effective type of knowing than that we obtain from sight or sound alone. Four classes of high school biology students and four classes of seventh graders participated in the study that examined students' use of remote microscopy with a new scientific tool called the nanoManipulator, which enabled them to reach out and touch live viruses inside an atomic force microscope. Half of the students received full haptic (tactile and kinesthetic) feedback from a haptic joystick, whereas half of the students were able to use the haptic joystick to manipulate viruses but the tactile feedback was blocked. Results showed that there were significant gains from pre- to postinstruction across treatment groups for knowledge and attitudes. Students in both treatment groups developed conceptual models of viruses that were more consistent with current scientific research, including a move from a two-dimensional to a three-dimensional understanding of virus morphology. There were significant changes in students' understandings of scale; after instruction, students were more likely to identify examples of nanosized objects and be able to describe the degree to which a human would have to be shrunk to reach the size of a virus. Students who received full-haptic feedback had significantly better attitudes suggesting that the increased sensory feedback and stimulation may have made the experience more engaging and motivating to students.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0036-8326
A02 01      @0 SEDUAV
A03   1    @0 Sci. educ. : (Saleem Mass.)
A05       @2 88
A06       @2 1
A08 01  1  ENG  @1 Remote atomic force microscopy of microscopic organisms: Technological innovations for hands-on science with middle and high school students
A11 01  1    @1 JONES (M. G.)
A11 02  1    @1 ANDRE (T.)
A11 03  1    @1 KUBASKO (D.)
A11 04  1    @1 BOKINSKY (A.)
A11 05  1    @1 TRETTER (T.)
A11 06  1    @1 NEGISHI (A.)
A11 07  1    @1 TAYLOR (R.)
A11 08  1    @1 SUPERFINE (R.)
A14 01      @1 University of North Carolina at Chapel Hill @2 Chapel Hill, NC 27599-3500 @3 USA @Z 1 aut. @Z 3 aut.
A14 02      @1 Department of Curriculum and Instruction, Iowa State University @2 Ames, IA 50011-3190 @3 USA @Z 2 aut.
A14 03      @1 University of North Carolina at Wilmington @2 Wilmington, NC 28403 @3 USA @Z 4 aut. @Z 5 aut. @Z 6 aut. @Z 7 aut. @Z 8 aut.
A20       @1 55-71
A21       @1 2004
A23 01      @0 ENG
A43 01      @1 INIST @2 16064 @5 354000119182660030
A44       @0 0000 @1 © 2004 INIST-CNRS. All rights reserved.
A45       @0 1 p.1/2
A47 01  1    @0 520-04-11661
A60       @1 P
A61       @0 A
A64 01  1    @0 Science education : (Saleem, Mass.)
A66 01      @0 USA
A68 01  1  FRE  @1 Microscopie atomique à distance des organismes microscopiques : innovations technologiques pour des cours de science pratiques dans le secondaire
C01 01    ENG  @0 This study examined hands-on experiences in the context of an investigation of viruses and explored how and why hands-on experiences may be effective. We sought to understand whether or not touching and manipulating materials and objects could lead to a deeper, more effective type of knowing than that we obtain from sight or sound alone. Four classes of high school biology students and four classes of seventh graders participated in the study that examined students' use of remote microscopy with a new scientific tool called the nanoManipulator, which enabled them to reach out and touch live viruses inside an atomic force microscope. Half of the students received full haptic (tactile and kinesthetic) feedback from a haptic joystick, whereas half of the students were able to use the haptic joystick to manipulate viruses but the tactile feedback was blocked. Results showed that there were significant gains from pre- to postinstruction across treatment groups for knowledge and attitudes. Students in both treatment groups developed conceptual models of viruses that were more consistent with current scientific research, including a move from a two-dimensional to a three-dimensional understanding of virus morphology. There were significant changes in students' understandings of scale; after instruction, students were more likely to identify examples of nanosized objects and be able to describe the degree to which a human would have to be shrunk to reach the size of a virus. Students who received full-haptic feedback had significantly better attitudes suggesting that the increased sensory feedback and stimulation may have made the experience more engaging and motivating to students.
C02 01  C    @0 520226 @1 VII
C02 02  C    @0 520
C03 01  C  FRE  @0 Science @5 01
C03 01  C  ENG  @0 Science @5 01
C03 02  C  FRE  @0 Elève du secondaire @5 02
C03 02  C  ENG  @0 Secondary School Student @5 02
C03 03  C  FRE  @0 Etats-Unis @2 NG @5 03
C03 03  C  ENG  @0 USA @2 NG @5 03
C03 04  C  FRE  @0 Technologie @5 04
C03 04  C  ENG  @0 Technology @5 04
C03 05  C  FRE  @0 Mesure @5 05
C03 05  C  ENG  @0 Measurement @5 05
C03 06  C  FRE  @0 Conceptualisation @5 06
C03 06  C  ENG  @0 Conceptualization @5 06
C03 07  C  FRE  @0 Microscope @2 NI @4 INC @5 31
C03 08  C  FRE  @0 Virus @2 NI @4 INC @5 32
N21       @1 131
N82       @1 PSI

Format Inist (serveur)

NO : FRANCIS 520-04-11661 INIST
FT : (Microscopie atomique à distance des organismes microscopiques : innovations technologiques pour des cours de science pratiques dans le secondaire)
ET : Remote atomic force microscopy of microscopic organisms: Technological innovations for hands-on science with middle and high school students
AU : JONES (M. G.); ANDRE (T.); KUBASKO (D.); BOKINSKY (A.); TRETTER (T.); NEGISHI (A.); TAYLOR (R.); SUPERFINE (R.)
AF : University of North Carolina at Chapel Hill/Chapel Hill, NC 27599-3500/Etats-Unis (1 aut., 3 aut.); Department of Curriculum and Instruction, Iowa State University/Ames, IA 50011-3190/Etats-Unis (2 aut.); University of North Carolina at Wilmington/Wilmington, NC 28403/Etats-Unis (4 aut., 5 aut., 6 aut., 7 aut., 8 aut.)
DT : Publication en série; Niveau analytique
SO : Science education : (Saleem, Mass.); ISSN 0036-8326; Coden SEDUAV; Etats-Unis; Da. 2004; Vol. 88; No. 1; Pp. 55-71; Bibl. 1 p.1/2
LA : Anglais
EA : This study examined hands-on experiences in the context of an investigation of viruses and explored how and why hands-on experiences may be effective. We sought to understand whether or not touching and manipulating materials and objects could lead to a deeper, more effective type of knowing than that we obtain from sight or sound alone. Four classes of high school biology students and four classes of seventh graders participated in the study that examined students' use of remote microscopy with a new scientific tool called the nanoManipulator, which enabled them to reach out and touch live viruses inside an atomic force microscope. Half of the students received full haptic (tactile and kinesthetic) feedback from a haptic joystick, whereas half of the students were able to use the haptic joystick to manipulate viruses but the tactile feedback was blocked. Results showed that there were significant gains from pre- to postinstruction across treatment groups for knowledge and attitudes. Students in both treatment groups developed conceptual models of viruses that were more consistent with current scientific research, including a move from a two-dimensional to a three-dimensional understanding of virus morphology. There were significant changes in students' understandings of scale; after instruction, students were more likely to identify examples of nanosized objects and be able to describe the degree to which a human would have to be shrunk to reach the size of a virus. Students who received full-haptic feedback had significantly better attitudes suggesting that the increased sensory feedback and stimulation may have made the experience more engaging and motivating to students.
CC : 520226; 520
FD : Science; Elève du secondaire; Etats-Unis; Technologie; Mesure; Conceptualisation; Microscope; Virus
ED : Science; Secondary School Student; USA; Technology; Measurement; Conceptualization
LO : INIST-16064.354000119182660030
ID : 520

Links to Exploration step

Francis:520-04-11661

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Remote atomic force microscopy of microscopic organisms: Technological innovations for hands-on science with middle and high school students</title>
<author>
<name sortKey="Jones, M G" sort="Jones, M G" uniqKey="Jones M" first="M. G." last="Jones">M. G. Jones</name>
<affiliation>
<inist:fA14 i1="01">
<s1>University of North Carolina at Chapel Hill</s1>
<s2>Chapel Hill, NC 27599-3500</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Andre, T" sort="Andre, T" uniqKey="Andre T" first="T." last="Andre">T. Andre</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Curriculum and Instruction, Iowa State University</s1>
<s2>Ames, IA 50011-3190</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kubasko, D" sort="Kubasko, D" uniqKey="Kubasko D" first="D." last="Kubasko">D. Kubasko</name>
<affiliation>
<inist:fA14 i1="01">
<s1>University of North Carolina at Chapel Hill</s1>
<s2>Chapel Hill, NC 27599-3500</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bokinsky, A" sort="Bokinsky, A" uniqKey="Bokinsky A" first="A." last="Bokinsky">A. Bokinsky</name>
<affiliation>
<inist:fA14 i1="03">
<s1>University of North Carolina at Wilmington</s1>
<s2>Wilmington, NC 28403</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Tretter, T" sort="Tretter, T" uniqKey="Tretter T" first="T." last="Tretter">T. Tretter</name>
<affiliation>
<inist:fA14 i1="03">
<s1>University of North Carolina at Wilmington</s1>
<s2>Wilmington, NC 28403</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Negishi, A" sort="Negishi, A" uniqKey="Negishi A" first="A." last="Negishi">A. Negishi</name>
<affiliation>
<inist:fA14 i1="03">
<s1>University of North Carolina at Wilmington</s1>
<s2>Wilmington, NC 28403</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Taylor, R" sort="Taylor, R" uniqKey="Taylor R" first="R." last="Taylor">R. Taylor</name>
<affiliation>
<inist:fA14 i1="03">
<s1>University of North Carolina at Wilmington</s1>
<s2>Wilmington, NC 28403</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Superfine, R" sort="Superfine, R" uniqKey="Superfine R" first="R." last="Superfine">R. Superfine</name>
<affiliation>
<inist:fA14 i1="03">
<s1>University of North Carolina at Wilmington</s1>
<s2>Wilmington, NC 28403</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">520-04-11661</idno>
<date when="2004">2004</date>
<idno type="stanalyst">FRANCIS 520-04-11661 INIST</idno>
<idno type="RBID">Francis:520-04-11661</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001126</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Remote atomic force microscopy of microscopic organisms: Technological innovations for hands-on science with middle and high school students</title>
<author>
<name sortKey="Jones, M G" sort="Jones, M G" uniqKey="Jones M" first="M. G." last="Jones">M. G. Jones</name>
<affiliation>
<inist:fA14 i1="01">
<s1>University of North Carolina at Chapel Hill</s1>
<s2>Chapel Hill, NC 27599-3500</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Andre, T" sort="Andre, T" uniqKey="Andre T" first="T." last="Andre">T. Andre</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Curriculum and Instruction, Iowa State University</s1>
<s2>Ames, IA 50011-3190</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kubasko, D" sort="Kubasko, D" uniqKey="Kubasko D" first="D." last="Kubasko">D. Kubasko</name>
<affiliation>
<inist:fA14 i1="01">
<s1>University of North Carolina at Chapel Hill</s1>
<s2>Chapel Hill, NC 27599-3500</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bokinsky, A" sort="Bokinsky, A" uniqKey="Bokinsky A" first="A." last="Bokinsky">A. Bokinsky</name>
<affiliation>
<inist:fA14 i1="03">
<s1>University of North Carolina at Wilmington</s1>
<s2>Wilmington, NC 28403</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Tretter, T" sort="Tretter, T" uniqKey="Tretter T" first="T." last="Tretter">T. Tretter</name>
<affiliation>
<inist:fA14 i1="03">
<s1>University of North Carolina at Wilmington</s1>
<s2>Wilmington, NC 28403</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Negishi, A" sort="Negishi, A" uniqKey="Negishi A" first="A." last="Negishi">A. Negishi</name>
<affiliation>
<inist:fA14 i1="03">
<s1>University of North Carolina at Wilmington</s1>
<s2>Wilmington, NC 28403</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Taylor, R" sort="Taylor, R" uniqKey="Taylor R" first="R." last="Taylor">R. Taylor</name>
<affiliation>
<inist:fA14 i1="03">
<s1>University of North Carolina at Wilmington</s1>
<s2>Wilmington, NC 28403</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Superfine, R" sort="Superfine, R" uniqKey="Superfine R" first="R." last="Superfine">R. Superfine</name>
<affiliation>
<inist:fA14 i1="03">
<s1>University of North Carolina at Wilmington</s1>
<s2>Wilmington, NC 28403</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Science education : (Saleem, Mass.)</title>
<title level="j" type="abbreviated">Sci. educ. : (Saleem Mass.)</title>
<idno type="ISSN">0036-8326</idno>
<imprint>
<date when="2004">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Science education : (Saleem, Mass.)</title>
<title level="j" type="abbreviated">Sci. educ. : (Saleem Mass.)</title>
<idno type="ISSN">0036-8326</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Conceptualization</term>
<term>Measurement</term>
<term>Science</term>
<term>Secondary School Student</term>
<term>Technology</term>
<term>USA</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Science</term>
<term>Elève du secondaire</term>
<term>Etats-Unis</term>
<term>Technologie</term>
<term>Mesure</term>
<term>Conceptualisation</term>
<term>Microscope</term>
<term>Virus</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This study examined hands-on experiences in the context of an investigation of viruses and explored how and why hands-on experiences may be effective. We sought to understand whether or not touching and manipulating materials and objects could lead to a deeper, more effective type of knowing than that we obtain from sight or sound alone. Four classes of high school biology students and four classes of seventh graders participated in the study that examined students' use of remote microscopy with a new scientific tool called the nanoManipulator, which enabled them to reach out and touch live viruses inside an atomic force microscope. Half of the students received full haptic (tactile and kinesthetic) feedback from a haptic joystick, whereas half of the students were able to use the haptic joystick to manipulate viruses but the tactile feedback was blocked. Results showed that there were significant gains from pre- to postinstruction across treatment groups for knowledge and attitudes. Students in both treatment groups developed conceptual models of viruses that were more consistent with current scientific research, including a move from a two-dimensional to a three-dimensional understanding of virus morphology. There were significant changes in students' understandings of scale; after instruction, students were more likely to identify examples of nanosized objects and be able to describe the degree to which a human would have to be shrunk to reach the size of a virus. Students who received full-haptic feedback had significantly better attitudes suggesting that the increased sensory feedback and stimulation may have made the experience more engaging and motivating to students.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0036-8326</s0>
</fA01>
<fA02 i1="01">
<s0>SEDUAV</s0>
</fA02>
<fA03 i2="1">
<s0>Sci. educ. : (Saleem Mass.)</s0>
</fA03>
<fA05>
<s2>88</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Remote atomic force microscopy of microscopic organisms: Technological innovations for hands-on science with middle and high school students</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>JONES (M. G.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ANDRE (T.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KUBASKO (D.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BOKINSKY (A.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>TRETTER (T.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>NEGISHI (A.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>TAYLOR (R.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>SUPERFINE (R.)</s1>
</fA11>
<fA14 i1="01">
<s1>University of North Carolina at Chapel Hill</s1>
<s2>Chapel Hill, NC 27599-3500</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Curriculum and Instruction, Iowa State University</s1>
<s2>Ames, IA 50011-3190</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>University of North Carolina at Wilmington</s1>
<s2>Wilmington, NC 28403</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s1>55-71</s1>
</fA20>
<fA21>
<s1>2004</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>16064</s2>
<s5>354000119182660030</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2004 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/2</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>520-04-11661</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Science education : (Saleem, Mass.)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fA68 i1="01" i2="1" l="FRE">
<s1>Microscopie atomique à distance des organismes microscopiques : innovations technologiques pour des cours de science pratiques dans le secondaire</s1>
</fA68>
<fC01 i1="01" l="ENG">
<s0>This study examined hands-on experiences in the context of an investigation of viruses and explored how and why hands-on experiences may be effective. We sought to understand whether or not touching and manipulating materials and objects could lead to a deeper, more effective type of knowing than that we obtain from sight or sound alone. Four classes of high school biology students and four classes of seventh graders participated in the study that examined students' use of remote microscopy with a new scientific tool called the nanoManipulator, which enabled them to reach out and touch live viruses inside an atomic force microscope. Half of the students received full haptic (tactile and kinesthetic) feedback from a haptic joystick, whereas half of the students were able to use the haptic joystick to manipulate viruses but the tactile feedback was blocked. Results showed that there were significant gains from pre- to postinstruction across treatment groups for knowledge and attitudes. Students in both treatment groups developed conceptual models of viruses that were more consistent with current scientific research, including a move from a two-dimensional to a three-dimensional understanding of virus morphology. There were significant changes in students' understandings of scale; after instruction, students were more likely to identify examples of nanosized objects and be able to describe the degree to which a human would have to be shrunk to reach the size of a virus. Students who received full-haptic feedback had significantly better attitudes suggesting that the increased sensory feedback and stimulation may have made the experience more engaging and motivating to students.</s0>
</fC01>
<fC02 i1="01" i2="C">
<s0>520226</s0>
<s1>VII</s1>
</fC02>
<fC02 i1="02" i2="C">
<s0>520</s0>
</fC02>
<fC03 i1="01" i2="C" l="FRE">
<s0>Science</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="C" l="ENG">
<s0>Science</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="C" l="FRE">
<s0>Elève du secondaire</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="C" l="ENG">
<s0>Secondary School Student</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="C" l="FRE">
<s0>Etats-Unis</s0>
<s2>NG</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="C" l="ENG">
<s0>USA</s0>
<s2>NG</s2>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="C" l="FRE">
<s0>Technologie</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="C" l="ENG">
<s0>Technology</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="C" l="FRE">
<s0>Mesure</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="C" l="ENG">
<s0>Measurement</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="C" l="FRE">
<s0>Conceptualisation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="C" l="ENG">
<s0>Conceptualization</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="C" l="FRE">
<s0>Microscope</s0>
<s2>NI</s2>
<s4>INC</s4>
<s5>31</s5>
</fC03>
<fC03 i1="08" i2="C" l="FRE">
<s0>Virus</s0>
<s2>NI</s2>
<s4>INC</s4>
<s5>32</s5>
</fC03>
<fN21>
<s1>131</s1>
</fN21>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
<server>
<NO>FRANCIS 520-04-11661 INIST</NO>
<FT>(Microscopie atomique à distance des organismes microscopiques : innovations technologiques pour des cours de science pratiques dans le secondaire)</FT>
<ET>Remote atomic force microscopy of microscopic organisms: Technological innovations for hands-on science with middle and high school students</ET>
<AU>JONES (M. G.); ANDRE (T.); KUBASKO (D.); BOKINSKY (A.); TRETTER (T.); NEGISHI (A.); TAYLOR (R.); SUPERFINE (R.)</AU>
<AF>University of North Carolina at Chapel Hill/Chapel Hill, NC 27599-3500/Etats-Unis (1 aut., 3 aut.); Department of Curriculum and Instruction, Iowa State University/Ames, IA 50011-3190/Etats-Unis (2 aut.); University of North Carolina at Wilmington/Wilmington, NC 28403/Etats-Unis (4 aut., 5 aut., 6 aut., 7 aut., 8 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Science education : (Saleem, Mass.); ISSN 0036-8326; Coden SEDUAV; Etats-Unis; Da. 2004; Vol. 88; No. 1; Pp. 55-71; Bibl. 1 p.1/2</SO>
<LA>Anglais</LA>
<EA>This study examined hands-on experiences in the context of an investigation of viruses and explored how and why hands-on experiences may be effective. We sought to understand whether or not touching and manipulating materials and objects could lead to a deeper, more effective type of knowing than that we obtain from sight or sound alone. Four classes of high school biology students and four classes of seventh graders participated in the study that examined students' use of remote microscopy with a new scientific tool called the nanoManipulator, which enabled them to reach out and touch live viruses inside an atomic force microscope. Half of the students received full haptic (tactile and kinesthetic) feedback from a haptic joystick, whereas half of the students were able to use the haptic joystick to manipulate viruses but the tactile feedback was blocked. Results showed that there were significant gains from pre- to postinstruction across treatment groups for knowledge and attitudes. Students in both treatment groups developed conceptual models of viruses that were more consistent with current scientific research, including a move from a two-dimensional to a three-dimensional understanding of virus morphology. There were significant changes in students' understandings of scale; after instruction, students were more likely to identify examples of nanosized objects and be able to describe the degree to which a human would have to be shrunk to reach the size of a virus. Students who received full-haptic feedback had significantly better attitudes suggesting that the increased sensory feedback and stimulation may have made the experience more engaging and motivating to students.</EA>
<CC>520226; 520</CC>
<FD>Science; Elève du secondaire; Etats-Unis; Technologie; Mesure; Conceptualisation; Microscope; Virus</FD>
<ED>Science; Secondary School Student; USA; Technology; Measurement; Conceptualization</ED>
<LO>INIST-16064.354000119182660030</LO>
<ID>520</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001126 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 001126 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Francis:520-04-11661
   |texte=   Remote atomic force microscopy of microscopic organisms: Technological innovations for hands-on science with middle and high school students
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024