Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Design of a robotic walking simulator for neurological rehabilitation

Identifieur interne : 001057 ( PascalFrancis/Corpus ); précédent : 001056; suivant : 001058

Design of a robotic walking simulator for neurological rehabilitation

Auteurs : H. Schmidt ; D. Sorowka ; S. Hesse ; R. Bernhardt

Source :

RBID : Pascal:04-0196205

Descripteurs français

English descriptors

Abstract

The restoration of walking capability is a key goal after stroke, traumatic brain injury and spinal cord injury. Conventional training methods, e.g. treadmill training, require great physical effort from the therapists to assist the patient. A robotic device which enables the therapist to let the machine move the patients feet on programmable foot trajectories (e.g. walking on the ground, stepping stairs up and down, walking on rough surfaces, disturbances during walking) would be of great help. On this device the patients feet are permanently fixed on two footplates. Force sensors are mounted on the footplates in order to enable the incorporation of compliance control algorithms for online adaptation of the foot trajectories to the patients walking capabilities. Furthermore the kinematic and kinetic design parameters of the robotic system will enable the machine to be used as a universal walking simulator, not only for rehabilitation purposes. In 'haptic mode', i.e. maximum compliance during foot swing phase, the machine behaves as a haptic foot device for a variety of virtual ground conditions. Due to the high dynamic range, needed to guide real walking trajectories, conventional industrial robots are not suitable for this task. Hence the authors have developed a special robot system with high dynamics. This paper describes development aspects of the design process of the new walking simulator. A proto-type of the developed system is currently under construction.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A08 01  1  ENG  @1 Design of a robotic walking simulator for neurological rehabilitation
A09 01  1  ENG  @1 2002 IEEE/RSJ international conference on intelligent robots and systems : Lausanne, 30 September - 4 October 2002
A11 01  1    @1 SCHMIDT (H.)
A11 02  1    @1 SOROWKA (D.)
A11 03  1    @1 HESSE (S.)
A11 04  1    @1 BERNHARDT (R.)
A14 01      @1 Free University of Berlin, Dept. of Neurological Rehabilitation @2 Berlin @3 DEU @Z 1 aut. @Z 2 aut. @Z 3 aut.
A14 02      @1 Fraunhofer Institute IPK, Dept. of Automation and Robotics @2 Berlin @3 DEU @Z 1 aut. @Z 2 aut. @Z 4 aut.
A18 01  1    @1 IEEE Robotics and Automation Society @3 USA @9 patr.
A18 02  1    @1 IEEE Industrial Elelctronics Society @3 USA @9 patr.
A18 03  1    @1 Robotics Society of Japan @3 JPN @9 patr.
A18 04  1    @1 Society of Instruments and Control Engineers @3 INC @9 patr.
A18 05  1    @1 INRIA Rhône-Alpes @2 Grenoble @3 FRA @9 patr.
A18 06  1    @1 EPFL @2 Lausanne @3 CHE @9 patr.
A20       @1 1487-1492
A21       @1 2002
A23 01      @0 ENG
A25 01      @1 IEEE @2 Piscataway NJ
A26 01      @0 0-7803-7398-7
A30 01  1  ENG  @1 IROS 2002 : international conference on intelligent robots and systems @3 Lausanne CHE @4 2002-09-30
A43 01      @1 INIST @2 Y 37951 @5 354000117764172420
A44       @0 0000 @1 © 2004 INIST-CNRS. All rights reserved.
A45       @0 14 ref.
A47 01  1    @0 04-0196205
A60       @1 C
A61       @0 A
A66 01      @0 USA
C01 01    ENG  @0 The restoration of walking capability is a key goal after stroke, traumatic brain injury and spinal cord injury. Conventional training methods, e.g. treadmill training, require great physical effort from the therapists to assist the patient. A robotic device which enables the therapist to let the machine move the patients feet on programmable foot trajectories (e.g. walking on the ground, stepping stairs up and down, walking on rough surfaces, disturbances during walking) would be of great help. On this device the patients feet are permanently fixed on two footplates. Force sensors are mounted on the footplates in order to enable the incorporation of compliance control algorithms for online adaptation of the foot trajectories to the patients walking capabilities. Furthermore the kinematic and kinetic design parameters of the robotic system will enable the machine to be used as a universal walking simulator, not only for rehabilitation purposes. In 'haptic mode', i.e. maximum compliance during foot swing phase, the machine behaves as a haptic foot device for a variety of virtual ground conditions. Due to the high dynamic range, needed to guide real walking trajectories, conventional industrial robots are not suitable for this task. Hence the authors have developed a special robot system with high dynamics. This paper describes development aspects of the design process of the new walking simulator. A proto-type of the developed system is currently under construction.
C02 01  X    @0 001D02C03
C02 02  X    @0 001D02D11
C03 01  X  FRE  @0 Robotique @5 02
C03 01  X  ENG  @0 Robotics @5 02
C03 01  X  SPA  @0 Robótica @5 02
C03 02  X  FRE  @0 Simulateur @5 03
C03 02  X  ENG  @0 Simulator @5 03
C03 02  X  SPA  @0 Simulador @5 03
C03 03  X  FRE  @0 Trajectoire @5 04
C03 03  X  ENG  @0 Trajectory @5 04
C03 03  X  SPA  @0 Trayectoria @5 04
C03 04  X  FRE  @0 Capteur mesure @5 05
C03 04  X  ENG  @0 Measurement sensor @5 05
C03 04  X  SPA  @0 Captador medida @5 05
C03 05  X  FRE  @0 Adaptation @5 06
C03 05  X  ENG  @0 Adaptation @5 06
C03 05  X  SPA  @0 Adaptación @5 06
C03 06  X  FRE  @0 Conception système @5 07
C03 06  X  ENG  @0 System design @5 07
C03 06  X  SPA  @0 Concepción sistema @5 07
C03 07  X  FRE  @0 Système dynamique @5 08
C03 07  X  ENG  @0 Dynamical system @5 08
C03 07  X  SPA  @0 Sistema dinámico @5 08
C03 08  X  FRE  @0 Préparation gamme fabrication @5 09
C03 08  X  ENG  @0 Process planning @5 09
C03 08  X  SPA  @0 Preparación serie fabricación @5 09
C03 09  3  FRE  @0 Théorie type @5 10
C03 09  3  ENG  @0 Type theory @5 10
C03 10  3  FRE  @0 Locomotion avec jambes @5 11
C03 10  3  ENG  @0 Legged locomotion @5 11
C03 11  X  FRE  @0 Marche à pied @5 12
C03 11  X  ENG  @0 Walking @5 12
C03 11  X  SPA  @0 Caminata @5 12
C03 12  X  FRE  @0 Réadaptation physique @5 13
C03 12  X  ENG  @0 Physical rehabilitation @5 13
C03 12  X  SPA  @0 Readaptación física @5 13
C03 13  X  FRE  @0 Réhabilitation @5 14
C03 13  X  ENG  @0 Rehabilitation @5 14
C03 13  X  SPA  @0 Rehabilitación @5 14
C03 14  X  FRE  @0 Cerveau @5 15
C03 14  X  ENG  @0 Brain @5 15
C03 14  X  SPA  @0 Cerebro @5 15
C03 15  X  FRE  @0 Encéphale @5 16
C03 15  X  ENG  @0 Encephalon @5 16
C03 15  X  SPA  @0 Encéfalo @5 16
C03 16  X  FRE  @0 Homme @5 17
C03 16  X  ENG  @0 Human @5 17
C03 16  X  SPA  @0 Hombre @5 17
C03 17  X  FRE  @0 Système nerveux central @5 18
C03 17  X  ENG  @0 Central nervous system @5 18
C03 17  X  SPA  @0 Sistema nervioso central @5 18
C03 18  X  FRE  @0 Pied @5 19
C03 18  X  ENG  @0 Foot @5 19
C03 18  X  SPA  @0 Pie @5 19
C03 19  X  FRE  @0 Surface rugueuse @5 20
C03 19  X  ENG  @0 Rough surface @5 20
C03 19  X  SPA  @0 Superficie rugosa @5 20
N21       @1 131
N82       @1 PSI

Format Inist (serveur)

NO : PASCAL 04-0196205 INIST
ET : Design of a robotic walking simulator for neurological rehabilitation
AU : SCHMIDT (H.); SOROWKA (D.); HESSE (S.); BERNHARDT (R.)
AF : Free University of Berlin, Dept. of Neurological Rehabilitation/Berlin/Allemagne (1 aut., 2 aut., 3 aut.); Fraunhofer Institute IPK, Dept. of Automation and Robotics/Berlin/Allemagne (1 aut., 2 aut., 4 aut.)
DT : Congrès; Niveau analytique
SO : IROS 2002 : international conference on intelligent robots and systems/2002-09-30/Lausanne CHE; Etats-Unis; Piscataway NJ: IEEE; Da. 2002; Pp. 1487-1492; ISBN 0-7803-7398-7
LA : Anglais
EA : The restoration of walking capability is a key goal after stroke, traumatic brain injury and spinal cord injury. Conventional training methods, e.g. treadmill training, require great physical effort from the therapists to assist the patient. A robotic device which enables the therapist to let the machine move the patients feet on programmable foot trajectories (e.g. walking on the ground, stepping stairs up and down, walking on rough surfaces, disturbances during walking) would be of great help. On this device the patients feet are permanently fixed on two footplates. Force sensors are mounted on the footplates in order to enable the incorporation of compliance control algorithms for online adaptation of the foot trajectories to the patients walking capabilities. Furthermore the kinematic and kinetic design parameters of the robotic system will enable the machine to be used as a universal walking simulator, not only for rehabilitation purposes. In 'haptic mode', i.e. maximum compliance during foot swing phase, the machine behaves as a haptic foot device for a variety of virtual ground conditions. Due to the high dynamic range, needed to guide real walking trajectories, conventional industrial robots are not suitable for this task. Hence the authors have developed a special robot system with high dynamics. This paper describes development aspects of the design process of the new walking simulator. A proto-type of the developed system is currently under construction.
CC : 001D02C03; 001D02D11
FD : Robotique; Simulateur; Trajectoire; Capteur mesure; Adaptation; Conception système; Système dynamique; Préparation gamme fabrication; Théorie type; Locomotion avec jambes; Marche à pied; Réadaptation physique; Réhabilitation; Cerveau; Encéphale; Homme; Système nerveux central; Pied; Surface rugueuse
ED : Robotics; Simulator; Trajectory; Measurement sensor; Adaptation; System design; Dynamical system; Process planning; Type theory; Legged locomotion; Walking; Physical rehabilitation; Rehabilitation; Brain; Encephalon; Human; Central nervous system; Foot; Rough surface
SD : Robótica; Simulador; Trayectoria; Captador medida; Adaptación; Concepción sistema; Sistema dinámico; Preparación serie fabricación; Caminata; Readaptación física; Rehabilitación; Cerebro; Encéfalo; Hombre; Sistema nervioso central; Pie; Superficie rugosa
LO : INIST-Y 37951.354000117764172420
ID : 04-0196205

Links to Exploration step

Pascal:04-0196205

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Design of a robotic walking simulator for neurological rehabilitation</title>
<author>
<name sortKey="Schmidt, H" sort="Schmidt, H" uniqKey="Schmidt H" first="H." last="Schmidt">H. Schmidt</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Free University of Berlin, Dept. of Neurological Rehabilitation</s1>
<s2>Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Fraunhofer Institute IPK, Dept. of Automation and Robotics</s1>
<s2>Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sorowka, D" sort="Sorowka, D" uniqKey="Sorowka D" first="D." last="Sorowka">D. Sorowka</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Free University of Berlin, Dept. of Neurological Rehabilitation</s1>
<s2>Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Fraunhofer Institute IPK, Dept. of Automation and Robotics</s1>
<s2>Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hesse, S" sort="Hesse, S" uniqKey="Hesse S" first="S." last="Hesse">S. Hesse</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Free University of Berlin, Dept. of Neurological Rehabilitation</s1>
<s2>Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bernhardt, R" sort="Bernhardt, R" uniqKey="Bernhardt R" first="R." last="Bernhardt">R. Bernhardt</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Fraunhofer Institute IPK, Dept. of Automation and Robotics</s1>
<s2>Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">04-0196205</idno>
<date when="2002">2002</date>
<idno type="stanalyst">PASCAL 04-0196205 INIST</idno>
<idno type="RBID">Pascal:04-0196205</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001057</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Design of a robotic walking simulator for neurological rehabilitation</title>
<author>
<name sortKey="Schmidt, H" sort="Schmidt, H" uniqKey="Schmidt H" first="H." last="Schmidt">H. Schmidt</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Free University of Berlin, Dept. of Neurological Rehabilitation</s1>
<s2>Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Fraunhofer Institute IPK, Dept. of Automation and Robotics</s1>
<s2>Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sorowka, D" sort="Sorowka, D" uniqKey="Sorowka D" first="D." last="Sorowka">D. Sorowka</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Free University of Berlin, Dept. of Neurological Rehabilitation</s1>
<s2>Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Fraunhofer Institute IPK, Dept. of Automation and Robotics</s1>
<s2>Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hesse, S" sort="Hesse, S" uniqKey="Hesse S" first="S." last="Hesse">S. Hesse</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Free University of Berlin, Dept. of Neurological Rehabilitation</s1>
<s2>Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bernhardt, R" sort="Bernhardt, R" uniqKey="Bernhardt R" first="R." last="Bernhardt">R. Bernhardt</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Fraunhofer Institute IPK, Dept. of Automation and Robotics</s1>
<s2>Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation</term>
<term>Brain</term>
<term>Central nervous system</term>
<term>Dynamical system</term>
<term>Encephalon</term>
<term>Foot</term>
<term>Human</term>
<term>Legged locomotion</term>
<term>Measurement sensor</term>
<term>Physical rehabilitation</term>
<term>Process planning</term>
<term>Rehabilitation</term>
<term>Robotics</term>
<term>Rough surface</term>
<term>Simulator</term>
<term>System design</term>
<term>Trajectory</term>
<term>Type theory</term>
<term>Walking</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Robotique</term>
<term>Simulateur</term>
<term>Trajectoire</term>
<term>Capteur mesure</term>
<term>Adaptation</term>
<term>Conception système</term>
<term>Système dynamique</term>
<term>Préparation gamme fabrication</term>
<term>Théorie type</term>
<term>Locomotion avec jambes</term>
<term>Marche à pied</term>
<term>Réadaptation physique</term>
<term>Réhabilitation</term>
<term>Cerveau</term>
<term>Encéphale</term>
<term>Homme</term>
<term>Système nerveux central</term>
<term>Pied</term>
<term>Surface rugueuse</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The restoration of walking capability is a key goal after stroke, traumatic brain injury and spinal cord injury. Conventional training methods, e.g. treadmill training, require great physical effort from the therapists to assist the patient. A robotic device which enables the therapist to let the machine move the patients feet on programmable foot trajectories (e.g. walking on the ground, stepping stairs up and down, walking on rough surfaces, disturbances during walking) would be of great help. On this device the patients feet are permanently fixed on two footplates. Force sensors are mounted on the footplates in order to enable the incorporation of compliance control algorithms for online adaptation of the foot trajectories to the patients walking capabilities. Furthermore the kinematic and kinetic design parameters of the robotic system will enable the machine to be used as a universal walking simulator, not only for rehabilitation purposes. In 'haptic mode', i.e. maximum compliance during foot swing phase, the machine behaves as a haptic foot device for a variety of virtual ground conditions. Due to the high dynamic range, needed to guide real walking trajectories, conventional industrial robots are not suitable for this task. Hence the authors have developed a special robot system with high dynamics. This paper describes development aspects of the design process of the new walking simulator. A proto-type of the developed system is currently under construction.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA08 i1="01" i2="1" l="ENG">
<s1>Design of a robotic walking simulator for neurological rehabilitation</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>2002 IEEE/RSJ international conference on intelligent robots and systems : Lausanne, 30 September - 4 October 2002</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>SCHMIDT (H.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SOROWKA (D.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HESSE (S.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BERNHARDT (R.)</s1>
</fA11>
<fA14 i1="01">
<s1>Free University of Berlin, Dept. of Neurological Rehabilitation</s1>
<s2>Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Fraunhofer Institute IPK, Dept. of Automation and Robotics</s1>
<s2>Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>IEEE Robotics and Automation Society</s1>
<s3>USA</s3>
<s9>patr.</s9>
</fA18>
<fA18 i1="02" i2="1">
<s1>IEEE Industrial Elelctronics Society</s1>
<s3>USA</s3>
<s9>patr.</s9>
</fA18>
<fA18 i1="03" i2="1">
<s1>Robotics Society of Japan</s1>
<s3>JPN</s3>
<s9>patr.</s9>
</fA18>
<fA18 i1="04" i2="1">
<s1>Society of Instruments and Control Engineers</s1>
<s3>INC</s3>
<s9>patr.</s9>
</fA18>
<fA18 i1="05" i2="1">
<s1>INRIA Rhône-Alpes</s1>
<s2>Grenoble</s2>
<s3>FRA</s3>
<s9>patr.</s9>
</fA18>
<fA18 i1="06" i2="1">
<s1>EPFL</s1>
<s2>Lausanne</s2>
<s3>CHE</s3>
<s9>patr.</s9>
</fA18>
<fA20>
<s1>1487-1492</s1>
</fA20>
<fA21>
<s1>2002</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA25 i1="01">
<s1>IEEE</s1>
<s2>Piscataway NJ</s2>
</fA25>
<fA26 i1="01">
<s0>0-7803-7398-7</s0>
</fA26>
<fA30 i1="01" i2="1" l="ENG">
<s1>IROS 2002 : international conference on intelligent robots and systems</s1>
<s3>Lausanne CHE</s3>
<s4>2002-09-30</s4>
</fA30>
<fA43 i1="01">
<s1>INIST</s1>
<s2>Y 37951</s2>
<s5>354000117764172420</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2004 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>14 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>04-0196205</s0>
</fA47>
<fA60>
<s1>C</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The restoration of walking capability is a key goal after stroke, traumatic brain injury and spinal cord injury. Conventional training methods, e.g. treadmill training, require great physical effort from the therapists to assist the patient. A robotic device which enables the therapist to let the machine move the patients feet on programmable foot trajectories (e.g. walking on the ground, stepping stairs up and down, walking on rough surfaces, disturbances during walking) would be of great help. On this device the patients feet are permanently fixed on two footplates. Force sensors are mounted on the footplates in order to enable the incorporation of compliance control algorithms for online adaptation of the foot trajectories to the patients walking capabilities. Furthermore the kinematic and kinetic design parameters of the robotic system will enable the machine to be used as a universal walking simulator, not only for rehabilitation purposes. In 'haptic mode', i.e. maximum compliance during foot swing phase, the machine behaves as a haptic foot device for a variety of virtual ground conditions. Due to the high dynamic range, needed to guide real walking trajectories, conventional industrial robots are not suitable for this task. Hence the authors have developed a special robot system with high dynamics. This paper describes development aspects of the design process of the new walking simulator. A proto-type of the developed system is currently under construction.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02C03</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D02D11</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Robotique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Robotics</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Robótica</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Simulateur</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Simulator</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Simulador</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Trajectoire</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Trajectory</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Trayectoria</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Capteur mesure</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Measurement sensor</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Captador medida</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Adaptation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Adaptation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Adaptación</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Conception système</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>System design</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Concepción sistema</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Système dynamique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Dynamical system</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Sistema dinámico</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Préparation gamme fabrication</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Process planning</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Preparación serie fabricación</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Théorie type</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Type theory</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Locomotion avec jambes</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Legged locomotion</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Marche à pied</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Walking</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Caminata</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Réadaptation physique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Physical rehabilitation</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Readaptación física</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Réhabilitation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Rehabilitation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Rehabilitación</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Cerveau</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Brain</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Cerebro</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Encéphale</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Encephalon</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Encéfalo</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Homme</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Human</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Hombre</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Système nerveux central</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Central nervous system</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Sistema nervioso central</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Pied</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Foot</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Pie</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Surface rugueuse</s0>
<s5>20</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Rough surface</s0>
<s5>20</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Superficie rugosa</s0>
<s5>20</s5>
</fC03>
<fN21>
<s1>131</s1>
</fN21>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 04-0196205 INIST</NO>
<ET>Design of a robotic walking simulator for neurological rehabilitation</ET>
<AU>SCHMIDT (H.); SOROWKA (D.); HESSE (S.); BERNHARDT (R.)</AU>
<AF>Free University of Berlin, Dept. of Neurological Rehabilitation/Berlin/Allemagne (1 aut., 2 aut., 3 aut.); Fraunhofer Institute IPK, Dept. of Automation and Robotics/Berlin/Allemagne (1 aut., 2 aut., 4 aut.)</AF>
<DT>Congrès; Niveau analytique</DT>
<SO>IROS 2002 : international conference on intelligent robots and systems/2002-09-30/Lausanne CHE; Etats-Unis; Piscataway NJ: IEEE; Da. 2002; Pp. 1487-1492; ISBN 0-7803-7398-7</SO>
<LA>Anglais</LA>
<EA>The restoration of walking capability is a key goal after stroke, traumatic brain injury and spinal cord injury. Conventional training methods, e.g. treadmill training, require great physical effort from the therapists to assist the patient. A robotic device which enables the therapist to let the machine move the patients feet on programmable foot trajectories (e.g. walking on the ground, stepping stairs up and down, walking on rough surfaces, disturbances during walking) would be of great help. On this device the patients feet are permanently fixed on two footplates. Force sensors are mounted on the footplates in order to enable the incorporation of compliance control algorithms for online adaptation of the foot trajectories to the patients walking capabilities. Furthermore the kinematic and kinetic design parameters of the robotic system will enable the machine to be used as a universal walking simulator, not only for rehabilitation purposes. In 'haptic mode', i.e. maximum compliance during foot swing phase, the machine behaves as a haptic foot device for a variety of virtual ground conditions. Due to the high dynamic range, needed to guide real walking trajectories, conventional industrial robots are not suitable for this task. Hence the authors have developed a special robot system with high dynamics. This paper describes development aspects of the design process of the new walking simulator. A proto-type of the developed system is currently under construction.</EA>
<CC>001D02C03; 001D02D11</CC>
<FD>Robotique; Simulateur; Trajectoire; Capteur mesure; Adaptation; Conception système; Système dynamique; Préparation gamme fabrication; Théorie type; Locomotion avec jambes; Marche à pied; Réadaptation physique; Réhabilitation; Cerveau; Encéphale; Homme; Système nerveux central; Pied; Surface rugueuse</FD>
<ED>Robotics; Simulator; Trajectory; Measurement sensor; Adaptation; System design; Dynamical system; Process planning; Type theory; Legged locomotion; Walking; Physical rehabilitation; Rehabilitation; Brain; Encephalon; Human; Central nervous system; Foot; Rough surface</ED>
<SD>Robótica; Simulador; Trayectoria; Captador medida; Adaptación; Concepción sistema; Sistema dinámico; Preparación serie fabricación; Caminata; Readaptación física; Rehabilitación; Cerebro; Encéfalo; Hombre; Sistema nervioso central; Pie; Superficie rugosa</SD>
<LO>INIST-Y 37951.354000117764172420</LO>
<ID>04-0196205</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001057 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 001057 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:04-0196205
   |texte=   Design of a robotic walking simulator for neurological rehabilitation
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024