Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Task-based and stable telenanomanipulation in a nanoscale virtual environment : Nanoscale automation and assembly

Identifieur interne : 000C72 ( PascalFrancis/Corpus ); précédent : 000C71; suivant : 000C73

Task-based and stable telenanomanipulation in a nanoscale virtual environment : Nanoscale automation and assembly

Auteurs : Sung-Gaun Kim ; Metin Sitti

Source :

RBID : Pascal:06-0394528

Descripteurs français

English descriptors

Abstract

In a haptic interface system with a nanoscale virtual environment (NVE) using an atomic force microscope, not only is stability important, but task-based performance (or fidelity) is crucial. In this paper, we introduce a nanoscale virtual coupling (NSVC) concept and explicitly derive the relationship between performance, stability, and scaling factors of velocity (or position) and force. An available scaling factor region is represented based on Llewellyn's absolute stability criteria and the physical limitation of the haptic device. For the stable haptic interface, the sampled time passivity controller is implemented in the NVE. Experiments have been performed for telenanomanipulation tasks, such as positioning, indenting, and nanolithography with guaranteed stability in the NVE. Note to Practitioners-This paper suggests methods and control schemes for the task-based and stable telenanomanipulation in the nanoscale virtual environment (NVE). The proposed task-based and stable telenanomanipulation in the NVE can be used for an augmented human machine interface for the manipulation of nanoscale objects with the atomic force microscope (AFM). In addition, it is beneficial for learning or performing nanoscale tasks, such as nanolithography, nanoindenting, nanofabrication, and cell manipulation. Also, the interaction with the NVE using haptic device provides a useful tool for researchers in a variety of disciplines, such as biology, chemistry, and physics. Moreover, it may even be applied to educational purposes. In future research, the developed stable haptic interface would be integrated with the AFM system as a slave manipulator for telenanomanipulation experiments, such as pushing a nanoparticle with precise positioning and nanoassembly.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1545-5955
A03   1    @0 IEEE trans. autom. sci. eng.
A05       @2 3
A06       @2 3
A08 01  1  ENG  @1 Task-based and stable telenanomanipulation in a nanoscale virtual environment : Nanoscale automation and assembly
A11 01  1    @1 KIM (Sung-Gaun)
A11 02  1    @1 SITTI (Metin)
A14 01      @1 Mechanical and Automotive Engineering Department, Kongju National University @2 Kongju 314-701 @3 KOR @Z 1 aut.
A14 02      @1 Mechanical Engineering Department and Robotics Institute, Carnegie Mellon University @2 Pittsburgh, PA 15213 @3 USA @Z 2 aut.
A20       @1 240-247
A21       @1 2006
A23 01      @0 ENG
A43 01      @1 INIST @2 21023B @5 354000138988050060
A44       @0 0000 @1 © 2006 INIST-CNRS. All rights reserved.
A45       @0 20 ref.
A47 01  1    @0 06-0394528
A60       @1 P @3 CC
A61       @0 A
A64 01  1    @0 IEEE transactions on automation science and engineering
A66 01      @0 USA
C01 01    ENG  @0 In a haptic interface system with a nanoscale virtual environment (NVE) using an atomic force microscope, not only is stability important, but task-based performance (or fidelity) is crucial. In this paper, we introduce a nanoscale virtual coupling (NSVC) concept and explicitly derive the relationship between performance, stability, and scaling factors of velocity (or position) and force. An available scaling factor region is represented based on Llewellyn's absolute stability criteria and the physical limitation of the haptic device. For the stable haptic interface, the sampled time passivity controller is implemented in the NVE. Experiments have been performed for telenanomanipulation tasks, such as positioning, indenting, and nanolithography with guaranteed stability in the NVE. Note to Practitioners-This paper suggests methods and control schemes for the task-based and stable telenanomanipulation in the nanoscale virtual environment (NVE). The proposed task-based and stable telenanomanipulation in the NVE can be used for an augmented human machine interface for the manipulation of nanoscale objects with the atomic force microscope (AFM). In addition, it is beneficial for learning or performing nanoscale tasks, such as nanolithography, nanoindenting, nanofabrication, and cell manipulation. Also, the interaction with the NVE using haptic device provides a useful tool for researchers in a variety of disciplines, such as biology, chemistry, and physics. Moreover, it may even be applied to educational purposes. In future research, the developed stable haptic interface would be integrated with the AFM system as a slave manipulator for telenanomanipulation experiments, such as pushing a nanoparticle with precise positioning and nanoassembly.
C02 01  X    @0 001D02B04
C02 02  X    @0 001D02D11
C02 03  X    @0 001D12I
C02 04  3    @0 001B00G10C
C03 01  X  FRE  @0 Interface utilisateur @5 06
C03 01  X  ENG  @0 User interface @5 06
C03 01  X  SPA  @0 Interfase usuario @5 06
C03 02  X  FRE  @0 Nanotechnologie @5 07
C03 02  X  ENG  @0 Nanotechnology @5 07
C03 02  X  SPA  @0 Nanotecnología @5 07
C03 03  X  FRE  @0 Positionnement @5 08
C03 03  X  ENG  @0 Positioning @5 08
C03 03  X  SPA  @0 Posicionamiento @5 08
C03 04  X  FRE  @0 Relation homme machine @5 09
C03 04  X  ENG  @0 Man machine relation @5 09
C03 04  X  SPA  @0 Relación hombre máquina @5 09
C03 05  X  FRE  @0 Mécanique précision @5 10
C03 05  X  ENG  @0 Precision engineering @5 10
C03 05  X  SPA  @0 Mecánica precisión @5 10
C03 06  X  FRE  @0 Robotique @5 11
C03 06  X  ENG  @0 Robotics @5 11
C03 06  X  SPA  @0 Robótica @5 11
C03 07  X  FRE  @0 Nanostructure @5 18
C03 07  X  ENG  @0 Nanostructure @5 18
C03 07  X  SPA  @0 Nanoestructura @5 18
C03 08  X  FRE  @0 Réalité virtuelle @5 19
C03 08  X  ENG  @0 Virtual reality @5 19
C03 08  X  SPA  @0 Realidad virtual @5 19
C03 09  X  FRE  @0 Sensibilité tactile @5 20
C03 09  X  ENG  @0 Tactile sensitivity @5 20
C03 09  X  SPA  @0 Sensibilidad tactil @5 20
C03 10  X  FRE  @0 Fidélité @5 21
C03 10  X  ENG  @0 Fidelity @5 21
C03 10  X  SPA  @0 Fidelidad @5 21
C03 11  X  FRE  @0 Téléopération @5 22
C03 11  X  ENG  @0 Remote operation @5 22
C03 11  X  SPA  @0 Teleacción @5 22
C03 12  X  FRE  @0 Facteur échelle @5 23
C03 12  X  ENG  @0 Scale factor @5 23
C03 12  X  SPA  @0 Factor escala @5 23
C03 13  X  FRE  @0 Stabilité absolue @5 24
C03 13  X  ENG  @0 Absolute stability @5 24
C03 13  X  SPA  @0 Estabilidad absoluta @5 24
C03 14  X  FRE  @0 Indentation @5 25
C03 14  X  ENG  @0 Indentation @5 25
C03 14  X  SPA  @0 Indentación @5 25
C03 15  X  FRE  @0 Intelligence artificielle @5 26
C03 15  X  ENG  @0 Artificial intelligence @5 26
C03 15  X  SPA  @0 Inteligencia artificial @5 26
C03 16  3  FRE  @0 Echelle nanométrique @5 27
C03 16  3  ENG  @0 Nanometer scale @5 27
C03 17  X  FRE  @0 Commande position @5 28
C03 17  X  ENG  @0 Position control @5 28
C03 17  X  SPA  @0 Regulación de la posición @5 28
C03 18  X  FRE  @0 Microscopie force atomique @5 33
C03 18  X  ENG  @0 Atomic force microscopy @5 33
C03 18  X  SPA  @0 Microscopía fuerza atómica @5 33
C03 19  X  FRE  @0 Etude expérimentale @5 34
C03 19  X  ENG  @0 Experimental study @5 34
C03 19  X  SPA  @0 Estudio experimental @5 34
C03 20  X  FRE  @0 Biologie @5 41
C03 20  X  ENG  @0 Biology @5 41
C03 20  X  SPA  @0 Biología @5 41
N21       @1 261
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 06-0394528 INIST
ET : Task-based and stable telenanomanipulation in a nanoscale virtual environment : Nanoscale automation and assembly
AU : KIM (Sung-Gaun); SITTI (Metin)
AF : Mechanical and Automotive Engineering Department, Kongju National University/Kongju 314-701/Corée, République de (1 aut.); Mechanical Engineering Department and Robotics Institute, Carnegie Mellon University/Pittsburgh, PA 15213/Etats-Unis (2 aut.)
DT : Publication en série; Courte communication, note brève; Niveau analytique
SO : IEEE transactions on automation science and engineering; ISSN 1545-5955; Etats-Unis; Da. 2006; Vol. 3; No. 3; Pp. 240-247; Bibl. 20 ref.
LA : Anglais
EA : In a haptic interface system with a nanoscale virtual environment (NVE) using an atomic force microscope, not only is stability important, but task-based performance (or fidelity) is crucial. In this paper, we introduce a nanoscale virtual coupling (NSVC) concept and explicitly derive the relationship between performance, stability, and scaling factors of velocity (or position) and force. An available scaling factor region is represented based on Llewellyn's absolute stability criteria and the physical limitation of the haptic device. For the stable haptic interface, the sampled time passivity controller is implemented in the NVE. Experiments have been performed for telenanomanipulation tasks, such as positioning, indenting, and nanolithography with guaranteed stability in the NVE. Note to Practitioners-This paper suggests methods and control schemes for the task-based and stable telenanomanipulation in the nanoscale virtual environment (NVE). The proposed task-based and stable telenanomanipulation in the NVE can be used for an augmented human machine interface for the manipulation of nanoscale objects with the atomic force microscope (AFM). In addition, it is beneficial for learning or performing nanoscale tasks, such as nanolithography, nanoindenting, nanofabrication, and cell manipulation. Also, the interaction with the NVE using haptic device provides a useful tool for researchers in a variety of disciplines, such as biology, chemistry, and physics. Moreover, it may even be applied to educational purposes. In future research, the developed stable haptic interface would be integrated with the AFM system as a slave manipulator for telenanomanipulation experiments, such as pushing a nanoparticle with precise positioning and nanoassembly.
CC : 001D02B04; 001D02D11; 001D12I; 001B00G10C
FD : Interface utilisateur; Nanotechnologie; Positionnement; Relation homme machine; Mécanique précision; Robotique; Nanostructure; Réalité virtuelle; Sensibilité tactile; Fidélité; Téléopération; Facteur échelle; Stabilité absolue; Indentation; Intelligence artificielle; Echelle nanométrique; Commande position; Microscopie force atomique; Etude expérimentale; Biologie
ED : User interface; Nanotechnology; Positioning; Man machine relation; Precision engineering; Robotics; Nanostructure; Virtual reality; Tactile sensitivity; Fidelity; Remote operation; Scale factor; Absolute stability; Indentation; Artificial intelligence; Nanometer scale; Position control; Atomic force microscopy; Experimental study; Biology
SD : Interfase usuario; Nanotecnología; Posicionamiento; Relación hombre máquina; Mecánica precisión; Robótica; Nanoestructura; Realidad virtual; Sensibilidad tactil; Fidelidad; Teleacción; Factor escala; Estabilidad absoluta; Indentación; Inteligencia artificial; Regulación de la posición; Microscopía fuerza atómica; Estudio experimental; Biología
LO : INIST-21023B.354000138988050060
ID : 06-0394528

Links to Exploration step

Pascal:06-0394528

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Task-based and stable telenanomanipulation in a nanoscale virtual environment : Nanoscale automation and assembly</title>
<author>
<name sortKey="Kim, Sung Gaun" sort="Kim, Sung Gaun" uniqKey="Kim S" first="Sung-Gaun" last="Kim">Sung-Gaun Kim</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Mechanical and Automotive Engineering Department, Kongju National University</s1>
<s2>Kongju 314-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sitti, Metin" sort="Sitti, Metin" uniqKey="Sitti M" first="Metin" last="Sitti">Metin Sitti</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Mechanical Engineering Department and Robotics Institute, Carnegie Mellon University</s1>
<s2>Pittsburgh, PA 15213</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">06-0394528</idno>
<date when="2006">2006</date>
<idno type="stanalyst">PASCAL 06-0394528 INIST</idno>
<idno type="RBID">Pascal:06-0394528</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000C72</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Task-based and stable telenanomanipulation in a nanoscale virtual environment : Nanoscale automation and assembly</title>
<author>
<name sortKey="Kim, Sung Gaun" sort="Kim, Sung Gaun" uniqKey="Kim S" first="Sung-Gaun" last="Kim">Sung-Gaun Kim</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Mechanical and Automotive Engineering Department, Kongju National University</s1>
<s2>Kongju 314-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sitti, Metin" sort="Sitti, Metin" uniqKey="Sitti M" first="Metin" last="Sitti">Metin Sitti</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Mechanical Engineering Department and Robotics Institute, Carnegie Mellon University</s1>
<s2>Pittsburgh, PA 15213</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">IEEE transactions on automation science and engineering</title>
<title level="j" type="abbreviated">IEEE trans. autom. sci. eng.</title>
<idno type="ISSN">1545-5955</idno>
<imprint>
<date when="2006">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">IEEE transactions on automation science and engineering</title>
<title level="j" type="abbreviated">IEEE trans. autom. sci. eng.</title>
<idno type="ISSN">1545-5955</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absolute stability</term>
<term>Artificial intelligence</term>
<term>Atomic force microscopy</term>
<term>Biology</term>
<term>Experimental study</term>
<term>Fidelity</term>
<term>Indentation</term>
<term>Man machine relation</term>
<term>Nanometer scale</term>
<term>Nanostructure</term>
<term>Nanotechnology</term>
<term>Position control</term>
<term>Positioning</term>
<term>Precision engineering</term>
<term>Remote operation</term>
<term>Robotics</term>
<term>Scale factor</term>
<term>Tactile sensitivity</term>
<term>User interface</term>
<term>Virtual reality</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Interface utilisateur</term>
<term>Nanotechnologie</term>
<term>Positionnement</term>
<term>Relation homme machine</term>
<term>Mécanique précision</term>
<term>Robotique</term>
<term>Nanostructure</term>
<term>Réalité virtuelle</term>
<term>Sensibilité tactile</term>
<term>Fidélité</term>
<term>Téléopération</term>
<term>Facteur échelle</term>
<term>Stabilité absolue</term>
<term>Indentation</term>
<term>Intelligence artificielle</term>
<term>Echelle nanométrique</term>
<term>Commande position</term>
<term>Microscopie force atomique</term>
<term>Etude expérimentale</term>
<term>Biologie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In a haptic interface system with a nanoscale virtual environment (NVE) using an atomic force microscope, not only is stability important, but task-based performance (or fidelity) is crucial. In this paper, we introduce a nanoscale virtual coupling (NSVC) concept and explicitly derive the relationship between performance, stability, and scaling factors of velocity (or position) and force. An available scaling factor region is represented based on Llewellyn's absolute stability criteria and the physical limitation of the haptic device. For the stable haptic interface, the sampled time passivity controller is implemented in the NVE. Experiments have been performed for telenanomanipulation tasks, such as positioning, indenting, and nanolithography with guaranteed stability in the NVE. Note to Practitioners-This paper suggests methods and control schemes for the task-based and stable telenanomanipulation in the nanoscale virtual environment (NVE). The proposed task-based and stable telenanomanipulation in the NVE can be used for an augmented human machine interface for the manipulation of nanoscale objects with the atomic force microscope (AFM). In addition, it is beneficial for learning or performing nanoscale tasks, such as nanolithography, nanoindenting, nanofabrication, and cell manipulation. Also, the interaction with the NVE using haptic device provides a useful tool for researchers in a variety of disciplines, such as biology, chemistry, and physics. Moreover, it may even be applied to educational purposes. In future research, the developed stable haptic interface would be integrated with the AFM system as a slave manipulator for telenanomanipulation experiments, such as pushing a nanoparticle with precise positioning and nanoassembly.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1545-5955</s0>
</fA01>
<fA03 i2="1">
<s0>IEEE trans. autom. sci. eng.</s0>
</fA03>
<fA05>
<s2>3</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Task-based and stable telenanomanipulation in a nanoscale virtual environment : Nanoscale automation and assembly</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KIM (Sung-Gaun)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SITTI (Metin)</s1>
</fA11>
<fA14 i1="01">
<s1>Mechanical and Automotive Engineering Department, Kongju National University</s1>
<s2>Kongju 314-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Mechanical Engineering Department and Robotics Institute, Carnegie Mellon University</s1>
<s2>Pittsburgh, PA 15213</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>240-247</s1>
</fA20>
<fA21>
<s1>2006</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21023B</s2>
<s5>354000138988050060</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2006 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>20 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>06-0394528</s0>
</fA47>
<fA60>
<s1>P</s1>
<s3>CC</s3>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IEEE transactions on automation science and engineering</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In a haptic interface system with a nanoscale virtual environment (NVE) using an atomic force microscope, not only is stability important, but task-based performance (or fidelity) is crucial. In this paper, we introduce a nanoscale virtual coupling (NSVC) concept and explicitly derive the relationship between performance, stability, and scaling factors of velocity (or position) and force. An available scaling factor region is represented based on Llewellyn's absolute stability criteria and the physical limitation of the haptic device. For the stable haptic interface, the sampled time passivity controller is implemented in the NVE. Experiments have been performed for telenanomanipulation tasks, such as positioning, indenting, and nanolithography with guaranteed stability in the NVE. Note to Practitioners-This paper suggests methods and control schemes for the task-based and stable telenanomanipulation in the nanoscale virtual environment (NVE). The proposed task-based and stable telenanomanipulation in the NVE can be used for an augmented human machine interface for the manipulation of nanoscale objects with the atomic force microscope (AFM). In addition, it is beneficial for learning or performing nanoscale tasks, such as nanolithography, nanoindenting, nanofabrication, and cell manipulation. Also, the interaction with the NVE using haptic device provides a useful tool for researchers in a variety of disciplines, such as biology, chemistry, and physics. Moreover, it may even be applied to educational purposes. In future research, the developed stable haptic interface would be integrated with the AFM system as a slave manipulator for telenanomanipulation experiments, such as pushing a nanoparticle with precise positioning and nanoassembly.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02B04</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D02D11</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D12I</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B00G10C</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Interface utilisateur</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>User interface</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Interfase usuario</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Nanotechnologie</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Nanotechnology</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Nanotecnología</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Positionnement</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Positioning</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Posicionamiento</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Relation homme machine</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Man machine relation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Relación hombre máquina</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Mécanique précision</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Precision engineering</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Mecánica precisión</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Robotique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Robotics</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Robótica</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Nanostructure</s0>
<s5>18</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Nanostructure</s0>
<s5>18</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Nanoestructura</s0>
<s5>18</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Réalité virtuelle</s0>
<s5>19</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Virtual reality</s0>
<s5>19</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Realidad virtual</s0>
<s5>19</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Sensibilité tactile</s0>
<s5>20</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Tactile sensitivity</s0>
<s5>20</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Sensibilidad tactil</s0>
<s5>20</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Fidélité</s0>
<s5>21</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Fidelity</s0>
<s5>21</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Fidelidad</s0>
<s5>21</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Téléopération</s0>
<s5>22</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Remote operation</s0>
<s5>22</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Teleacción</s0>
<s5>22</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Facteur échelle</s0>
<s5>23</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Scale factor</s0>
<s5>23</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Factor escala</s0>
<s5>23</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Stabilité absolue</s0>
<s5>24</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Absolute stability</s0>
<s5>24</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Estabilidad absoluta</s0>
<s5>24</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Indentation</s0>
<s5>25</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Indentation</s0>
<s5>25</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Indentación</s0>
<s5>25</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Intelligence artificielle</s0>
<s5>26</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Artificial intelligence</s0>
<s5>26</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Inteligencia artificial</s0>
<s5>26</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Echelle nanométrique</s0>
<s5>27</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Nanometer scale</s0>
<s5>27</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Commande position</s0>
<s5>28</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Position control</s0>
<s5>28</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Regulación de la posición</s0>
<s5>28</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Microscopie force atomique</s0>
<s5>33</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Atomic force microscopy</s0>
<s5>33</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Microscopía fuerza atómica</s0>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Etude expérimentale</s0>
<s5>34</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Experimental study</s0>
<s5>34</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Estudio experimental</s0>
<s5>34</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Biologie</s0>
<s5>41</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Biology</s0>
<s5>41</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Biología</s0>
<s5>41</s5>
</fC03>
<fN21>
<s1>261</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 06-0394528 INIST</NO>
<ET>Task-based and stable telenanomanipulation in a nanoscale virtual environment : Nanoscale automation and assembly</ET>
<AU>KIM (Sung-Gaun); SITTI (Metin)</AU>
<AF>Mechanical and Automotive Engineering Department, Kongju National University/Kongju 314-701/Corée, République de (1 aut.); Mechanical Engineering Department and Robotics Institute, Carnegie Mellon University/Pittsburgh, PA 15213/Etats-Unis (2 aut.)</AF>
<DT>Publication en série; Courte communication, note brève; Niveau analytique</DT>
<SO>IEEE transactions on automation science and engineering; ISSN 1545-5955; Etats-Unis; Da. 2006; Vol. 3; No. 3; Pp. 240-247; Bibl. 20 ref.</SO>
<LA>Anglais</LA>
<EA>In a haptic interface system with a nanoscale virtual environment (NVE) using an atomic force microscope, not only is stability important, but task-based performance (or fidelity) is crucial. In this paper, we introduce a nanoscale virtual coupling (NSVC) concept and explicitly derive the relationship between performance, stability, and scaling factors of velocity (or position) and force. An available scaling factor region is represented based on Llewellyn's absolute stability criteria and the physical limitation of the haptic device. For the stable haptic interface, the sampled time passivity controller is implemented in the NVE. Experiments have been performed for telenanomanipulation tasks, such as positioning, indenting, and nanolithography with guaranteed stability in the NVE. Note to Practitioners-This paper suggests methods and control schemes for the task-based and stable telenanomanipulation in the nanoscale virtual environment (NVE). The proposed task-based and stable telenanomanipulation in the NVE can be used for an augmented human machine interface for the manipulation of nanoscale objects with the atomic force microscope (AFM). In addition, it is beneficial for learning or performing nanoscale tasks, such as nanolithography, nanoindenting, nanofabrication, and cell manipulation. Also, the interaction with the NVE using haptic device provides a useful tool for researchers in a variety of disciplines, such as biology, chemistry, and physics. Moreover, it may even be applied to educational purposes. In future research, the developed stable haptic interface would be integrated with the AFM system as a slave manipulator for telenanomanipulation experiments, such as pushing a nanoparticle with precise positioning and nanoassembly.</EA>
<CC>001D02B04; 001D02D11; 001D12I; 001B00G10C</CC>
<FD>Interface utilisateur; Nanotechnologie; Positionnement; Relation homme machine; Mécanique précision; Robotique; Nanostructure; Réalité virtuelle; Sensibilité tactile; Fidélité; Téléopération; Facteur échelle; Stabilité absolue; Indentation; Intelligence artificielle; Echelle nanométrique; Commande position; Microscopie force atomique; Etude expérimentale; Biologie</FD>
<ED>User interface; Nanotechnology; Positioning; Man machine relation; Precision engineering; Robotics; Nanostructure; Virtual reality; Tactile sensitivity; Fidelity; Remote operation; Scale factor; Absolute stability; Indentation; Artificial intelligence; Nanometer scale; Position control; Atomic force microscopy; Experimental study; Biology</ED>
<SD>Interfase usuario; Nanotecnología; Posicionamiento; Relación hombre máquina; Mecánica precisión; Robótica; Nanoestructura; Realidad virtual; Sensibilidad tactil; Fidelidad; Teleacción; Factor escala; Estabilidad absoluta; Indentación; Inteligencia artificial; Regulación de la posición; Microscopía fuerza atómica; Estudio experimental; Biología</SD>
<LO>INIST-21023B.354000138988050060</LO>
<ID>06-0394528</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C72 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000C72 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:06-0394528
   |texte=   Task-based and stable telenanomanipulation in a nanoscale virtual environment : Nanoscale automation and assembly
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024