Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Extending Applications of Dielectric Elastomer Artificial Muscle

Identifieur interne : 000901 ( PascalFrancis/Corpus ); précédent : 000900; suivant : 000902

Extending Applications of Dielectric Elastomer Artificial Muscle

Auteurs : Seiki Chiba ; Mikio Waki ; Roy Kombluh ; Ron Pelrine

Source :

RBID : Pascal:08-0449948

Descripteurs français

English descriptors

Abstract

Dielectric elastomers have demonstrated high energy density and high strains as well as high electromechanical efficiency and fast speeds of response. These properties, combined with their projected low cost make them attractive for a variety of actuator applications including linear actuators, diaphragm pumps, rotary motors, and haptic displays. Dielectric elastomers have also been shown to offer high energy density, high efficiency, and large strains when operated as generators. Dielectric elastomers have reached a stage of development where standardized products can be applied to new applications. In some cases, dielectric elastomer devices are improvements over existing devices. In other cases, however, dielectric elastomers can enable new types of devices that cannot be made with existing technologies, such as new types of loudspeakers and power generating devices. A new dipole loudspeaker system was developed using a commercially available push-pull diaphragm configuration. This same transducer configuration was used to develop a new power generating system. This generator system enables a power generation of 0.06 to 0.12 W by manually displacing the device by 5 to 6 nun once a second. By introducing a voltage step-down conversion circuit, the device was able to power wireless communications, allowing the control of devices separated by a distance of a few meters. These two devices are examples of the new applications that are enabled as the dielectric elastomer technology commercially emerges. Future improvements to dielectric elastomers could enable new capabilities in clean electrical power generation from ocean waves, for example.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0277-786X
A05       @2 6524
A08 01  1  ENG  @1 Extending Applications of Dielectric Elastomer Artificial Muscle
A09 01  1  ENG  @1 Electroactive polymer actuators and devices (EAPAD) 2007 : 19-22 March 2007, San Diego, California, USA
A11 01  1    @1 CHIBA (Seiki)
A11 02  1    @1 WAKI (Mikio)
A11 03  1    @1 KOMBLUH (Roy)
A11 04  1    @1 PELRINE (Ron)
A12 01  1    @1 BAR-COHEN (Yoseph) @9 ed.
A14 01      @1 SRI International, 333 Ravenswood Drive @2 Menlo Park, CA, 94025-3493 @3 USA @Z 1 aut. @Z 3 aut. @Z 4 aut.
A14 02      @1 Hyper Drive Co., Ltd., Motter's 111, 5-10-5, Shimo-Ochiai, Chuo-ku @2 Saitama-city, Saitama pre., 338-0002 @3 JPN @Z 2 aut.
A18 01  1    @1 Society of photo-optical instrumentation engineers @3 USA @9 org-cong.
A20       @2 652424.1-652424.5
A21       @1 2007
A23 01      @0 ENG
A26 01      @0 978-0-8194-6645-7
A43 01      @1 INIST @2 21760 @5 354000172858500630
A44       @0 0000 @1 © 2008 INIST-CNRS. All rights reserved.
A45       @0 10 ref.
A47 01  1    @0 08-0449948
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Proceedings of SPIE - The International Society for Optical Engineering
A66 01      @0 USA
C01 01    ENG  @0 Dielectric elastomers have demonstrated high energy density and high strains as well as high electromechanical efficiency and fast speeds of response. These properties, combined with their projected low cost make them attractive for a variety of actuator applications including linear actuators, diaphragm pumps, rotary motors, and haptic displays. Dielectric elastomers have also been shown to offer high energy density, high efficiency, and large strains when operated as generators. Dielectric elastomers have reached a stage of development where standardized products can be applied to new applications. In some cases, dielectric elastomer devices are improvements over existing devices. In other cases, however, dielectric elastomers can enable new types of devices that cannot be made with existing technologies, such as new types of loudspeakers and power generating devices. A new dipole loudspeaker system was developed using a commercially available push-pull diaphragm configuration. This same transducer configuration was used to develop a new power generating system. This generator system enables a power generation of 0.06 to 0.12 W by manually displacing the device by 5 to 6 nun once a second. By introducing a voltage step-down conversion circuit, the device was able to power wireless communications, allowing the control of devices separated by a distance of a few meters. These two devices are examples of the new applications that are enabled as the dielectric elastomer technology commercially emerges. Future improvements to dielectric elastomers could enable new capabilities in clean electrical power generation from ocean waves, for example.
C02 01  3    @0 001B00G07D
C02 02  3    @0 001B00A30C
C03 01  3  FRE  @0 Déformation mécanique @5 03
C03 01  3  ENG  @0 Strains @5 03
C03 02  3  FRE  @0 Actionneur @5 11
C03 02  3  ENG  @0 Actuators @5 11
C03 03  3  FRE  @0 Etude expérimentale @5 30
C03 03  3  ENG  @0 Experimental study @5 30
C03 04  3  FRE  @0 Matériau diélectrique @5 61
C03 04  3  ENG  @0 Dielectric materials @5 61
C03 05  X  FRE  @0 Muscle artificiel @5 62
C03 05  X  ENG  @0 Artificial muscle @5 62
C03 05  X  SPA  @0 Músculo artificial @5 62
C03 06  3  FRE  @0 Haut parleur @5 63
C03 06  3  ENG  @0 Loudspeakers @5 63
C03 07  3  FRE  @0 0130C @4 INC @5 83
C03 08  3  FRE  @0 0707D @4 INC @5 91
N21       @1 294
N44 01      @1 OTO
N82       @1 OTO
pR  
A30 01  1  ENG  @1 Electroactive polymer actuators and devices (EAPAD) @3 San Diego CA USA @4 2007

Format Inist (serveur)

NO : PASCAL 08-0449948 INIST
ET : Extending Applications of Dielectric Elastomer Artificial Muscle
AU : CHIBA (Seiki); WAKI (Mikio); KOMBLUH (Roy); PELRINE (Ron); BAR-COHEN (Yoseph)
AF : SRI International, 333 Ravenswood Drive/Menlo Park, CA, 94025-3493/Etats-Unis (1 aut., 3 aut., 4 aut.); Hyper Drive Co., Ltd., Motter's 111, 5-10-5, Shimo-Ochiai, Chuo-ku/Saitama-city, Saitama pre., 338-0002/Japon (2 aut.)
DT : Publication en série; Congrès; Niveau analytique
SO : Proceedings of SPIE - The International Society for Optical Engineering; ISSN 0277-786X; Etats-Unis; Da. 2007; Vol. 6524; 652424.1-652424.5; Bibl. 10 ref.
LA : Anglais
EA : Dielectric elastomers have demonstrated high energy density and high strains as well as high electromechanical efficiency and fast speeds of response. These properties, combined with their projected low cost make them attractive for a variety of actuator applications including linear actuators, diaphragm pumps, rotary motors, and haptic displays. Dielectric elastomers have also been shown to offer high energy density, high efficiency, and large strains when operated as generators. Dielectric elastomers have reached a stage of development where standardized products can be applied to new applications. In some cases, dielectric elastomer devices are improvements over existing devices. In other cases, however, dielectric elastomers can enable new types of devices that cannot be made with existing technologies, such as new types of loudspeakers and power generating devices. A new dipole loudspeaker system was developed using a commercially available push-pull diaphragm configuration. This same transducer configuration was used to develop a new power generating system. This generator system enables a power generation of 0.06 to 0.12 W by manually displacing the device by 5 to 6 nun once a second. By introducing a voltage step-down conversion circuit, the device was able to power wireless communications, allowing the control of devices separated by a distance of a few meters. These two devices are examples of the new applications that are enabled as the dielectric elastomer technology commercially emerges. Future improvements to dielectric elastomers could enable new capabilities in clean electrical power generation from ocean waves, for example.
CC : 001B00G07D; 001B00A30C
FD : Déformation mécanique; Actionneur; Etude expérimentale; Matériau diélectrique; Muscle artificiel; Haut parleur; 0130C; 0707D
ED : Strains; Actuators; Experimental study; Dielectric materials; Artificial muscle; Loudspeakers
SD : Músculo artificial
LO : INIST-21760.354000172858500630
ID : 08-0449948

Links to Exploration step

Pascal:08-0449948

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Extending Applications of Dielectric Elastomer Artificial Muscle</title>
<author>
<name sortKey="Chiba, Seiki" sort="Chiba, Seiki" uniqKey="Chiba S" first="Seiki" last="Chiba">Seiki Chiba</name>
<affiliation>
<inist:fA14 i1="01">
<s1>SRI International, 333 Ravenswood Drive</s1>
<s2>Menlo Park, CA, 94025-3493</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Waki, Mikio" sort="Waki, Mikio" uniqKey="Waki M" first="Mikio" last="Waki">Mikio Waki</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Hyper Drive Co., Ltd., Motter's 111, 5-10-5, Shimo-Ochiai, Chuo-ku</s1>
<s2>Saitama-city, Saitama pre., 338-0002</s2>
<s3>JPN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kombluh, Roy" sort="Kombluh, Roy" uniqKey="Kombluh R" first="Roy" last="Kombluh">Roy Kombluh</name>
<affiliation>
<inist:fA14 i1="01">
<s1>SRI International, 333 Ravenswood Drive</s1>
<s2>Menlo Park, CA, 94025-3493</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Pelrine, Ron" sort="Pelrine, Ron" uniqKey="Pelrine R" first="Ron" last="Pelrine">Ron Pelrine</name>
<affiliation>
<inist:fA14 i1="01">
<s1>SRI International, 333 Ravenswood Drive</s1>
<s2>Menlo Park, CA, 94025-3493</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">08-0449948</idno>
<date when="2007">2007</date>
<idno type="stanalyst">PASCAL 08-0449948 INIST</idno>
<idno type="RBID">Pascal:08-0449948</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000901</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Extending Applications of Dielectric Elastomer Artificial Muscle</title>
<author>
<name sortKey="Chiba, Seiki" sort="Chiba, Seiki" uniqKey="Chiba S" first="Seiki" last="Chiba">Seiki Chiba</name>
<affiliation>
<inist:fA14 i1="01">
<s1>SRI International, 333 Ravenswood Drive</s1>
<s2>Menlo Park, CA, 94025-3493</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Waki, Mikio" sort="Waki, Mikio" uniqKey="Waki M" first="Mikio" last="Waki">Mikio Waki</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Hyper Drive Co., Ltd., Motter's 111, 5-10-5, Shimo-Ochiai, Chuo-ku</s1>
<s2>Saitama-city, Saitama pre., 338-0002</s2>
<s3>JPN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kombluh, Roy" sort="Kombluh, Roy" uniqKey="Kombluh R" first="Roy" last="Kombluh">Roy Kombluh</name>
<affiliation>
<inist:fA14 i1="01">
<s1>SRI International, 333 Ravenswood Drive</s1>
<s2>Menlo Park, CA, 94025-3493</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Pelrine, Ron" sort="Pelrine, Ron" uniqKey="Pelrine R" first="Ron" last="Pelrine">Ron Pelrine</name>
<affiliation>
<inist:fA14 i1="01">
<s1>SRI International, 333 Ravenswood Drive</s1>
<s2>Menlo Park, CA, 94025-3493</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Proceedings of SPIE - The International Society for Optical Engineering</title>
<idno type="ISSN">0277-786X</idno>
<imprint>
<date when="2007">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Proceedings of SPIE - The International Society for Optical Engineering</title>
<idno type="ISSN">0277-786X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Actuators</term>
<term>Artificial muscle</term>
<term>Dielectric materials</term>
<term>Experimental study</term>
<term>Loudspeakers</term>
<term>Strains</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Déformation mécanique</term>
<term>Actionneur</term>
<term>Etude expérimentale</term>
<term>Matériau diélectrique</term>
<term>Muscle artificiel</term>
<term>Haut parleur</term>
<term>0130C</term>
<term>0707D</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Dielectric elastomers have demonstrated high energy density and high strains as well as high electromechanical efficiency and fast speeds of response. These properties, combined with their projected low cost make them attractive for a variety of actuator applications including linear actuators, diaphragm pumps, rotary motors, and haptic displays. Dielectric elastomers have also been shown to offer high energy density, high efficiency, and large strains when operated as generators. Dielectric elastomers have reached a stage of development where standardized products can be applied to new applications. In some cases, dielectric elastomer devices are improvements over existing devices. In other cases, however, dielectric elastomers can enable new types of devices that cannot be made with existing technologies, such as new types of loudspeakers and power generating devices. A new dipole loudspeaker system was developed using a commercially available push-pull diaphragm configuration. This same transducer configuration was used to develop a new power generating system. This generator system enables a power generation of 0.06 to 0.12 W by manually displacing the device by 5 to 6 nun once a second. By introducing a voltage step-down conversion circuit, the device was able to power wireless communications, allowing the control of devices separated by a distance of a few meters. These two devices are examples of the new applications that are enabled as the dielectric elastomer technology commercially emerges. Future improvements to dielectric elastomers could enable new capabilities in clean electrical power generation from ocean waves, for example.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0277-786X</s0>
</fA01>
<fA05>
<s2>6524</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Extending Applications of Dielectric Elastomer Artificial Muscle</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Electroactive polymer actuators and devices (EAPAD) 2007 : 19-22 March 2007, San Diego, California, USA</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>CHIBA (Seiki)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>WAKI (Mikio)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KOMBLUH (Roy)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>PELRINE (Ron)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>BAR-COHEN (Yoseph)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>SRI International, 333 Ravenswood Drive</s1>
<s2>Menlo Park, CA, 94025-3493</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Hyper Drive Co., Ltd., Motter's 111, 5-10-5, Shimo-Ochiai, Chuo-ku</s1>
<s2>Saitama-city, Saitama pre., 338-0002</s2>
<s3>JPN</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>Society of photo-optical instrumentation engineers</s1>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s2>652424.1-652424.5</s2>
</fA20>
<fA21>
<s1>2007</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA26 i1="01">
<s0>978-0-8194-6645-7</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21760</s2>
<s5>354000172858500630</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>10 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>08-0449948</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Proceedings of SPIE - The International Society for Optical Engineering</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Dielectric elastomers have demonstrated high energy density and high strains as well as high electromechanical efficiency and fast speeds of response. These properties, combined with their projected low cost make them attractive for a variety of actuator applications including linear actuators, diaphragm pumps, rotary motors, and haptic displays. Dielectric elastomers have also been shown to offer high energy density, high efficiency, and large strains when operated as generators. Dielectric elastomers have reached a stage of development where standardized products can be applied to new applications. In some cases, dielectric elastomer devices are improvements over existing devices. In other cases, however, dielectric elastomers can enable new types of devices that cannot be made with existing technologies, such as new types of loudspeakers and power generating devices. A new dipole loudspeaker system was developed using a commercially available push-pull diaphragm configuration. This same transducer configuration was used to develop a new power generating system. This generator system enables a power generation of 0.06 to 0.12 W by manually displacing the device by 5 to 6 nun once a second. By introducing a voltage step-down conversion circuit, the device was able to power wireless communications, allowing the control of devices separated by a distance of a few meters. These two devices are examples of the new applications that are enabled as the dielectric elastomer technology commercially emerges. Future improvements to dielectric elastomers could enable new capabilities in clean electrical power generation from ocean waves, for example.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00G07D</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B00A30C</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Déformation mécanique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Strains</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Actionneur</s0>
<s5>11</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Actuators</s0>
<s5>11</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>30</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>30</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Matériau diélectrique</s0>
<s5>61</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Dielectric materials</s0>
<s5>61</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Muscle artificiel</s0>
<s5>62</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Artificial muscle</s0>
<s5>62</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Músculo artificial</s0>
<s5>62</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Haut parleur</s0>
<s5>63</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Loudspeakers</s0>
<s5>63</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>0130C</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>0707D</s0>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fN21>
<s1>294</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Electroactive polymer actuators and devices (EAPAD)</s1>
<s3>San Diego CA USA</s3>
<s4>2007</s4>
</fA30>
</pR>
</standard>
<server>
<NO>PASCAL 08-0449948 INIST</NO>
<ET>Extending Applications of Dielectric Elastomer Artificial Muscle</ET>
<AU>CHIBA (Seiki); WAKI (Mikio); KOMBLUH (Roy); PELRINE (Ron); BAR-COHEN (Yoseph)</AU>
<AF>SRI International, 333 Ravenswood Drive/Menlo Park, CA, 94025-3493/Etats-Unis (1 aut., 3 aut., 4 aut.); Hyper Drive Co., Ltd., Motter's 111, 5-10-5, Shimo-Ochiai, Chuo-ku/Saitama-city, Saitama pre., 338-0002/Japon (2 aut.)</AF>
<DT>Publication en série; Congrès; Niveau analytique</DT>
<SO>Proceedings of SPIE - The International Society for Optical Engineering; ISSN 0277-786X; Etats-Unis; Da. 2007; Vol. 6524; 652424.1-652424.5; Bibl. 10 ref.</SO>
<LA>Anglais</LA>
<EA>Dielectric elastomers have demonstrated high energy density and high strains as well as high electromechanical efficiency and fast speeds of response. These properties, combined with their projected low cost make them attractive for a variety of actuator applications including linear actuators, diaphragm pumps, rotary motors, and haptic displays. Dielectric elastomers have also been shown to offer high energy density, high efficiency, and large strains when operated as generators. Dielectric elastomers have reached a stage of development where standardized products can be applied to new applications. In some cases, dielectric elastomer devices are improvements over existing devices. In other cases, however, dielectric elastomers can enable new types of devices that cannot be made with existing technologies, such as new types of loudspeakers and power generating devices. A new dipole loudspeaker system was developed using a commercially available push-pull diaphragm configuration. This same transducer configuration was used to develop a new power generating system. This generator system enables a power generation of 0.06 to 0.12 W by manually displacing the device by 5 to 6 nun once a second. By introducing a voltage step-down conversion circuit, the device was able to power wireless communications, allowing the control of devices separated by a distance of a few meters. These two devices are examples of the new applications that are enabled as the dielectric elastomer technology commercially emerges. Future improvements to dielectric elastomers could enable new capabilities in clean electrical power generation from ocean waves, for example.</EA>
<CC>001B00G07D; 001B00A30C</CC>
<FD>Déformation mécanique; Actionneur; Etude expérimentale; Matériau diélectrique; Muscle artificiel; Haut parleur; 0130C; 0707D</FD>
<ED>Strains; Actuators; Experimental study; Dielectric materials; Artificial muscle; Loudspeakers</ED>
<SD>Músculo artificial</SD>
<LO>INIST-21760.354000172858500630</LO>
<ID>08-0449948</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000901 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000901 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:08-0449948
   |texte=   Extending Applications of Dielectric Elastomer Artificial Muscle
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024