Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Learning to detect but not to grasp suppressed visual stimuli

Identifieur interne : 000147 ( PascalFrancis/Corpus ); précédent : 000146; suivant : 000148

Learning to detect but not to grasp suppressed visual stimuli

Auteurs : K. Ludwig ; P. Sterzer ; N. Kathmann ; V. H. Franz ; G. Hesselmann

Source :

RBID : Francis:14-0024294

Descripteurs français

English descriptors

Abstract

A central implication of the two-visual-systems hypothesis (TVSH) is that the dorsal visuomotor system (vision-for-action) can make use of invisible information, whereas the ventral system (vision-for-perception) cannot (Milner & Goodale, 1995). Therefore, actions such as grasping movements should be influenced by invisible information while conscious reports remain unaffected. To test this assumption, we used a dichoptic stimulation technique - continuous flash suppression (CFS) - which has the potency to render stimuli invisible for up to seconds (Tsuchiya & Koch, 2005). In two experiments using CFS, participants were asked to grasp for invisible bars of different sizes (Experiment 1) or orientations (Experiment 2), or to report both measures verbally. Target visibility was measured trial-by-trial using the perceptual awareness scale (PAS). We found no evidence for the use of invisible information by the visuomotor system despite extensive training (600 trials) and the availability of haptic feedback. Participants neither learned to scale their maximum grip aperture to the size of the invisible stimulus, nor to align their hand to its orientation. Careful control of stimulus visibility across training sessions, however, revealed a robust tendency towards decreasing perceptual thresholds under CFS. We discuss our results within the framework of the TVSH and with respect to alternative models which emphasize the close functional interaction between the dorsal and ventral visual systems.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0028-3932
A02 01      @0 NUPSA6
A03   1    @0 Neuropsychologia
A05       @2 51
A06       @2 13
A08 01  1  ENG  @1 Learning to detect but not to grasp suppressed visual stimuli
A11 01  1    @1 LUDWIG (K.)
A11 02  1    @1 STERZER (P.)
A11 03  1    @1 KATHMANN (N.)
A11 04  1    @1 FRANZ (V. H.)
A11 05  1    @1 HESSELMANN (G.)
A14 01      @1 Visual Perception Laboratory, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin @3 DEU @Z 1 aut. @Z 2 aut. @Z 5 aut.
A14 02      @1 Department of Psychology, Humboldt-Universität zu Berlin @3 DEU @Z 1 aut. @Z 3 aut.
A14 03      @1 Department of Psychology, Universltät Hamburg @3 DEU @Z 4 aut.
A20       @1 2930-2938
A21       @1 2013
A23 01      @0 ENG
A43 01      @1 INIST @2 11143 @5 354000507432370460
A44       @0 0000 @1 © 2014 INIST-CNRS. All rights reserved.
A45       @0 1 p.
A47 01  1    @0 14-0024294
A60       @1 P
A61       @0 A
A64 01  1    @0 Neuropsychologia
A66 01      @0 GBR
C01 01    ENG  @0 A central implication of the two-visual-systems hypothesis (TVSH) is that the dorsal visuomotor system (vision-for-action) can make use of invisible information, whereas the ventral system (vision-for-perception) cannot (Milner & Goodale, 1995). Therefore, actions such as grasping movements should be influenced by invisible information while conscious reports remain unaffected. To test this assumption, we used a dichoptic stimulation technique - continuous flash suppression (CFS) - which has the potency to render stimuli invisible for up to seconds (Tsuchiya & Koch, 2005). In two experiments using CFS, participants were asked to grasp for invisible bars of different sizes (Experiment 1) or orientations (Experiment 2), or to report both measures verbally. Target visibility was measured trial-by-trial using the perceptual awareness scale (PAS). We found no evidence for the use of invisible information by the visuomotor system despite extensive training (600 trials) and the availability of haptic feedback. Participants neither learned to scale their maximum grip aperture to the size of the invisible stimulus, nor to align their hand to its orientation. Careful control of stimulus visibility across training sessions, however, revealed a robust tendency towards decreasing perceptual thresholds under CFS. We discuss our results within the framework of the TVSH and with respect to alternative models which emphasize the close functional interaction between the dorsal and ventral visual systems.
C02 01  X    @0 770B05C @1 II
C02 02  X    @0 770B04D @1 II
C03 01  X  FRE  @0 Apprentissage @5 01
C03 01  X  ENG  @0 Learning @5 01
C03 01  X  SPA  @0 Aprendizaje @5 01
C03 02  X  FRE  @0 Préhension @5 02
C03 02  X  ENG  @0 Gripping @5 02
C03 02  X  SPA  @0 Prension @5 02
C03 03  X  FRE  @0 Détection @5 03
C03 03  X  ENG  @0 Detection @5 03
C03 03  X  SPA  @0 Detección @5 03
C03 04  X  FRE  @0 Mouvement corporel @5 04
C03 04  X  ENG  @0 Body movement @5 04
C03 04  X  SPA  @0 Movimiento corporal @5 04
C03 05  X  FRE  @0 Membre supérieur @5 05
C03 05  X  ENG  @0 Upper limb @5 05
C03 05  X  SPA  @0 Miembro superior @5 05
C03 06  X  FRE  @0 Vision aveugle @2 NM @5 06
C03 06  X  ENG  @0 Blindsight @2 NM @5 06
C03 06  X  SPA  @0 Visión ciega @2 NM @5 06
C03 07  X  FRE  @0 Modèle @5 08
C03 07  X  ENG  @0 Models @5 08
C03 07  X  SPA  @0 Modelo @5 08
C03 08  X  FRE  @0 Conscience @5 09
C03 08  X  ENG  @0 Consciousness @5 09
C03 08  X  SPA  @0 Conciencia @5 09
C03 09  X  FRE  @0 Etude expérimentale @5 10
C03 09  X  ENG  @0 Experimental study @5 10
C03 09  X  SPA  @0 Estudio experimental @5 10
C03 10  X  FRE  @0 Homme @5 18
C03 10  X  ENG  @0 Human @5 18
C03 10  X  SPA  @0 Hombre @5 18
C07 01  X  FRE  @0 Processus acquisition @5 37
C07 01  X  ENG  @0 Acquisition process @5 37
C07 01  X  SPA  @0 Proceso adquisición @5 37
C07 02  X  FRE  @0 Cognition @5 38
C07 02  X  ENG  @0 Cognition @5 38
C07 02  X  SPA  @0 Cognición @5 38
C07 03  X  FRE  @0 Motricité @5 39
C07 03  X  ENG  @0 Motricity @5 39
C07 03  X  SPA  @0 Motricidad @5 39
N21       @1 027

Format Inist (serveur)

NO : FRANCIS 14-0024294 INIST
ET : Learning to detect but not to grasp suppressed visual stimuli
AU : LUDWIG (K.); STERZER (P.); KATHMANN (N.); FRANZ (V. H.); HESSELMANN (G.)
AF : Visual Perception Laboratory, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin/Allemagne (1 aut., 2 aut., 5 aut.); Department of Psychology, Humboldt-Universität zu Berlin/Allemagne (1 aut., 3 aut.); Department of Psychology, Universltät Hamburg/Allemagne (4 aut.)
DT : Publication en série; Niveau analytique
SO : Neuropsychologia; ISSN 0028-3932; Coden NUPSA6; Royaume-Uni; Da. 2013; Vol. 51; No. 13; Pp. 2930-2938; Bibl. 1 p.
LA : Anglais
EA : A central implication of the two-visual-systems hypothesis (TVSH) is that the dorsal visuomotor system (vision-for-action) can make use of invisible information, whereas the ventral system (vision-for-perception) cannot (Milner & Goodale, 1995). Therefore, actions such as grasping movements should be influenced by invisible information while conscious reports remain unaffected. To test this assumption, we used a dichoptic stimulation technique - continuous flash suppression (CFS) - which has the potency to render stimuli invisible for up to seconds (Tsuchiya & Koch, 2005). In two experiments using CFS, participants were asked to grasp for invisible bars of different sizes (Experiment 1) or orientations (Experiment 2), or to report both measures verbally. Target visibility was measured trial-by-trial using the perceptual awareness scale (PAS). We found no evidence for the use of invisible information by the visuomotor system despite extensive training (600 trials) and the availability of haptic feedback. Participants neither learned to scale their maximum grip aperture to the size of the invisible stimulus, nor to align their hand to its orientation. Careful control of stimulus visibility across training sessions, however, revealed a robust tendency towards decreasing perceptual thresholds under CFS. We discuss our results within the framework of the TVSH and with respect to alternative models which emphasize the close functional interaction between the dorsal and ventral visual systems.
CC : 770B05C; 770B04D
FD : Apprentissage; Préhension; Détection; Mouvement corporel; Membre supérieur; Vision aveugle; Modèle; Conscience; Etude expérimentale; Homme
FG : Processus acquisition; Cognition; Motricité
ED : Learning; Gripping; Detection; Body movement; Upper limb; Blindsight; Models; Consciousness; Experimental study; Human
EG : Acquisition process; Cognition; Motricity
SD : Aprendizaje; Prension; Detección; Movimiento corporal; Miembro superior; Visión ciega; Modelo; Conciencia; Estudio experimental; Hombre
LO : INIST-11143.354000507432370460
ID : 14-0024294

Links to Exploration step

Francis:14-0024294

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Learning to detect but not to grasp suppressed visual stimuli</title>
<author>
<name sortKey="Ludwig, K" sort="Ludwig, K" uniqKey="Ludwig K" first="K." last="Ludwig">K. Ludwig</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Visual Perception Laboratory, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin</s1>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Psychology, Humboldt-Universität zu Berlin</s1>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sterzer, P" sort="Sterzer, P" uniqKey="Sterzer P" first="P." last="Sterzer">P. Sterzer</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Visual Perception Laboratory, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin</s1>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kathmann, N" sort="Kathmann, N" uniqKey="Kathmann N" first="N." last="Kathmann">N. Kathmann</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Psychology, Humboldt-Universität zu Berlin</s1>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Franz, V H" sort="Franz, V H" uniqKey="Franz V" first="V. H." last="Franz">V. H. Franz</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Psychology, Universltät Hamburg</s1>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hesselmann, G" sort="Hesselmann, G" uniqKey="Hesselmann G" first="G." last="Hesselmann">G. Hesselmann</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Visual Perception Laboratory, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin</s1>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">14-0024294</idno>
<date when="2013">2013</date>
<idno type="stanalyst">FRANCIS 14-0024294 INIST</idno>
<idno type="RBID">Francis:14-0024294</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000147</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Learning to detect but not to grasp suppressed visual stimuli</title>
<author>
<name sortKey="Ludwig, K" sort="Ludwig, K" uniqKey="Ludwig K" first="K." last="Ludwig">K. Ludwig</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Visual Perception Laboratory, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin</s1>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Psychology, Humboldt-Universität zu Berlin</s1>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sterzer, P" sort="Sterzer, P" uniqKey="Sterzer P" first="P." last="Sterzer">P. Sterzer</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Visual Perception Laboratory, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin</s1>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kathmann, N" sort="Kathmann, N" uniqKey="Kathmann N" first="N." last="Kathmann">N. Kathmann</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Psychology, Humboldt-Universität zu Berlin</s1>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Franz, V H" sort="Franz, V H" uniqKey="Franz V" first="V. H." last="Franz">V. H. Franz</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Psychology, Universltät Hamburg</s1>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hesselmann, G" sort="Hesselmann, G" uniqKey="Hesselmann G" first="G." last="Hesselmann">G. Hesselmann</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Visual Perception Laboratory, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin</s1>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Neuropsychologia</title>
<title level="j" type="abbreviated">Neuropsychologia</title>
<idno type="ISSN">0028-3932</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Neuropsychologia</title>
<title level="j" type="abbreviated">Neuropsychologia</title>
<idno type="ISSN">0028-3932</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Blindsight</term>
<term>Body movement</term>
<term>Consciousness</term>
<term>Detection</term>
<term>Experimental study</term>
<term>Gripping</term>
<term>Human</term>
<term>Learning</term>
<term>Models</term>
<term>Upper limb</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Apprentissage</term>
<term>Préhension</term>
<term>Détection</term>
<term>Mouvement corporel</term>
<term>Membre supérieur</term>
<term>Vision aveugle</term>
<term>Modèle</term>
<term>Conscience</term>
<term>Etude expérimentale</term>
<term>Homme</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A central implication of the two-visual-systems hypothesis (TVSH) is that the dorsal visuomotor system (vision-for-action) can make use of invisible information, whereas the ventral system (vision-for-perception) cannot (Milner & Goodale, 1995). Therefore, actions such as grasping movements should be influenced by invisible information while conscious reports remain unaffected. To test this assumption, we used a dichoptic stimulation technique - continuous flash suppression (CFS) - which has the potency to render stimuli invisible for up to seconds (Tsuchiya & Koch, 2005). In two experiments using CFS, participants were asked to grasp for invisible bars of different sizes (Experiment 1) or orientations (Experiment 2), or to report both measures verbally. Target visibility was measured trial-by-trial using the perceptual awareness scale (PAS). We found no evidence for the use of invisible information by the visuomotor system despite extensive training (600 trials) and the availability of haptic feedback. Participants neither learned to scale their maximum grip aperture to the size of the invisible stimulus, nor to align their hand to its orientation. Careful control of stimulus visibility across training sessions, however, revealed a robust tendency towards decreasing perceptual thresholds under CFS. We discuss our results within the framework of the TVSH and with respect to alternative models which emphasize the close functional interaction between the dorsal and ventral visual systems.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0028-3932</s0>
</fA01>
<fA02 i1="01">
<s0>NUPSA6</s0>
</fA02>
<fA03 i2="1">
<s0>Neuropsychologia</s0>
</fA03>
<fA05>
<s2>51</s2>
</fA05>
<fA06>
<s2>13</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Learning to detect but not to grasp suppressed visual stimuli</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LUDWIG (K.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>STERZER (P.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KATHMANN (N.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>FRANZ (V. H.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>HESSELMANN (G.)</s1>
</fA11>
<fA14 i1="01">
<s1>Visual Perception Laboratory, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin</s1>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Psychology, Humboldt-Universität zu Berlin</s1>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Psychology, Universltät Hamburg</s1>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>2930-2938</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>11143</s2>
<s5>354000507432370460</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0024294</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Neuropsychologia</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>A central implication of the two-visual-systems hypothesis (TVSH) is that the dorsal visuomotor system (vision-for-action) can make use of invisible information, whereas the ventral system (vision-for-perception) cannot (Milner & Goodale, 1995). Therefore, actions such as grasping movements should be influenced by invisible information while conscious reports remain unaffected. To test this assumption, we used a dichoptic stimulation technique - continuous flash suppression (CFS) - which has the potency to render stimuli invisible for up to seconds (Tsuchiya & Koch, 2005). In two experiments using CFS, participants were asked to grasp for invisible bars of different sizes (Experiment 1) or orientations (Experiment 2), or to report both measures verbally. Target visibility was measured trial-by-trial using the perceptual awareness scale (PAS). We found no evidence for the use of invisible information by the visuomotor system despite extensive training (600 trials) and the availability of haptic feedback. Participants neither learned to scale their maximum grip aperture to the size of the invisible stimulus, nor to align their hand to its orientation. Careful control of stimulus visibility across training sessions, however, revealed a robust tendency towards decreasing perceptual thresholds under CFS. We discuss our results within the framework of the TVSH and with respect to alternative models which emphasize the close functional interaction between the dorsal and ventral visual systems.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>770B05C</s0>
<s1>II</s1>
</fC02>
<fC02 i1="02" i2="X">
<s0>770B04D</s0>
<s1>II</s1>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Apprentissage</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Learning</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Aprendizaje</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Préhension</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Gripping</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Prension</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Détection</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Detection</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Detección</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Mouvement corporel</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Body movement</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Movimiento corporal</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Membre supérieur</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Upper limb</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Miembro superior</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Vision aveugle</s0>
<s2>NM</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Blindsight</s0>
<s2>NM</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Visión ciega</s0>
<s2>NM</s2>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Modèle</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Models</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Modelo</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Conscience</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Consciousness</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Conciencia</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Etude expérimentale</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Experimental study</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Estudio experimental</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Homme</s0>
<s5>18</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Human</s0>
<s5>18</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Hombre</s0>
<s5>18</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Processus acquisition</s0>
<s5>37</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Acquisition process</s0>
<s5>37</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Proceso adquisición</s0>
<s5>37</s5>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Cognition</s0>
<s5>38</s5>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Cognition</s0>
<s5>38</s5>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Cognición</s0>
<s5>38</s5>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Motricité</s0>
<s5>39</s5>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Motricity</s0>
<s5>39</s5>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Motricidad</s0>
<s5>39</s5>
</fC07>
<fN21>
<s1>027</s1>
</fN21>
</pA>
</standard>
<server>
<NO>FRANCIS 14-0024294 INIST</NO>
<ET>Learning to detect but not to grasp suppressed visual stimuli</ET>
<AU>LUDWIG (K.); STERZER (P.); KATHMANN (N.); FRANZ (V. H.); HESSELMANN (G.)</AU>
<AF>Visual Perception Laboratory, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin/Allemagne (1 aut., 2 aut., 5 aut.); Department of Psychology, Humboldt-Universität zu Berlin/Allemagne (1 aut., 3 aut.); Department of Psychology, Universltät Hamburg/Allemagne (4 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Neuropsychologia; ISSN 0028-3932; Coden NUPSA6; Royaume-Uni; Da. 2013; Vol. 51; No. 13; Pp. 2930-2938; Bibl. 1 p.</SO>
<LA>Anglais</LA>
<EA>A central implication of the two-visual-systems hypothesis (TVSH) is that the dorsal visuomotor system (vision-for-action) can make use of invisible information, whereas the ventral system (vision-for-perception) cannot (Milner & Goodale, 1995). Therefore, actions such as grasping movements should be influenced by invisible information while conscious reports remain unaffected. To test this assumption, we used a dichoptic stimulation technique - continuous flash suppression (CFS) - which has the potency to render stimuli invisible for up to seconds (Tsuchiya & Koch, 2005). In two experiments using CFS, participants were asked to grasp for invisible bars of different sizes (Experiment 1) or orientations (Experiment 2), or to report both measures verbally. Target visibility was measured trial-by-trial using the perceptual awareness scale (PAS). We found no evidence for the use of invisible information by the visuomotor system despite extensive training (600 trials) and the availability of haptic feedback. Participants neither learned to scale their maximum grip aperture to the size of the invisible stimulus, nor to align their hand to its orientation. Careful control of stimulus visibility across training sessions, however, revealed a robust tendency towards decreasing perceptual thresholds under CFS. We discuss our results within the framework of the TVSH and with respect to alternative models which emphasize the close functional interaction between the dorsal and ventral visual systems.</EA>
<CC>770B05C; 770B04D</CC>
<FD>Apprentissage; Préhension; Détection; Mouvement corporel; Membre supérieur; Vision aveugle; Modèle; Conscience; Etude expérimentale; Homme</FD>
<FG>Processus acquisition; Cognition; Motricité</FG>
<ED>Learning; Gripping; Detection; Body movement; Upper limb; Blindsight; Models; Consciousness; Experimental study; Human</ED>
<EG>Acquisition process; Cognition; Motricity</EG>
<SD>Aprendizaje; Prension; Detección; Movimiento corporal; Miembro superior; Visión ciega; Modelo; Conciencia; Estudio experimental; Hombre</SD>
<LO>INIST-11143.354000507432370460</LO>
<ID>14-0024294</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000147 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000147 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Francis:14-0024294
   |texte=   Learning to detect but not to grasp suppressed visual stimuli
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024