Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evaluation of a haptics-based virtual reality temporal bone simulator for anatomy and surgery training

Identifieur interne : 000066 ( PascalFrancis/Corpus ); précédent : 000065; suivant : 000067

Evaluation of a haptics-based virtual reality temporal bone simulator for anatomy and surgery training

Auteurs : Te-Yung Fang ; Pa-Chun Wang ; Chih-Hsien Liu ; Mu-Chun Su ; Shih-Ching Yeh

Source :

RBID : Pascal:14-0153251

Descripteurs français

English descriptors

Abstract

Introduction: Virtual reality simulation training may improve knowledge of anatomy and surgical skills. We evaluated a 3-dimensional, haptic, virtual reality temporal bone simulator for dissection training. Methods: The subjects were 7 otolaryngology residents (3 training sessions each) and 7 medical students (1 training session each). The virtual reality temporal bone simulation station included a computer with software that was linked to a force-feedback hand stylus, and the system recorded performance and collisions with vital anatomic structures. Subjects performed virtual reality dissections and completed questionnaires after the training sessions. Results: Residents and students had favorable responses to most questions of the technology acceptance model (TAM) questionnaire. The average TAM scores were above neutral for residents and medical students in all domains, and the average TAM score for residents was significantly higher for the usefulness domain and lower for the playful domain than students. The average satisfaction questionnaire for residents showed that residents had greater overall satisfaction with cadaver temporal bone dissection training than training with the virtual reality simulator or plastic temporal bone. For medical students, the average comprehension score was significantly increased from before to after training for all anatomic structures. Medical students had significantly more collisions with the dura than residents. The residents had similar mean performance scores after the first and third training sessions for all dissection procedures. Discussion: The virtual reality temporal bone simulator provided satisfactory training for otolaryngology residents and medical students.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0169-2607
A03   1    @0 Comput. methods programs biomed. : (Print)
A05       @2 113
A06       @2 2
A08 01  1  ENG  @1 Evaluation of a haptics-based virtual reality temporal bone simulator for anatomy and surgery training
A11 01  1    @1 FANG (Te-Yung)
A11 02  1    @1 WANG (Pa-Chun)
A11 03  1    @1 LIU (Chih-Hsien)
A11 04  1    @1 SU (Mu-Chun)
A11 05  1    @1 YEH (Shih-Ching)
A14 01      @1 Department of Otolaryngology, Cathay General Hospital @2 Taipei @3 TWN @Z 1 aut. @Z 2 aut. @Z 3 aut.
A14 02      @1 Fu Jen Catholic University School of Medicine @2 New Taipei City @3 TWN @Z 1 aut. @Z 2 aut.
A14 03      @1 Department of Public Health, China Medical University @2 Taichung @3 TWN @Z 2 aut.
A14 04      @1 School of Medicine, Taipei Medical University @2 Taipei @3 TWN @Z 2 aut.
A14 05      @1 Department of Computer Science and Information Engineering, National Central University @2 Taoyuan @3 TWN @Z 4 aut. @Z 5 aut.
A20       @1 674-681
A21       @1 2014
A23 01      @0 ENG
A43 01      @1 INIST @2 14676 @5 354000501687320220
A44       @0 0000 @1 © 2014 INIST-CNRS. All rights reserved.
A45       @0 24 ref.
A47 01  1    @0 14-0153251
A60       @1 P
A61       @0 A
A64 01  1    @0 Computer methods and programs in biomedicine : (Print)
A66 01      @0 GBR
C01 01    ENG  @0 Introduction: Virtual reality simulation training may improve knowledge of anatomy and surgical skills. We evaluated a 3-dimensional, haptic, virtual reality temporal bone simulator for dissection training. Methods: The subjects were 7 otolaryngology residents (3 training sessions each) and 7 medical students (1 training session each). The virtual reality temporal bone simulation station included a computer with software that was linked to a force-feedback hand stylus, and the system recorded performance and collisions with vital anatomic structures. Subjects performed virtual reality dissections and completed questionnaires after the training sessions. Results: Residents and students had favorable responses to most questions of the technology acceptance model (TAM) questionnaire. The average TAM scores were above neutral for residents and medical students in all domains, and the average TAM score for residents was significantly higher for the usefulness domain and lower for the playful domain than students. The average satisfaction questionnaire for residents showed that residents had greater overall satisfaction with cadaver temporal bone dissection training than training with the virtual reality simulator or plastic temporal bone. For medical students, the average comprehension score was significantly increased from before to after training for all anatomic structures. Medical students had significantly more collisions with the dura than residents. The residents had similar mean performance scores after the first and third training sessions for all dissection procedures. Discussion: The virtual reality temporal bone simulator provided satisfactory training for otolaryngology residents and medical students.
C02 01  X    @0 001D02C03
C02 02  X    @0 001D02B04
C02 03  X    @0 001D00B
C02 04  X    @0 001D12A
C03 01  X  FRE  @0 Réalité virtuelle @5 06
C03 01  X  ENG  @0 Virtual reality @5 06
C03 01  X  SPA  @0 Realidad virtual @5 06
C03 02  X  FRE  @0 Téléenseignement @5 07
C03 02  X  ENG  @0 Remote teaching @5 07
C03 02  X  SPA  @0 Teleensenanza @5 07
C03 03  X  FRE  @0 Application médicale @5 08
C03 03  X  ENG  @0 Medical application @5 08
C03 03  X  SPA  @0 Aplicación medical @5 08
C03 04  X  FRE  @0 Satisfaction @5 09
C03 04  X  ENG  @0 Satisfaction @5 09
C03 04  X  SPA  @0 Satisfacción @5 09
C03 05  X  FRE  @0 Education @5 10
C03 05  X  ENG  @0 Education @5 10
C03 05  X  SPA  @0 Educación @5 10
C03 06  X  FRE  @0 Système ostéoarticulaire @5 18
C03 06  X  ENG  @0 Osteoarticular system @5 18
C03 06  X  SPA  @0 Sistema osteoarticular @5 18
C03 07  X  FRE  @0 Anatomie @5 19
C03 07  X  ENG  @0 Anatomy @5 19
C03 07  X  SPA  @0 Anatomía @5 19
C03 08  X  FRE  @0 Chirurgie @5 20
C03 08  X  ENG  @0 Surgery @5 20
C03 08  X  SPA  @0 Cirugía @5 20
C03 09  X  FRE  @0 Habileté @5 21
C03 09  X  ENG  @0 Skill @5 21
C03 09  X  SPA  @0 Habilidad @5 21
C03 10  X  FRE  @0 Sensibilité tactile @5 22
C03 10  X  ENG  @0 Tactile sensitivity @5 22
C03 10  X  SPA  @0 Sensibilidad tactil @5 22
C03 11  X  FRE  @0 Main @5 23
C03 11  X  ENG  @0 Hand @5 23
C03 11  X  SPA  @0 Mano @5 23
C03 12  X  FRE  @0 Palpeur @5 24
C03 12  X  ENG  @0 Stylus @5 24
C03 12  X  SPA  @0 Palpador @5 24
C03 13  X  FRE  @0 Evaluation performance @5 25
C03 13  X  ENG  @0 Performance evaluation @5 25
C03 13  X  SPA  @0 Evaluación prestación @5 25
C03 14  X  FRE  @0 Transfert technologie @5 26
C03 14  X  ENG  @0 Technology transfer @5 26
C03 14  X  SPA  @0 Transferencia tecnológica @5 26
C03 15  X  FRE  @0 Acceptation @5 27
C03 15  X  ENG  @0 Acceptance @5 27
C03 15  X  SPA  @0 Aceptación @5 27
C03 16  X  FRE  @0 Modélisation @5 28
C03 16  X  ENG  @0 Modeling @5 28
C03 16  X  SPA  @0 Modelización @5 28
C03 17  X  FRE  @0 Cadavre @5 33
C03 17  X  ENG  @0 Cadaver @5 33
C03 17  X  SPA  @0 Cadáver @5 33
C03 18  X  FRE  @0 Technologie @5 41
C03 18  X  ENG  @0 Technology @5 41
C03 18  X  SPA  @0 Tecnología @5 41
N21       @1 195
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 14-0153251 INIST
ET : Evaluation of a haptics-based virtual reality temporal bone simulator for anatomy and surgery training
AU : FANG (Te-Yung); WANG (Pa-Chun); LIU (Chih-Hsien); SU (Mu-Chun); YEH (Shih-Ching)
AF : Department of Otolaryngology, Cathay General Hospital/Taipei/Taïwan (1 aut., 2 aut., 3 aut.); Fu Jen Catholic University School of Medicine/New Taipei City/Taïwan (1 aut., 2 aut.); Department of Public Health, China Medical University/Taichung/Taïwan (2 aut.); School of Medicine, Taipei Medical University/Taipei/Taïwan (2 aut.); Department of Computer Science and Information Engineering, National Central University/Taoyuan/Taïwan (4 aut., 5 aut.)
DT : Publication en série; Niveau analytique
SO : Computer methods and programs in biomedicine : (Print); ISSN 0169-2607; Royaume-Uni; Da. 2014; Vol. 113; No. 2; Pp. 674-681; Bibl. 24 ref.
LA : Anglais
EA : Introduction: Virtual reality simulation training may improve knowledge of anatomy and surgical skills. We evaluated a 3-dimensional, haptic, virtual reality temporal bone simulator for dissection training. Methods: The subjects were 7 otolaryngology residents (3 training sessions each) and 7 medical students (1 training session each). The virtual reality temporal bone simulation station included a computer with software that was linked to a force-feedback hand stylus, and the system recorded performance and collisions with vital anatomic structures. Subjects performed virtual reality dissections and completed questionnaires after the training sessions. Results: Residents and students had favorable responses to most questions of the technology acceptance model (TAM) questionnaire. The average TAM scores were above neutral for residents and medical students in all domains, and the average TAM score for residents was significantly higher for the usefulness domain and lower for the playful domain than students. The average satisfaction questionnaire for residents showed that residents had greater overall satisfaction with cadaver temporal bone dissection training than training with the virtual reality simulator or plastic temporal bone. For medical students, the average comprehension score was significantly increased from before to after training for all anatomic structures. Medical students had significantly more collisions with the dura than residents. The residents had similar mean performance scores after the first and third training sessions for all dissection procedures. Discussion: The virtual reality temporal bone simulator provided satisfactory training for otolaryngology residents and medical students.
CC : 001D02C03; 001D02B04; 001D00B; 001D12A
FD : Réalité virtuelle; Téléenseignement; Application médicale; Satisfaction; Education; Système ostéoarticulaire; Anatomie; Chirurgie; Habileté; Sensibilité tactile; Main; Palpeur; Evaluation performance; Transfert technologie; Acceptation; Modélisation; Cadavre; Technologie
ED : Virtual reality; Remote teaching; Medical application; Satisfaction; Education; Osteoarticular system; Anatomy; Surgery; Skill; Tactile sensitivity; Hand; Stylus; Performance evaluation; Technology transfer; Acceptance; Modeling; Cadaver; Technology
SD : Realidad virtual; Teleensenanza; Aplicación medical; Satisfacción; Educación; Sistema osteoarticular; Anatomía; Cirugía; Habilidad; Sensibilidad tactil; Mano; Palpador; Evaluación prestación; Transferencia tecnológica; Aceptación; Modelización; Cadáver; Tecnología
LO : INIST-14676.354000501687320220
ID : 14-0153251

Links to Exploration step

Pascal:14-0153251

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Evaluation of a haptics-based virtual reality temporal bone simulator for anatomy and surgery training</title>
<author>
<name sortKey="Fang, Te Yung" sort="Fang, Te Yung" uniqKey="Fang T" first="Te-Yung" last="Fang">Te-Yung Fang</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Otolaryngology, Cathay General Hospital</s1>
<s2>Taipei</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Fu Jen Catholic University School of Medicine</s1>
<s2>New Taipei City</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wang, Pa Chun" sort="Wang, Pa Chun" uniqKey="Wang P" first="Pa-Chun" last="Wang">Pa-Chun Wang</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Otolaryngology, Cathay General Hospital</s1>
<s2>Taipei</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Fu Jen Catholic University School of Medicine</s1>
<s2>New Taipei City</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Public Health, China Medical University</s1>
<s2>Taichung</s2>
<s3>TWN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>School of Medicine, Taipei Medical University</s1>
<s2>Taipei</s2>
<s3>TWN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Liu, Chih Hsien" sort="Liu, Chih Hsien" uniqKey="Liu C" first="Chih-Hsien" last="Liu">Chih-Hsien Liu</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Otolaryngology, Cathay General Hospital</s1>
<s2>Taipei</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Su, Mu Chun" sort="Su, Mu Chun" uniqKey="Su M" first="Mu-Chun" last="Su">Mu-Chun Su</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Department of Computer Science and Information Engineering, National Central University</s1>
<s2>Taoyuan</s2>
<s3>TWN</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Yeh, Shih Ching" sort="Yeh, Shih Ching" uniqKey="Yeh S" first="Shih-Ching" last="Yeh">Shih-Ching Yeh</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Department of Computer Science and Information Engineering, National Central University</s1>
<s2>Taoyuan</s2>
<s3>TWN</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">14-0153251</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0153251 INIST</idno>
<idno type="RBID">Pascal:14-0153251</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000066</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Evaluation of a haptics-based virtual reality temporal bone simulator for anatomy and surgery training</title>
<author>
<name sortKey="Fang, Te Yung" sort="Fang, Te Yung" uniqKey="Fang T" first="Te-Yung" last="Fang">Te-Yung Fang</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Otolaryngology, Cathay General Hospital</s1>
<s2>Taipei</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Fu Jen Catholic University School of Medicine</s1>
<s2>New Taipei City</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wang, Pa Chun" sort="Wang, Pa Chun" uniqKey="Wang P" first="Pa-Chun" last="Wang">Pa-Chun Wang</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Otolaryngology, Cathay General Hospital</s1>
<s2>Taipei</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Fu Jen Catholic University School of Medicine</s1>
<s2>New Taipei City</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Public Health, China Medical University</s1>
<s2>Taichung</s2>
<s3>TWN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>School of Medicine, Taipei Medical University</s1>
<s2>Taipei</s2>
<s3>TWN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Liu, Chih Hsien" sort="Liu, Chih Hsien" uniqKey="Liu C" first="Chih-Hsien" last="Liu">Chih-Hsien Liu</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Otolaryngology, Cathay General Hospital</s1>
<s2>Taipei</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Su, Mu Chun" sort="Su, Mu Chun" uniqKey="Su M" first="Mu-Chun" last="Su">Mu-Chun Su</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Department of Computer Science and Information Engineering, National Central University</s1>
<s2>Taoyuan</s2>
<s3>TWN</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Yeh, Shih Ching" sort="Yeh, Shih Ching" uniqKey="Yeh S" first="Shih-Ching" last="Yeh">Shih-Ching Yeh</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Department of Computer Science and Information Engineering, National Central University</s1>
<s2>Taoyuan</s2>
<s3>TWN</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Computer methods and programs in biomedicine : (Print)</title>
<title level="j" type="abbreviated">Comput. methods programs biomed. : (Print)</title>
<idno type="ISSN">0169-2607</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Computer methods and programs in biomedicine : (Print)</title>
<title level="j" type="abbreviated">Comput. methods programs biomed. : (Print)</title>
<idno type="ISSN">0169-2607</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acceptance</term>
<term>Anatomy</term>
<term>Cadaver</term>
<term>Education</term>
<term>Hand</term>
<term>Medical application</term>
<term>Modeling</term>
<term>Osteoarticular system</term>
<term>Performance evaluation</term>
<term>Remote teaching</term>
<term>Satisfaction</term>
<term>Skill</term>
<term>Stylus</term>
<term>Surgery</term>
<term>Tactile sensitivity</term>
<term>Technology</term>
<term>Technology transfer</term>
<term>Virtual reality</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Réalité virtuelle</term>
<term>Téléenseignement</term>
<term>Application médicale</term>
<term>Satisfaction</term>
<term>Education</term>
<term>Système ostéoarticulaire</term>
<term>Anatomie</term>
<term>Chirurgie</term>
<term>Habileté</term>
<term>Sensibilité tactile</term>
<term>Main</term>
<term>Palpeur</term>
<term>Evaluation performance</term>
<term>Transfert technologie</term>
<term>Acceptation</term>
<term>Modélisation</term>
<term>Cadavre</term>
<term>Technologie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Introduction: Virtual reality simulation training may improve knowledge of anatomy and surgical skills. We evaluated a 3-dimensional, haptic, virtual reality temporal bone simulator for dissection training. Methods: The subjects were 7 otolaryngology residents (3 training sessions each) and 7 medical students (1 training session each). The virtual reality temporal bone simulation station included a computer with software that was linked to a force-feedback hand stylus, and the system recorded performance and collisions with vital anatomic structures. Subjects performed virtual reality dissections and completed questionnaires after the training sessions. Results: Residents and students had favorable responses to most questions of the technology acceptance model (TAM) questionnaire. The average TAM scores were above neutral for residents and medical students in all domains, and the average TAM score for residents was significantly higher for the usefulness domain and lower for the playful domain than students. The average satisfaction questionnaire for residents showed that residents had greater overall satisfaction with cadaver temporal bone dissection training than training with the virtual reality simulator or plastic temporal bone. For medical students, the average comprehension score was significantly increased from before to after training for all anatomic structures. Medical students had significantly more collisions with the dura than residents. The residents had similar mean performance scores after the first and third training sessions for all dissection procedures. Discussion: The virtual reality temporal bone simulator provided satisfactory training for otolaryngology residents and medical students.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0169-2607</s0>
</fA01>
<fA03 i2="1">
<s0>Comput. methods programs biomed. : (Print)</s0>
</fA03>
<fA05>
<s2>113</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Evaluation of a haptics-based virtual reality temporal bone simulator for anatomy and surgery training</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>FANG (Te-Yung)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>WANG (Pa-Chun)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LIU (Chih-Hsien)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SU (Mu-Chun)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>YEH (Shih-Ching)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Otolaryngology, Cathay General Hospital</s1>
<s2>Taipei</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Fu Jen Catholic University School of Medicine</s1>
<s2>New Taipei City</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Public Health, China Medical University</s1>
<s2>Taichung</s2>
<s3>TWN</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>School of Medicine, Taipei Medical University</s1>
<s2>Taipei</s2>
<s3>TWN</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Department of Computer Science and Information Engineering, National Central University</s1>
<s2>Taoyuan</s2>
<s3>TWN</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>674-681</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>14676</s2>
<s5>354000501687320220</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>24 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0153251</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Computer methods and programs in biomedicine : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Introduction: Virtual reality simulation training may improve knowledge of anatomy and surgical skills. We evaluated a 3-dimensional, haptic, virtual reality temporal bone simulator for dissection training. Methods: The subjects were 7 otolaryngology residents (3 training sessions each) and 7 medical students (1 training session each). The virtual reality temporal bone simulation station included a computer with software that was linked to a force-feedback hand stylus, and the system recorded performance and collisions with vital anatomic structures. Subjects performed virtual reality dissections and completed questionnaires after the training sessions. Results: Residents and students had favorable responses to most questions of the technology acceptance model (TAM) questionnaire. The average TAM scores were above neutral for residents and medical students in all domains, and the average TAM score for residents was significantly higher for the usefulness domain and lower for the playful domain than students. The average satisfaction questionnaire for residents showed that residents had greater overall satisfaction with cadaver temporal bone dissection training than training with the virtual reality simulator or plastic temporal bone. For medical students, the average comprehension score was significantly increased from before to after training for all anatomic structures. Medical students had significantly more collisions with the dura than residents. The residents had similar mean performance scores after the first and third training sessions for all dissection procedures. Discussion: The virtual reality temporal bone simulator provided satisfactory training for otolaryngology residents and medical students.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02C03</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D02B04</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D00B</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D12A</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Réalité virtuelle</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Virtual reality</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Realidad virtual</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Téléenseignement</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Remote teaching</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Teleensenanza</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Application médicale</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Medical application</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Aplicación medical</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Satisfaction</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Satisfaction</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Satisfacción</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Education</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Education</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Educación</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Système ostéoarticulaire</s0>
<s5>18</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Osteoarticular system</s0>
<s5>18</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Sistema osteoarticular</s0>
<s5>18</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Anatomie</s0>
<s5>19</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Anatomy</s0>
<s5>19</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Anatomía</s0>
<s5>19</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Chirurgie</s0>
<s5>20</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Surgery</s0>
<s5>20</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Cirugía</s0>
<s5>20</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Habileté</s0>
<s5>21</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Skill</s0>
<s5>21</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Habilidad</s0>
<s5>21</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Sensibilité tactile</s0>
<s5>22</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Tactile sensitivity</s0>
<s5>22</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Sensibilidad tactil</s0>
<s5>22</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Main</s0>
<s5>23</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Hand</s0>
<s5>23</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Mano</s0>
<s5>23</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Palpeur</s0>
<s5>24</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Stylus</s0>
<s5>24</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Palpador</s0>
<s5>24</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>25</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>25</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>25</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Transfert technologie</s0>
<s5>26</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Technology transfer</s0>
<s5>26</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Transferencia tecnológica</s0>
<s5>26</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Acceptation</s0>
<s5>27</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Acceptance</s0>
<s5>27</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Aceptación</s0>
<s5>27</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>28</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>28</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>28</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Cadavre</s0>
<s5>33</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Cadaver</s0>
<s5>33</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Cadáver</s0>
<s5>33</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Technologie</s0>
<s5>41</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Technology</s0>
<s5>41</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Tecnología</s0>
<s5>41</s5>
</fC03>
<fN21>
<s1>195</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 14-0153251 INIST</NO>
<ET>Evaluation of a haptics-based virtual reality temporal bone simulator for anatomy and surgery training</ET>
<AU>FANG (Te-Yung); WANG (Pa-Chun); LIU (Chih-Hsien); SU (Mu-Chun); YEH (Shih-Ching)</AU>
<AF>Department of Otolaryngology, Cathay General Hospital/Taipei/Taïwan (1 aut., 2 aut., 3 aut.); Fu Jen Catholic University School of Medicine/New Taipei City/Taïwan (1 aut., 2 aut.); Department of Public Health, China Medical University/Taichung/Taïwan (2 aut.); School of Medicine, Taipei Medical University/Taipei/Taïwan (2 aut.); Department of Computer Science and Information Engineering, National Central University/Taoyuan/Taïwan (4 aut., 5 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Computer methods and programs in biomedicine : (Print); ISSN 0169-2607; Royaume-Uni; Da. 2014; Vol. 113; No. 2; Pp. 674-681; Bibl. 24 ref.</SO>
<LA>Anglais</LA>
<EA>Introduction: Virtual reality simulation training may improve knowledge of anatomy and surgical skills. We evaluated a 3-dimensional, haptic, virtual reality temporal bone simulator for dissection training. Methods: The subjects were 7 otolaryngology residents (3 training sessions each) and 7 medical students (1 training session each). The virtual reality temporal bone simulation station included a computer with software that was linked to a force-feedback hand stylus, and the system recorded performance and collisions with vital anatomic structures. Subjects performed virtual reality dissections and completed questionnaires after the training sessions. Results: Residents and students had favorable responses to most questions of the technology acceptance model (TAM) questionnaire. The average TAM scores were above neutral for residents and medical students in all domains, and the average TAM score for residents was significantly higher for the usefulness domain and lower for the playful domain than students. The average satisfaction questionnaire for residents showed that residents had greater overall satisfaction with cadaver temporal bone dissection training than training with the virtual reality simulator or plastic temporal bone. For medical students, the average comprehension score was significantly increased from before to after training for all anatomic structures. Medical students had significantly more collisions with the dura than residents. The residents had similar mean performance scores after the first and third training sessions for all dissection procedures. Discussion: The virtual reality temporal bone simulator provided satisfactory training for otolaryngology residents and medical students.</EA>
<CC>001D02C03; 001D02B04; 001D00B; 001D12A</CC>
<FD>Réalité virtuelle; Téléenseignement; Application médicale; Satisfaction; Education; Système ostéoarticulaire; Anatomie; Chirurgie; Habileté; Sensibilité tactile; Main; Palpeur; Evaluation performance; Transfert technologie; Acceptation; Modélisation; Cadavre; Technologie</FD>
<ED>Virtual reality; Remote teaching; Medical application; Satisfaction; Education; Osteoarticular system; Anatomy; Surgery; Skill; Tactile sensitivity; Hand; Stylus; Performance evaluation; Technology transfer; Acceptance; Modeling; Cadaver; Technology</ED>
<SD>Realidad virtual; Teleensenanza; Aplicación medical; Satisfacción; Educación; Sistema osteoarticular; Anatomía; Cirugía; Habilidad; Sensibilidad tactil; Mano; Palpador; Evaluación prestación; Transferencia tecnológica; Aceptación; Modelización; Cadáver; Tecnología</SD>
<LO>INIST-14676.354000501687320220</LO>
<ID>14-0153251</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000066 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000066 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:14-0153251
   |texte=   Evaluation of a haptics-based virtual reality temporal bone simulator for anatomy and surgery training
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024