Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Alternative techniques for the efficient acquisition of haptic data

Identifieur interne : 001166 ( PascalFrancis/Checkpoint ); précédent : 001165; suivant : 001167

Alternative techniques for the efficient acquisition of haptic data

Auteurs : C. Shahabi [États-Unis] ; M. R. Kolahdouzan ; G. Barish ; R. Zimmermann ; D. Yao ; K. Fu ; L. Zhang

Source :

RBID : Pascal:02-0028025

Descripteurs français

English descriptors

Abstract

Immersive environments are those that surround users in an artificial world. These environments consist of a composition of various types of immersidata: unique data types that are combined to render a virtual experience. Acquisition, for storage and future querying, of information describing sessions in these environments is challenging because of the real-time demands and sizeable amounts of data to be managed. In this paper, we summarize a comparison of techniques for achieving the efficient acquisition of one type of immersidata, the haptic data type, which describes the movement, rotation, and force associated with user-directed objects in an immersive environment. In addition to describing a general process for real-time sampling and recording of this type of data, we propose three distinct sampling strategies: fixed, grouped, and adaptive. We conducted several experiments with a real haptic device and found that there are tradeoffs between the accuracy, efficiency, and complexity of implementation for each of the proposed techniques. While it is possible to use any of these approaches for real-time haptic data acquisition, we found that an adaptive sampling strategy provided the most efficiency without significant loss in accuracy. As immersive environments become more complex and contain more haptic sensors, techniques such as adaptive sampling can be useful for improving scalability of real-time data acquisition.


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:02-0028025

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Alternative techniques for the efficient acquisition of haptic data</title>
<author>
<name sortKey="Shahabi, C" sort="Shahabi, C" uniqKey="Shahabi C" first="C." last="Shahabi">C. Shahabi</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Integrated Media Systems Center Department of Computer Science University of Southern California</s1>
<s2>Los Angeles, CA 90089</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<orgName type="university">Université de Californie du Sud</orgName>
</affiliation>
</author>
<author>
<name sortKey="Kolahdouzan, M R" sort="Kolahdouzan, M R" uniqKey="Kolahdouzan M" first="M. R." last="Kolahdouzan">M. R. Kolahdouzan</name>
</author>
<author>
<name sortKey="Barish, G" sort="Barish, G" uniqKey="Barish G" first="G." last="Barish">G. Barish</name>
</author>
<author>
<name sortKey="Zimmermann, R" sort="Zimmermann, R" uniqKey="Zimmermann R" first="R." last="Zimmermann">R. Zimmermann</name>
</author>
<author>
<name sortKey="Yao, D" sort="Yao, D" uniqKey="Yao D" first="D." last="Yao">D. Yao</name>
</author>
<author>
<name sortKey="Fu, K" sort="Fu, K" uniqKey="Fu K" first="K." last="Fu">K. Fu</name>
</author>
<author>
<name sortKey="Zhang, L" sort="Zhang, L" uniqKey="Zhang L" first="L." last="Zhang">L. Zhang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">02-0028025</idno>
<date when="2001">2001</date>
<idno type="stanalyst">PASCAL 02-0028025 EI</idno>
<idno type="RBID">Pascal:02-0028025</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001334</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000178</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">001166</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Alternative techniques for the efficient acquisition of haptic data</title>
<author>
<name sortKey="Shahabi, C" sort="Shahabi, C" uniqKey="Shahabi C" first="C." last="Shahabi">C. Shahabi</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Integrated Media Systems Center Department of Computer Science University of Southern California</s1>
<s2>Los Angeles, CA 90089</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<orgName type="university">Université de Californie du Sud</orgName>
</affiliation>
</author>
<author>
<name sortKey="Kolahdouzan, M R" sort="Kolahdouzan, M R" uniqKey="Kolahdouzan M" first="M. R." last="Kolahdouzan">M. R. Kolahdouzan</name>
</author>
<author>
<name sortKey="Barish, G" sort="Barish, G" uniqKey="Barish G" first="G." last="Barish">G. Barish</name>
</author>
<author>
<name sortKey="Zimmermann, R" sort="Zimmermann, R" uniqKey="Zimmermann R" first="R." last="Zimmermann">R. Zimmermann</name>
</author>
<author>
<name sortKey="Yao, D" sort="Yao, D" uniqKey="Yao D" first="D." last="Yao">D. Yao</name>
</author>
<author>
<name sortKey="Fu, K" sort="Fu, K" uniqKey="Fu K" first="K." last="Fu">K. Fu</name>
</author>
<author>
<name sortKey="Zhang, L" sort="Zhang, L" uniqKey="Zhang L" first="L." last="Zhang">L. Zhang</name>
</author>
</analytic>
<series>
<title level="j" type="main">Performance Evaluation Review</title>
<title level="j" type="abbreviated">Perform Eval Rev</title>
<idno type="ISSN">0163-5999</idno>
<imprint>
<date when="2001">2001</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Performance Evaluation Review</title>
<title level="j" type="abbreviated">Perform Eval Rev</title>
<idno type="ISSN">0163-5999</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptive control systems</term>
<term>Data acquisition</term>
<term>Data recording</term>
<term>Data storage equipment</term>
<term>Feedback</term>
<term>Haptic data acquisition</term>
<term>Haptic interfaces</term>
<term>Immersidata</term>
<term>Immersive technologies</term>
<term>Information analysis</term>
<term>Query languages</term>
<term>Real time systems</term>
<term>Sampled data control systems</term>
<term>Sensors</term>
<term>Theory</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Théorie</term>
<term>Interface haptique</term>
<term>Système temps réel</term>
<term>Equipement stockage donnée</term>
<term>Langage requête</term>
<term>Analyse information</term>
<term>Système commande échantillonné</term>
<term>Enregistrement donnée</term>
<term>Système commande adaptative</term>
<term>Capteur</term>
<term>Boucle réaction</term>
<term>Saisie donnée</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Immersive environments are those that surround users in an artificial world. These environments consist of a composition of various types of immersidata: unique data types that are combined to render a virtual experience. Acquisition, for storage and future querying, of information describing sessions in these environments is challenging because of the real-time demands and sizeable amounts of data to be managed. In this paper, we summarize a comparison of techniques for achieving the efficient acquisition of one type of immersidata, the haptic data type, which describes the movement, rotation, and force associated with user-directed objects in an immersive environment. In addition to describing a general process for real-time sampling and recording of this type of data, we propose three distinct sampling strategies: fixed, grouped, and adaptive. We conducted several experiments with a real haptic device and found that there are tradeoffs between the accuracy, efficiency, and complexity of implementation for each of the proposed techniques. While it is possible to use any of these approaches for real-time haptic data acquisition, we found that an adaptive sampling strategy provided the most efficiency without significant loss in accuracy. As immersive environments become more complex and contain more haptic sensors, techniques such as adaptive sampling can be useful for improving scalability of real-time data acquisition.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0163-5999</s0>
</fA01>
<fA02 i1="01">
<s0>PEREDN</s0>
</fA02>
<fA03 i2="1">
<s0>Perform Eval Rev</s0>
</fA03>
<fA05>
<s2>29</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Alternative techniques for the efficient acquisition of haptic data</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SHAHABI (C.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KOLAHDOUZAN (M. R.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BARISH (G.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ZIMMERMANN (R.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>YAO (D.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>FU (K.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>ZHANG (L.)</s1>
</fA11>
<fA14 i1="01">
<s1>Integrated Media Systems Center Department of Computer Science University of Southern California</s1>
<s2>Los Angeles, CA 90089</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA17 i1="01" i2="1">
<s1>ACM SIGMETRICS</s1>
<s3>INC</s3>
<s9>patr.</s9>
</fA17>
<fA17 i1="02" i2="1">
<s1>IFIP</s1>
<s3>INC</s3>
<s9>patr.</s9>
</fA17>
<fA20>
<s1>334-335</s1>
</fA20>
<fA21>
<s1>2001</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18401</s2>
</fA43>
<fA44>
<s0>A100</s0>
</fA44>
<fA45>
<s0>1 Refs.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>02-0028025</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Performance Evaluation Review</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Immersive environments are those that surround users in an artificial world. These environments consist of a composition of various types of immersidata: unique data types that are combined to render a virtual experience. Acquisition, for storage and future querying, of information describing sessions in these environments is challenging because of the real-time demands and sizeable amounts of data to be managed. In this paper, we summarize a comparison of techniques for achieving the efficient acquisition of one type of immersidata, the haptic data type, which describes the movement, rotation, and force associated with user-directed objects in an immersive environment. In addition to describing a general process for real-time sampling and recording of this type of data, we propose three distinct sampling strategies: fixed, grouped, and adaptive. We conducted several experiments with a real haptic device and found that there are tradeoffs between the accuracy, efficiency, and complexity of implementation for each of the proposed techniques. While it is possible to use any of these approaches for real-time haptic data acquisition, we found that an adaptive sampling strategy provided the most efficiency without significant loss in accuracy. As immersive environments become more complex and contain more haptic sensors, techniques such as adaptive sampling can be useful for improving scalability of real-time data acquisition.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02B07B</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03J07</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D03I02</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001A01D</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>001D02D</s0>
</fC02>
<fC02 i1="06" i2="X">
<s0>205</s0>
</fC02>
<fC03 i1="01" i2="1" l="ENG">
<s0>Immersive technologies</s0>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="1" l="ENG">
<s0>Immersidata</s0>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="1" l="ENG">
<s0>Haptic data acquisition</s0>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="1" l="FRE">
<s0>Théorie</s0>
</fC03>
<fC03 i1="04" i2="1" l="ENG">
<s0>Theory</s0>
</fC03>
<fC03 i1="05" i2="1" l="FRE">
<s0>Interface haptique</s0>
</fC03>
<fC03 i1="05" i2="1" l="ENG">
<s0>Haptic interfaces</s0>
</fC03>
<fC03 i1="06" i2="1" l="FRE">
<s0>Système temps réel</s0>
</fC03>
<fC03 i1="06" i2="1" l="ENG">
<s0>Real time systems</s0>
</fC03>
<fC03 i1="07" i2="1" l="FRE">
<s0>Equipement stockage donnée</s0>
</fC03>
<fC03 i1="07" i2="1" l="ENG">
<s0>Data storage equipment</s0>
</fC03>
<fC03 i1="08" i2="1" l="FRE">
<s0>Langage requête</s0>
</fC03>
<fC03 i1="08" i2="1" l="ENG">
<s0>Query languages</s0>
</fC03>
<fC03 i1="09" i2="1" l="FRE">
<s0>Analyse information</s0>
</fC03>
<fC03 i1="09" i2="1" l="ENG">
<s0>Information analysis</s0>
</fC03>
<fC03 i1="10" i2="1" l="FRE">
<s0>Système commande échantillonné</s0>
</fC03>
<fC03 i1="10" i2="1" l="ENG">
<s0>Sampled data control systems</s0>
</fC03>
<fC03 i1="11" i2="1" l="FRE">
<s0>Enregistrement donnée</s0>
</fC03>
<fC03 i1="11" i2="1" l="ENG">
<s0>Data recording</s0>
</fC03>
<fC03 i1="12" i2="1" l="FRE">
<s0>Système commande adaptative</s0>
</fC03>
<fC03 i1="12" i2="1" l="ENG">
<s0>Adaptive control systems</s0>
</fC03>
<fC03 i1="13" i2="1" l="FRE">
<s0>Capteur</s0>
</fC03>
<fC03 i1="13" i2="1" l="ENG">
<s0>Sensors</s0>
</fC03>
<fC03 i1="14" i2="1" l="FRE">
<s0>Boucle réaction</s0>
</fC03>
<fC03 i1="14" i2="1" l="ENG">
<s0>Feedback</s0>
</fC03>
<fC03 i1="15" i2="1" l="FRE">
<s0>Saisie donnée</s0>
<s3>P</s3>
</fC03>
<fC03 i1="15" i2="1" l="ENG">
<s0>Data acquisition</s0>
<s3>P</s3>
</fC03>
<fN21>
<s1>014</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Joint International Conference on Measurement and Modeling of Computer Systems</s1>
<s3>Cambridge, MA, United States</s3>
<s4>1901-06-16/1901-06-20</s4>
</fA30>
</pR>
</standard>
</inist>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
<orgName>
<li>Université de Californie du Sud</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Barish, G" sort="Barish, G" uniqKey="Barish G" first="G." last="Barish">G. Barish</name>
<name sortKey="Fu, K" sort="Fu, K" uniqKey="Fu K" first="K." last="Fu">K. Fu</name>
<name sortKey="Kolahdouzan, M R" sort="Kolahdouzan, M R" uniqKey="Kolahdouzan M" first="M. R." last="Kolahdouzan">M. R. Kolahdouzan</name>
<name sortKey="Yao, D" sort="Yao, D" uniqKey="Yao D" first="D." last="Yao">D. Yao</name>
<name sortKey="Zhang, L" sort="Zhang, L" uniqKey="Zhang L" first="L." last="Zhang">L. Zhang</name>
<name sortKey="Zimmermann, R" sort="Zimmermann, R" uniqKey="Zimmermann R" first="R." last="Zimmermann">R. Zimmermann</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Shahabi, C" sort="Shahabi, C" uniqKey="Shahabi C" first="C." last="Shahabi">C. Shahabi</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001166 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Checkpoint/biblio.hfd -nk 001166 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Checkpoint
   |type=    RBID
   |clé=     Pascal:02-0028025
   |texte=   Alternative techniques for the efficient acquisition of haptic data
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024