Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nonvisual learning of intrinsic object properties in a reaching task dissociates grasp from reach

Identifieur interne : 000127 ( PascalFrancis/Checkpoint ); précédent : 000126; suivant : 000128

Nonvisual learning of intrinsic object properties in a reaching task dissociates grasp from reach

Auteurs : Jenni M. Karl [Canada] ; Leandra R. Schneider [Canada] ; Ian Q. Whishaw [Canada]

Source :

RBID : Pascal:13-0187724

Descripteurs français

English descriptors

Abstract

The Dual Visuomotor Channel theory proposes that skilled reaching is composed of a Reach that directs the hand in relation to the extrinsic properties of an object (e.g., location) and a Grasp that opens and closes the hand in relation to the intrinsic properties of an object (e.g., size). While Reach and Grasp movements are often guided by vision, they can also be performed without vision when reaching for a body part or an object on one's own body. Memory of a recently touched but unseen object can also be used to guide Reach and Grasp movements although the touch-response memory durations described are extremely brief (Karl et al. in Exp Brain Res 219:59-74, 2012a). The purpose of the present study was to determine whether repeated nonvisual reaching for a consistent object could calibrate Reach and Grasp movements in a way similar to those guided by vision. The nonvision group wore vision-occluding goggles and reached for fifty consecutive trials for a round donut ball placed on a pedestal. The control group performed the same task with vision. Frame-by-frame video analysis and linear kinematics revealed that nonvision participants consistently used an elevated Reach trajectory, in which the hand, rather than being directed toward the target in the horizontal plane, was first elevated above the target before being lowered to touch and locate it. First contact was established with the dorsal surface of the target, and thus, adjustments in contact locations were often required for purchase. Although nonvision participants initially used an open and extended hand during transport, with practice they began to scale digit aperture to object size with an accuracy and temporal relation similar to vision participants. The different ways in which the Reach and Grasp movements respond to nonvisual learning are discussed in relation to support for the dual channel theory of reaching and to the idea that the Reach and Grasp channels may be differentially dependent on online visual guidance.


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0187724

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Nonvisual learning of intrinsic object properties in a reaching task dissociates grasp from reach</title>
<author>
<name sortKey="Karl, Jenni M" sort="Karl, Jenni M" uniqKey="Karl J" first="Jenni M." last="Karl">Jenni M. Karl</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge</s1>
<s2>Lethbridge, AB T1K 3M4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Lethbridge, AB T1K 3M4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schneider, Leandra R" sort="Schneider, Leandra R" uniqKey="Schneider L" first="Leandra R." last="Schneider">Leandra R. Schneider</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge</s1>
<s2>Lethbridge, AB T1K 3M4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Lethbridge, AB T1K 3M4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Whishaw, Ian Q" sort="Whishaw, Ian Q" uniqKey="Whishaw I" first="Ian Q." last="Whishaw">Ian Q. Whishaw</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge</s1>
<s2>Lethbridge, AB T1K 3M4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Lethbridge, AB T1K 3M4</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">13-0187724</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0187724 INIST</idno>
<idno type="RBID">Pascal:13-0187724</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000196</idno>
<idno type="wicri:Area/PascalFrancis/Curation">001103</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000127</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Nonvisual learning of intrinsic object properties in a reaching task dissociates grasp from reach</title>
<author>
<name sortKey="Karl, Jenni M" sort="Karl, Jenni M" uniqKey="Karl J" first="Jenni M." last="Karl">Jenni M. Karl</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge</s1>
<s2>Lethbridge, AB T1K 3M4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Lethbridge, AB T1K 3M4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schneider, Leandra R" sort="Schneider, Leandra R" uniqKey="Schneider L" first="Leandra R." last="Schneider">Leandra R. Schneider</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge</s1>
<s2>Lethbridge, AB T1K 3M4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Lethbridge, AB T1K 3M4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Whishaw, Ian Q" sort="Whishaw, Ian Q" uniqKey="Whishaw I" first="Ian Q." last="Whishaw">Ian Q. Whishaw</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge</s1>
<s2>Lethbridge, AB T1K 3M4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Lethbridge, AB T1K 3M4</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Experimental brain research</title>
<title level="j" type="abbreviated">Exp. brain res.</title>
<idno type="ISSN">0014-4819</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Experimental brain research</title>
<title level="j" type="abbreviated">Exp. brain res.</title>
<idno type="ISSN">0014-4819</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Accuracy</term>
<term>Encephalon</term>
<term>Goal directed movement</term>
<term>Gripping</term>
<term>Guide</term>
<term>Hand</term>
<term>Haptic perception</term>
<term>Human</term>
<term>Kinematics</term>
<term>Learning</term>
<term>Memory</term>
<term>Trajectory</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Apprentissage</term>
<term>Mouvement orienté</term>
<term>Préhension</term>
<term>Main</term>
<term>Mémoire</term>
<term>Guide</term>
<term>Encéphale</term>
<term>Cinématique</term>
<term>Trajectoire</term>
<term>Précision</term>
<term>Homme</term>
<term>Perception haptique</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Guide</term>
<term>Homme</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The Dual Visuomotor Channel theory proposes that skilled reaching is composed of a Reach that directs the hand in relation to the extrinsic properties of an object (e.g., location) and a Grasp that opens and closes the hand in relation to the intrinsic properties of an object (e.g., size). While Reach and Grasp movements are often guided by vision, they can also be performed without vision when reaching for a body part or an object on one's own body. Memory of a recently touched but unseen object can also be used to guide Reach and Grasp movements although the touch-response memory durations described are extremely brief (Karl et al. in Exp Brain Res 219:59-74, 2012a). The purpose of the present study was to determine whether repeated nonvisual reaching for a consistent object could calibrate Reach and Grasp movements in a way similar to those guided by vision. The nonvision group wore vision-occluding goggles and reached for fifty consecutive trials for a round donut ball placed on a pedestal. The control group performed the same task with vision. Frame-by-frame video analysis and linear kinematics revealed that nonvision participants consistently used an elevated Reach trajectory, in which the hand, rather than being directed toward the target in the horizontal plane, was first elevated above the target before being lowered to touch and locate it. First contact was established with the dorsal surface of the target, and thus, adjustments in contact locations were often required for purchase. Although nonvision participants initially used an open and extended hand during transport, with practice they began to scale digit aperture to object size with an accuracy and temporal relation similar to vision participants. The different ways in which the Reach and Grasp movements respond to nonvisual learning are discussed in relation to support for the dual channel theory of reaching and to the idea that the Reach and Grasp channels may be differentially dependent on online visual guidance.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0014-4819</s0>
</fA01>
<fA02 i1="01">
<s0>EXBRAP</s0>
</fA02>
<fA03 i2="1">
<s0>Exp. brain res.</s0>
</fA03>
<fA05>
<s2>225</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Nonvisual learning of intrinsic object properties in a reaching task dissociates grasp from reach</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KARL (Jenni M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SCHNEIDER (Leandra R.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>WHISHAW (Ian Q.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge</s1>
<s2>Lethbridge, AB T1K 3M4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>465-477</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>12535</s2>
<s5>354000503798670010</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0187724</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Experimental brain research</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The Dual Visuomotor Channel theory proposes that skilled reaching is composed of a Reach that directs the hand in relation to the extrinsic properties of an object (e.g., location) and a Grasp that opens and closes the hand in relation to the intrinsic properties of an object (e.g., size). While Reach and Grasp movements are often guided by vision, they can also be performed without vision when reaching for a body part or an object on one's own body. Memory of a recently touched but unseen object can also be used to guide Reach and Grasp movements although the touch-response memory durations described are extremely brief (Karl et al. in Exp Brain Res 219:59-74, 2012a). The purpose of the present study was to determine whether repeated nonvisual reaching for a consistent object could calibrate Reach and Grasp movements in a way similar to those guided by vision. The nonvision group wore vision-occluding goggles and reached for fifty consecutive trials for a round donut ball placed on a pedestal. The control group performed the same task with vision. Frame-by-frame video analysis and linear kinematics revealed that nonvision participants consistently used an elevated Reach trajectory, in which the hand, rather than being directed toward the target in the horizontal plane, was first elevated above the target before being lowered to touch and locate it. First contact was established with the dorsal surface of the target, and thus, adjustments in contact locations were often required for purchase. Although nonvision participants initially used an open and extended hand during transport, with practice they began to scale digit aperture to object size with an accuracy and temporal relation similar to vision participants. The different ways in which the Reach and Grasp movements respond to nonvisual learning are discussed in relation to support for the dual channel theory of reaching and to the idea that the Reach and Grasp channels may be differentially dependent on online visual guidance.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A25E</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002B17G</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Apprentissage</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Learning</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Aprendizaje</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Mouvement orienté</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Goal directed movement</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Movimiento orientado</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Préhension</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Gripping</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Prension</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Main</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Hand</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Mano</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Mémoire</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Memory</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Memoria</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Guide</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Guide</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Guía</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Encéphale</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Encephalon</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Encéfalo</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Cinématique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Kinematics</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Cinemática</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Trajectoire</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Trajectory</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Trayectoria</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Précision</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Accuracy</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Precisión</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Homme</s0>
<s5>54</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Human</s0>
<s5>54</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Hombre</s0>
<s5>54</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Perception haptique</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Haptic perception</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Processus acquisition</s0>
<s5>20</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Acquisition process</s0>
<s5>20</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Proceso adquisición</s0>
<s5>20</s5>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Système nerveux central</s0>
<s5>21</s5>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Central nervous system</s0>
<s5>21</s5>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Sistema nervioso central</s0>
<s5>21</s5>
</fC07>
<fN21>
<s1>168</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<country name="Canada">
<noRegion>
<name sortKey="Karl, Jenni M" sort="Karl, Jenni M" uniqKey="Karl J" first="Jenni M." last="Karl">Jenni M. Karl</name>
</noRegion>
<name sortKey="Schneider, Leandra R" sort="Schneider, Leandra R" uniqKey="Schneider L" first="Leandra R." last="Schneider">Leandra R. Schneider</name>
<name sortKey="Whishaw, Ian Q" sort="Whishaw, Ian Q" uniqKey="Whishaw I" first="Ian Q." last="Whishaw">Ian Q. Whishaw</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000127 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Checkpoint/biblio.hfd -nk 000127 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Checkpoint
   |type=    RBID
   |clé=     Pascal:13-0187724
   |texte=   Nonvisual learning of intrinsic object properties in a reaching task dissociates grasp from reach
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024