Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Action Planning Mediates Guidance of Visual Attention from Working Memory

Identifieur interne : 003A87 ( Ncbi/Merge ); précédent : 003A86; suivant : 003A88

Action Planning Mediates Guidance of Visual Attention from Working Memory

Auteurs : Tobias Feldmann-Wüstefeld [Allemagne] ; Anna Schubö [Allemagne]

Source :

RBID : PMC:4485979

Abstract

Visual search is impaired when a salient task-irrelevant stimulus is presented together with the target. Recent research has shown that this attentional capture effect is enhanced when the salient stimulus matches working memory (WM) content, arguing in favor of attention guidance from WM. Visual attention was also shown to be closely coupled with action planning. Preparing a movement renders action-relevant perceptual dimensions more salient and thus increases search efficiency for stimuli sharing that dimension. The present study aimed at revealing common underlying mechanisms for selective attention, WM, and action planning. Participants both prepared a specific movement (grasping or pointing) and memorized a color hue. Before the movement was executed towards an object of the memorized color, a visual search task (additional singleton) was performed. Results showed that distraction from target was more pronounced when the additional singleton had a memorized color. This WM-guided attention deployment was more pronounced when participants prepared a grasping movement. We argue that preparing a grasping movement mediates attention guidance from WM content by enhancing representations of memory content that matches the distractor shape (i.e., circles), thus encouraging attentional capture by circle distractors of the memorized color. We conclude that templates for visual search, action planning, and WM compete for resources and thus cause interferences.


Url:
DOI: 10.1155/2015/387378
PubMed: 26171241
PubMed Central: 4485979

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:4485979

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Action Planning Mediates Guidance of Visual Attention from Working Memory</title>
<author>
<name sortKey="Feldmann Wustefeld, Tobias" sort="Feldmann Wustefeld, Tobias" uniqKey="Feldmann Wustefeld T" first="Tobias" last="Feldmann-Wüstefeld">Tobias Feldmann-Wüstefeld</name>
<affiliation wicri:level="3">
<nlm:aff id="I1">Philipps-University Marburg, 35037 Marburg, Germany</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Philipps-University Marburg, 35037 Marburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Giessen</region>
<settlement type="city">Marbourg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schubo, Anna" sort="Schubo, Anna" uniqKey="Schubo A" first="Anna" last="Schubö">Anna Schubö</name>
<affiliation wicri:level="3">
<nlm:aff id="I1">Philipps-University Marburg, 35037 Marburg, Germany</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Philipps-University Marburg, 35037 Marburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Giessen</region>
<settlement type="city">Marbourg</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26171241</idno>
<idno type="pmc">4485979</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4485979</idno>
<idno type="RBID">PMC:4485979</idno>
<idno type="doi">10.1155/2015/387378</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000242</idno>
<idno type="wicri:Area/Pmc/Curation">000242</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000761</idno>
<idno type="wicri:Area/Ncbi/Merge">003A87</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Action Planning Mediates Guidance of Visual Attention from Working Memory</title>
<author>
<name sortKey="Feldmann Wustefeld, Tobias" sort="Feldmann Wustefeld, Tobias" uniqKey="Feldmann Wustefeld T" first="Tobias" last="Feldmann-Wüstefeld">Tobias Feldmann-Wüstefeld</name>
<affiliation wicri:level="3">
<nlm:aff id="I1">Philipps-University Marburg, 35037 Marburg, Germany</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Philipps-University Marburg, 35037 Marburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Giessen</region>
<settlement type="city">Marbourg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schubo, Anna" sort="Schubo, Anna" uniqKey="Schubo A" first="Anna" last="Schubö">Anna Schubö</name>
<affiliation wicri:level="3">
<nlm:aff id="I1">Philipps-University Marburg, 35037 Marburg, Germany</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Philipps-University Marburg, 35037 Marburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Giessen</region>
<settlement type="city">Marbourg</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of Ophthalmology</title>
<idno type="ISSN">2090-004X</idno>
<idno type="eISSN">2090-0058</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Visual search is impaired when a salient task-irrelevant stimulus is presented together with the target. Recent research has shown that this attentional capture effect is enhanced when the salient stimulus matches working memory (WM) content, arguing in favor of attention guidance from WM. Visual attention was also shown to be closely coupled with action planning. Preparing a movement renders action-relevant perceptual dimensions more salient and thus increases search efficiency for stimuli sharing that dimension. The present study aimed at revealing common underlying mechanisms for selective attention, WM, and action planning. Participants both prepared a specific movement (grasping or pointing) and memorized a color hue. Before the movement was executed towards an object of the memorized color, a visual search task (additional singleton) was performed. Results showed that distraction from target was more pronounced when the additional singleton had a memorized color. This WM-guided attention deployment was more pronounced when participants prepared a grasping movement. We argue that preparing a grasping movement mediates attention guidance from WM content by enhancing representations of memory content that matches the distractor shape (i.e., circles), thus encouraging attentional capture by circle distractors of the memorized color. We conclude that templates for visual search, action planning, and WM compete for resources and thus cause interferences. </p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Nothdurft, H C" uniqKey="Nothdurft H">H.-C. Nothdurft</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Theeuwes, J" uniqKey="Theeuwes J">J. Theeuwes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Folk, C L" uniqKey="Folk C">C. L. Folk</name>
</author>
<author>
<name sortKey="Remington, R W" uniqKey="Remington R">R. W. Remington</name>
</author>
<author>
<name sortKey="Johnston, J C" uniqKey="Johnston J">J. C. Johnston</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leber, A B" uniqKey="Leber A">A. B. Leber</name>
</author>
<author>
<name sortKey="Egeth, H E" uniqKey="Egeth H">H. E. Egeth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feldmann Wustefeld, T" uniqKey="Feldmann Wustefeld T">T. Feldmann-Wüstefeld</name>
</author>
<author>
<name sortKey="Schmidt Daffy, M" uniqKey="Schmidt Daffy M">M. Schmidt-Daffy</name>
</author>
<author>
<name sortKey="Schubo, A" uniqKey="Schubo A">A. Schubö</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ohman, A" uniqKey="Ohman A">A. Öhman</name>
</author>
<author>
<name sortKey="Lundqvist, D" uniqKey="Lundqvist D">D. Lundqvist</name>
</author>
<author>
<name sortKey="Esteves, F" uniqKey="Esteves F">F. Esteves</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Awh, E" uniqKey="Awh E">E. Awh</name>
</author>
<author>
<name sortKey="Belopolsky, A V" uniqKey="Belopolsky A">A. V. Belopolsky</name>
</author>
<author>
<name sortKey="Theeuwes, J" uniqKey="Theeuwes J">J. Theeuwes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Desimone, R" uniqKey="Desimone R">R. Desimone</name>
</author>
<author>
<name sortKey="Duncan, J" uniqKey="Duncan J">J. Duncan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fecteau, J J H" uniqKey="Fecteau J">J. J. H. Fecteau</name>
</author>
<author>
<name sortKey="Munoz, D P D" uniqKey="Munoz D">D. P. D. Munoz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Itti, L" uniqKey="Itti L">L. Itti</name>
</author>
<author>
<name sortKey="Koch, C" uniqKey="Koch C">C. Koch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wolfe, J M" uniqKey="Wolfe J">J. M. Wolfe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Duncan, J" uniqKey="Duncan J">J. Duncan</name>
</author>
<author>
<name sortKey="Humphreys, G W" uniqKey="Humphreys G">G. W. Humphreys</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Olivers, C N L" uniqKey="Olivers C">C. N. L. Olivers</name>
</author>
<author>
<name sortKey="Peters, J" uniqKey="Peters J">J. Peters</name>
</author>
<author>
<name sortKey="Houtkamp, R" uniqKey="Houtkamp R">R. Houtkamp</name>
</author>
<author>
<name sortKey="Roelfsema, P R" uniqKey="Roelfsema P">P. R. Roelfsema</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wolfe, J M" uniqKey="Wolfe J">J. M. Wolfe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Folk, C L" uniqKey="Folk C">C. L. Folk</name>
</author>
<author>
<name sortKey="Leber, A B" uniqKey="Leber A">A. B. Leber</name>
</author>
<author>
<name sortKey="Egeth, H E" uniqKey="Egeth H">H. E. Egeth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Folk, C L" uniqKey="Folk C">C. L. Folk</name>
</author>
<author>
<name sortKey="Remington, R W" uniqKey="Remington R">R. W. Remington</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bundesen, C" uniqKey="Bundesen C">C. Bundesen</name>
</author>
<author>
<name sortKey="Habekost, T" uniqKey="Habekost T">T. Habekost</name>
</author>
<author>
<name sortKey="Kyllingsbaek, S" uniqKey="Kyllingsbaek S">S. Kyllingsbaek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carlisle, N B" uniqKey="Carlisle N">N. B. Carlisle</name>
</author>
<author>
<name sortKey="Arita, J T" uniqKey="Arita J">J. T. Arita</name>
</author>
<author>
<name sortKey="Pardo, D" uniqKey="Pardo D">D. Pardo</name>
</author>
<author>
<name sortKey="Woodman, G F" uniqKey="Woodman G">G. F. Woodman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chelazzi, L" uniqKey="Chelazzi L">L. Chelazzi</name>
</author>
<author>
<name sortKey="Duncan, J" uniqKey="Duncan J">J. Duncan</name>
</author>
<author>
<name sortKey="Miller, E K" uniqKey="Miller E">E. K. Miller</name>
</author>
<author>
<name sortKey="Desimone, R" uniqKey="Desimone R">R. Desimone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Horowitz, T S" uniqKey="Horowitz T">T. S. Horowitz</name>
</author>
<author>
<name sortKey="Wolfe, J M" uniqKey="Wolfe J">J. M. Wolfe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Woodman, G F" uniqKey="Woodman G">G. F. Woodman</name>
</author>
<author>
<name sortKey="Arita, J T" uniqKey="Arita J">J. T. Arita</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gazzaley, A" uniqKey="Gazzaley A">A. Gazzaley</name>
</author>
<author>
<name sortKey="Nobre, A C" uniqKey="Nobre A">A. C. Nobre</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Olivers, C N L" uniqKey="Olivers C">C. N. L. Olivers</name>
</author>
<author>
<name sortKey="Eimer, M" uniqKey="Eimer M">M. Eimer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Soto, D" uniqKey="Soto D">D. Soto</name>
</author>
<author>
<name sortKey="Heinke, D" uniqKey="Heinke D">D. Heinke</name>
</author>
<author>
<name sortKey="Humphreys, G W" uniqKey="Humphreys G">G. W. Humphreys</name>
</author>
<author>
<name sortKey="Blanco, M J" uniqKey="Blanco M">M. J. Blanco</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Soto, D" uniqKey="Soto D">D. Soto</name>
</author>
<author>
<name sortKey="Hodsoll, J" uniqKey="Hodsoll J">J. Hodsoll</name>
</author>
<author>
<name sortKey="Rotshtein, P" uniqKey="Rotshtein P">P. Rotshtein</name>
</author>
<author>
<name sortKey="Humphreys, G W" uniqKey="Humphreys G">G. W. Humphreys</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Olivers, C N L" uniqKey="Olivers C">C. N. L. Olivers</name>
</author>
<author>
<name sortKey="Meijer, F" uniqKey="Meijer F">F. Meijer</name>
</author>
<author>
<name sortKey="Theeuwes, J" uniqKey="Theeuwes J">J. Theeuwes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Allport, A" uniqKey="Allport A">A. Allport</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Craighero, L" uniqKey="Craighero L">L. Craighero</name>
</author>
<author>
<name sortKey="Fadiga, L" uniqKey="Fadiga L">L. Fadiga</name>
</author>
<author>
<name sortKey="Rizzolatti, G" uniqKey="Rizzolatti G">G. Rizzolatti</name>
</author>
<author>
<name sortKey="Umilta, C" uniqKey="Umilta C">C. Umiltà</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fagioli, S" uniqKey="Fagioli S">S. Fagioli</name>
</author>
<author>
<name sortKey="Hommel, B" uniqKey="Hommel B">B. Hommel</name>
</author>
<author>
<name sortKey="Schubotz, R I" uniqKey="Schubotz R">R. I. Schubotz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Humphreys, G W" uniqKey="Humphreys G">G. W. Humphreys</name>
</author>
<author>
<name sortKey="Riddoch, M J" uniqKey="Riddoch M">M. J. Riddoch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schubo, A" uniqKey="Schubo A">A. Schubö</name>
</author>
<author>
<name sortKey="Aschersleben, G" uniqKey="Aschersleben G">G. Aschersleben</name>
</author>
<author>
<name sortKey="Prinz, W" uniqKey="Prinz W">W. Prinz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wykowska, A" uniqKey="Wykowska A">A. Wykowska</name>
</author>
<author>
<name sortKey="Schubo, A" uniqKey="Schubo A">A. Schubö</name>
</author>
<author>
<name sortKey="Hommel, B" uniqKey="Hommel B">B. Hommel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wykowska, A" uniqKey="Wykowska A">A. Wykowska</name>
</author>
<author>
<name sortKey="Schubo, A" uniqKey="Schubo A">A. Schubö</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wykowska, A" uniqKey="Wykowska A">A. Wykowska</name>
</author>
<author>
<name sortKey="Schubo, A" uniqKey="Schubo A">A. Schubö</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wykowska, A" uniqKey="Wykowska A">A. Wykowska</name>
</author>
<author>
<name sortKey="Hommel, B" uniqKey="Hommel B">B. Hommel</name>
</author>
<author>
<name sortKey="Schubo, A" uniqKey="Schubo A">A. Schubö</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schubo, A" uniqKey="Schubo A">A. Schubö</name>
</author>
<author>
<name sortKey="Prinz, W" uniqKey="Prinz W">W. Prinz</name>
</author>
<author>
<name sortKey="Aschersleben, G" uniqKey="Aschersleben G">G. Aschersleben</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fleming, R W" uniqKey="Fleming R">R. W. Fleming</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gai Ert, N" uniqKey="Gai Ert N">N. Gaißert</name>
</author>
<author>
<name sortKey="Waterkamp, S" uniqKey="Waterkamp S">S. Waterkamp</name>
</author>
<author>
<name sortKey="Fleming, R W" uniqKey="Fleming R">R. W. Fleming</name>
</author>
<author>
<name sortKey="Bulthoff, I" uniqKey="Bulthoff I">I. Bülthoff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hickey, C" uniqKey="Hickey C">C. Hickey</name>
</author>
<author>
<name sortKey="Mcdonald, J J" uniqKey="Mcdonald J">J. J. McDonald</name>
</author>
<author>
<name sortKey="Theeuwes, J" uniqKey="Theeuwes J">J. Theeuwes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Theeuwes, J" uniqKey="Theeuwes J">J. Theeuwes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yantis, S" uniqKey="Yantis S">S. Yantis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eimer, M" uniqKey="Eimer M">M. Eimer</name>
</author>
<author>
<name sortKey="Kiss, M" uniqKey="Kiss M">M. Kiss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Folk, C L" uniqKey="Folk C">C. L. Folk</name>
</author>
<author>
<name sortKey="Remington, R W" uniqKey="Remington R">R. W. Remington</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lien, M C" uniqKey="Lien M">M.-C. Lien</name>
</author>
<author>
<name sortKey="Ruthruff, E" uniqKey="Ruthruff E">E. Ruthruff</name>
</author>
<author>
<name sortKey="Goodin, Z" uniqKey="Goodin Z">Z. Goodin</name>
</author>
<author>
<name sortKey="Remington, R W" uniqKey="Remington R">R. W. Remington</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wykowska, A" uniqKey="Wykowska A">A. Wykowska</name>
</author>
<author>
<name sortKey="Schubo, A" uniqKey="Schubo A">A. Schubö</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feldmann Wustefeld, T" uniqKey="Feldmann Wustefeld T">T. Feldmann-Wüstefeld</name>
</author>
<author>
<name sortKey="Schubo, A" uniqKey="Schubo A">A. Schubö</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hickey, C" uniqKey="Hickey C">C. Hickey</name>
</author>
<author>
<name sortKey="Van Zoest, W" uniqKey="Van Zoest W">W. van Zoest</name>
</author>
<author>
<name sortKey="Theeuwes, J" uniqKey="Theeuwes J">J. Theeuwes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kiss, M" uniqKey="Kiss M">M. Kiss</name>
</author>
<author>
<name sortKey="Grubert, A" uniqKey="Grubert A">A. Grubert</name>
</author>
<author>
<name sortKey="Petersen, A" uniqKey="Petersen A">A. Petersen</name>
</author>
<author>
<name sortKey="Eimer, M" uniqKey="Eimer M">M. Eimer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ansorge, U" uniqKey="Ansorge U">U. Ansorge</name>
</author>
<author>
<name sortKey="Horstmann, G" uniqKey="Horstmann G">G. Horstmann</name>
</author>
<author>
<name sortKey="Worschech, F" uniqKey="Worschech F">F. Worschech</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kumar, S" uniqKey="Kumar S">S. Kumar</name>
</author>
<author>
<name sortKey="Soto, D" uniqKey="Soto D">D. Soto</name>
</author>
<author>
<name sortKey="Humphreys, G W" uniqKey="Humphreys G">G. W. Humphreys</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bacon, W F" uniqKey="Bacon W">W. F. Bacon</name>
</author>
<author>
<name sortKey="Egeth, H E" uniqKey="Egeth H">H. E. Egeth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chun, M M" uniqKey="Chun M">M. M. Chun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kiyonaga, A" uniqKey="Kiyonaga A">A. Kiyonaga</name>
</author>
<author>
<name sortKey="Egner, T" uniqKey="Egner T">T. Egner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Postle, B R" uniqKey="Postle B">B. R. Postle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kiyonaga, A" uniqKey="Kiyonaga A">A. Kiyonaga</name>
</author>
<author>
<name sortKey="Egner, T" uniqKey="Egner T">T. Egner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hollingworth, A" uniqKey="Hollingworth A">A. Hollingworth</name>
</author>
<author>
<name sortKey="Hwang, S" uniqKey="Hwang S">S. Hwang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maljkovic, V" uniqKey="Maljkovic V">V. Maljkovic</name>
</author>
<author>
<name sortKey="Nakayama, K" uniqKey="Nakayama K">K. Nakayama</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Downing, P E" uniqKey="Downing P">P. E. Downing</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brown, M W" uniqKey="Brown M">M. W. Brown</name>
</author>
<author>
<name sortKey="Xiang, J Z" uniqKey="Xiang J">J. Z. Xiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gilbert, A L" uniqKey="Gilbert A">A. L. Gilbert</name>
</author>
<author>
<name sortKey="Regier, T" uniqKey="Regier T">T. Regier</name>
</author>
<author>
<name sortKey="Kay, P" uniqKey="Kay P">P. Kay</name>
</author>
<author>
<name sortKey="Ivry, R B" uniqKey="Ivry R">R. B. Ivry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Witzel, C" uniqKey="Witzel C">C. Witzel</name>
</author>
<author>
<name sortKey="Gegenfurtner, K R" uniqKey="Gegenfurtner K">K. R. Gegenfurtner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Olkkonen, M" uniqKey="Olkkonen M">M. Olkkonen</name>
</author>
<author>
<name sortKey="Hansen, T" uniqKey="Hansen T">T. Hansen</name>
</author>
<author>
<name sortKey="Gegenfurtner, K R" uniqKey="Gegenfurtner K">K. R. Gegenfurtner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Foster, D H" uniqKey="Foster D">D. H. Foster</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maloney, L T" uniqKey="Maloney L">L. T. Maloney</name>
</author>
<author>
<name sortKey="Wandell, B A" uniqKey="Wandell B">B. A. Wandell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hickey, C" uniqKey="Hickey C">C. Hickey</name>
</author>
<author>
<name sortKey="Kaiser, D" uniqKey="Kaiser D">D. Kaiser</name>
</author>
<author>
<name sortKey="Peelen, M V" uniqKey="Peelen M">M. V. Peelen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Webster, M A" uniqKey="Webster M">M. A. Webster</name>
</author>
<author>
<name sortKey="Kay, P" uniqKey="Kay P">P. Kay</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Ophthalmol</journal-id>
<journal-id journal-id-type="iso-abbrev">J Ophthalmol</journal-id>
<journal-id journal-id-type="publisher-id">JOPH</journal-id>
<journal-title-group>
<journal-title>Journal of Ophthalmology</journal-title>
</journal-title-group>
<issn pub-type="ppub">2090-004X</issn>
<issn pub-type="epub">2090-0058</issn>
<publisher>
<publisher-name>Hindawi Publishing Corporation</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26171241</article-id>
<article-id pub-id-type="pmc">4485979</article-id>
<article-id pub-id-type="doi">10.1155/2015/387378</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Action Planning Mediates Guidance of Visual Attention from Working Memory</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Feldmann-Wüstefeld</surname>
<given-names>Tobias</given-names>
</name>
<xref ref-type="aff" rid="I1"></xref>
<xref ref-type="corresp" rid="cor1">
<sup>*</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Schubö</surname>
<given-names>Anna</given-names>
</name>
<xref ref-type="aff" rid="I1"></xref>
</contrib>
</contrib-group>
<aff id="I1">Philipps-University Marburg, 35037 Marburg, Germany</aff>
<author-notes>
<corresp id="cor1">*Tobias Feldmann-Wüstefeld:
<email>tobias.fw@uni-marburg.de</email>
</corresp>
<fn fn-type="other">
<p>Academic Editor: Biju B. Thomas</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<year>2015</year>
</pub-date>
<pub-date pub-type="epub">
<day>18</day>
<month>6</month>
<year>2015</year>
</pub-date>
<volume>2015</volume>
<elocation-id>387378</elocation-id>
<history>
<date date-type="received">
<day>17</day>
<month>2</month>
<year>2015</year>
</date>
<date date-type="rev-recd">
<day>22</day>
<month>4</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>27</day>
<month>4</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2015 T. Feldmann-Wüstefeld and A. Schubö.</copyright-statement>
<copyright-year>2015</copyright-year>
<license license-type="open-access">
<license-p>This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<p>Visual search is impaired when a salient task-irrelevant stimulus is presented together with the target. Recent research has shown that this attentional capture effect is enhanced when the salient stimulus matches working memory (WM) content, arguing in favor of attention guidance from WM. Visual attention was also shown to be closely coupled with action planning. Preparing a movement renders action-relevant perceptual dimensions more salient and thus increases search efficiency for stimuli sharing that dimension. The present study aimed at revealing common underlying mechanisms for selective attention, WM, and action planning. Participants both prepared a specific movement (grasping or pointing) and memorized a color hue. Before the movement was executed towards an object of the memorized color, a visual search task (additional singleton) was performed. Results showed that distraction from target was more pronounced when the additional singleton had a memorized color. This WM-guided attention deployment was more pronounced when participants prepared a grasping movement. We argue that preparing a grasping movement mediates attention guidance from WM content by enhancing representations of memory content that matches the distractor shape (i.e., circles), thus encouraging attentional capture by circle distractors of the memorized color. We conclude that templates for visual search, action planning, and WM compete for resources and thus cause interferences. </p>
</abstract>
</article-meta>
</front>
<body>
<sec id="sec1">
<title>1. Introduction</title>
<p>Due to the limited capacity of our visual system, selective attention needs to efficiently filter relevant stimuli from the incoming stream of visual information. Which stimuli are selected for further processing is a complex process that depends on various factors such as physical salience (e.g., [
<xref rid="B40" ref-type="bibr">1</xref>
,
<xref rid="B52" ref-type="bibr">2</xref>
]), task-relevance [
<xref rid="B20" ref-type="bibr">3</xref>
,
<xref rid="B36" ref-type="bibr">4</xref>
], threat relevance [
<xref rid="B14" ref-type="bibr">5</xref>
,
<xref rid="B41" ref-type="bibr">6</xref>
], or learning experience [
<xref rid="B2" ref-type="bibr">7</xref>
]. Current visual attention theories, modeling which information is selected under which circumstances, often assume that the visual system weights such factors and assigns priority to each stimulus in the visual field, determining the probability with which it is selected [
<xref rid="B9" ref-type="bibr">8</xref>
<xref rid="B57" ref-type="bibr">11</xref>
].</p>
<p>Naturally, as observers, we desire to attend to those stimuli that correspond to our current intentions and goals. By means of a
<italic> search template</italic>
that directly refers to a mental image of the desired object we can efficiently find such stimuli and deploy our attentional resources to it [
<xref rid="B10" ref-type="bibr">12</xref>
<xref rid="B56" ref-type="bibr">14</xref>
]. High weights for features corresponding to current goals of the observer can also have detrimental effects, impairing performance. For example, “contingent capture” describes the effect that visual attention is captured by task-irrelevant stimuli that match the search template in one or more features [
<xref rid="B17" ref-type="bibr">15</xref>
,
<xref rid="B19" ref-type="bibr">16</xref>
]. It was argued that attention deployment towards stimuli that partially match the search template, regardless of its actual task-relevance, is mediated by Working Memory (WM) which may store the search template so that the observer can constantly match incoming information in ongoing tasks [
<xref rid="B9" ref-type="bibr">8</xref>
,
<xref rid="B4" ref-type="bibr">17</xref>
<xref rid="B29" ref-type="bibr">20</xref>
]. A study by Woodman & Arita [
<xref rid="B65" ref-type="bibr">21</xref>
] provided neurophysiological evidence that attentional templates are maintained in WM and that the strength of template representations in WM predicts the performance in a visual search task.</p>
<p>As WM has a limited capacity, search templates maintained in WM for a search task at hand may sometimes compete with other information maintained in WM. More recent research has indeed suggested that visual selection can be closely intertwined with visual working memory processes [
<xref rid="B23" ref-type="bibr">22</xref>
<xref rid="B50" ref-type="bibr">25</xref>
], for example, by showing memory-driven attentional capture. For example, Olivers and Eimer [
<xref rid="B42" ref-type="bibr">23</xref>
] presented observers colored items they had to maintain in WM before they were being probed for correct retrieval. During maintenance, observers performed a visual search task. When distractors shared the colors of items maintained in WM, search was slowed down compared to distractors of neutral colors, suggesting attentional capture by features in WM (see also [
<xref rid="B49" ref-type="bibr">24</xref>
,
<xref rid="B43" ref-type="bibr">26</xref>
]).</p>
<p>Although it seems plausible that our perception can be biased towards stimuli that match our goals and intentions, perception as such is never a self-purpose; we intend to perceive something so that we can
<italic> act</italic>
upon the perceived. Action as the purpose of selection has been brought forward by Allport's
<italic> selection-for-action</italic>
theory Allport [
<xref rid="B66" ref-type="bibr">27</xref>
] and a large body of literature has pointed towards a close interrelation of selection and action since (e.g., [
<xref rid="B8" ref-type="bibr">28</xref>
<xref rid="B61" ref-type="bibr">34</xref>
]). For example, in Wykowska et al.'s [
<xref rid="B62" ref-type="bibr">32</xref>
] study, participants had to prepare a grasping or pointing movement according to a cue presented in the beginning of each trial. For grasping, size is a relevant dimension because grasping requires the specification of size-related parameters to control grip aperture. For pointing, luminance is a relevant dimension because pointing crucially requires the localization of to-be-pointed objects—and this localization is efficiently enabled by luminance [
<xref rid="B60" ref-type="bibr">33</xref>
,
<xref rid="B58" ref-type="bibr">35</xref>
].</p>
<p>Before participants executed the movement, they were shown a search display with various filled grey circles. Either all circles were identical, or one circle was a size singleton (smaller circle) or one circle was a luminance singleton (brighter circle). Participants had to report whether a singleton was present or not. After the search task, participants executed the previously prepared movement towards one among various, real objects in front of them. It was found that preparing a grasping movement facilitated detection of size singletons, whereas preparing a pointing movement facilitated detection of luminance singletons. The authors concluded that planning an action biases visual perception towards dimensions that deliver important information for controlling that action [
<xref rid="B62" ref-type="bibr">32</xref>
]. The large overlaps between visual attention and WM have been attributed to attentional control mechanisms being in some way common with those recruited in the service of WM maintenance [
<xref rid="B42" ref-type="bibr">23</xref>
,
<xref rid="B50" ref-type="bibr">25</xref>
]. Similarly, the overlaps between visual attention and action planning have been ascribed to a common coding of perception and action [
<xref rid="B12" ref-type="bibr">29</xref>
,
<xref rid="B62" ref-type="bibr">32</xref>
,
<xref rid="B48" ref-type="bibr">36</xref>
]. Are WM and action planning also interrelated? It seems economically plausible that a common mechanism allows the visual system (a) to deploy attention to the relevant information currently available to the senses, (b) to maintain information not present to the senses anymore, and (c) to plan action related to the present/maintained visual information. This study aimed at investigating such interactions of visual attention, visual WM, and action planning. More specifically we were interested in whether attention is particularly biased towards dimensions that are both action relevant and WM relevant, for example, towards a red circle if red is to be held in WM and a grasping movement is to be executed towards a circular item.</p>
<p>
<italic>Rationale of the Present Study</italic>
. The present study combined a visual search task with a working memory (WM) task and a motor task. Participants had to prepare a pointing or grasping movement but withhold execution until the end of a trial. Participants also had to memorize a color hue until the end of a trial. At the end of a trial, participants performed the planned movement towards the memorized (circular) item, thus combining WM and motor planning. While participants planned the movement and held the color in their WM, they had to perform a visual search task in which they always had to respond to a diamond-shaped target among circle distractors. Note that, for grasping, shape was a relevant dimension because the to-be-grasped objects were circles and thus required the specification of circle-related parameters (e.g., [
<xref rid="B16" ref-type="bibr">37</xref>
,
<xref rid="B22" ref-type="bibr">38</xref>
]). In some of the trials, one of the distractors could be colored; the color could be related or unrelated to the color in WM. We hypothesized that the additional color singletons will capture attention and slow down response times (c.f., [
<xref rid="B52" ref-type="bibr">2</xref>
]), even more so when they are related to WM content (c.f., [
<xref rid="B42" ref-type="bibr">23</xref>
]). Memory-relevance and action-relevance coincided when the additional singleton in the search task was of a color related to WM and when a grasping movement was being prepared. Thus we expected the capture effect to be most pronounced when the color singleton both matches the WM content and is congruent to the action-relevant dimension, because, for such stimuli, task-relevance and action-relevance coincided.</p>
</sec>
<sec id="sec2">
<title>2. Method</title>
<sec id="sec2.1">
<title>2.1. Participants</title>
<p>21 volunteers (aged 19–27 years) naive to paradigm and objective of the experiment participated for course credit. All but two were right-handed and all had normal or corrected-to-normal vision (tested with Landolt ring test, visus ≥ 1). The experiment was conducted with the understanding and consent of each participant.</p>
</sec>
<sec id="sec2.2">
<title>2.2. Apparatus and Stimuli</title>
<p>Participants were seated in a comfortable chair in a dimly lit room at 50 cm distance from an LCD-TN screen (
<italic>Samsung Syncmaster 2233</italic>
). Participants had a customizable keyboard (
<italic>Ergodex DX1</italic>
) on their left side in front of them with two buttons that were labeled “
<italic>M</italic>
” and “
<italic>N</italic>
” and were operated by the middle and index finger of the left hand. Stimulus presentation and response collection were controlled by a
<italic> Windows</italic>
PC using
<italic> E-Prime 2</italic>
routines. The examiner sat approximately 2 m behind the participant with a standard keyboard on her lap to register participants' movement.</p>
<p>Movement cues were color photos taken from a female volunteer showing a forearm/hand on a black background that performs a pointing or grasping movement (see
<xref ref-type="fig" rid="fig1">Figure 1(b)</xref>
). The numbers of pixels for the pointing and grasping hands were approximately identical (~20% of the screen; ~80% were black pixels). Memory items were filled circles (diameter: 3.6° visual angle) colored in one of nine shades of four colors (blue, green, yellow, and red), that is, 36 different hues in total. RGB values were identical to those used by Olivers & Eimer [
<xref rid="B42" ref-type="bibr">23</xref>
]; see the appendix for RGB and CIE(
<italic>x</italic>
,
<italic>y</italic>
) values. Search displays consisted of eight items placed on an imaginary circle with a diameter of 10.6° (see
<xref ref-type="fig" rid="fig1">Figure 1(a)</xref>
). Distractors were filled circles (2.4°) and could be grey or colored. Colors were taken from the same pool of colors as memory items (see above). Grey and colored distractors had an embedded tilted black hourglass. Targets were grey diamonds (3°) with an embedded stylized black
<italic>M</italic>
or
<italic>N</italic>
.
<italic>M</italic>
and
<italic>N</italic>
were made by removing two lines from the hourglass; that is,
<italic>M</italic>
,
<italic>N</italic>
, and hourglass were superposable. In
<italic> color absent</italic>
trials, there was one target and seven grey distractors. The target was presented equally often in each of the eight positions. In
<italic> memorized color </italic>
trials and
<italic> neutral color</italic>
trials, there was one target, one color distractor, and six grey distractors. Target and color singleton were presented equally often in each of the eight positions but never in neighboring positions.</p>
</sec>
<sec id="sec2.3">
<title>2.3. Procedure</title>
<p>Each trial started with a central fixation, shown for 500 ms (see
<xref ref-type="fig" rid="fig1">Figure 1(c)</xref>
), and was replaced with a movement cue shown for 1500 ms. Participants were instructed to prepare the indicated movement but withhold movement execution until the end of the trial. A display followed for 1000 ms that randomly showed one of the 36 color hues. Participants were instructed to memorize this hue until it was probed in the end of the trial. After a blank display showing only a fixation cross, the search display was shown. In one-third of the trials (320 trials), all distractors were grey (color absent). In another third of the trials, a color distractor was presented that had a hue from the same color category as the memorized item but never the exact same hue (memorized color). In the remaining third of the trials, a color distractor was presented that had a hue from a different color category as the memorized item (neutral color). Participants were instructed to respond as fast as possible (while avoiding errors) to the letter embedded in the target (50%
<italic>M</italic>
, 50%
<italic>N</italic>
) by pressing the according button on the keyboard. After participants responded, the search display was replaced by another blank display for 500 ms. Subsequently, a memory probe display appeared with three (circular) memory items arranged in a pyramid arrangement. Participants were instructed to execute the planned movement towards the item with the memorized hue. The two other items were always from the same color category as the memorized hue (e.g., if the memorized items were from the category “red,” two out of the remaining eight hues were randomly selected to appear together with the memorized hue). All items being from the same color category was thought to discourage verbalization of the color and encourage a visual memory representation. For pointing movements participants had to touch the screen with the tip of their right index finger. For the grasping movement participants had to make a claw-like gesture with their right hand, touching the screen with all five fingers along the outlines of the respective memory item. After participants performed the movement, the examiner pressed one out of two buttons to register which movement had been executed by the participant (point versus grasp) and pressed one out of three buttons to register towards which item the movement was made (first, second, and third colored circle within the pyramid arrangement). Only trials in which participants performed the correct movement and towards the correct object were counted as correct trials. After an intertrial interval of 1000 ms (black screen), a new fixation cross announced the beginning of a new trial.</p>
<p>There were six experimental conditions: three color conditions (color absent, memorized color, and neutral color) and two movement conditions (pointing and grasping). Experimental condition was randomly chosen in each trial. Target position (or target-color distractor position combination, resp.) was counterbalanced with each of the six experimental conditions across the experiment. The experiment comprised 960 trials (+30 practice trials) divided in 40 blocks of 48 trials, that is, 160 trials per experimental condition. After each block a pause of at least 10 sec followed and performance feedback (RTs and accuracy for the search task and accuracy for the motor task) was provided to participants on the screen.</p>
</sec>
<sec id="sec2.4">
<title>2.4. Data Analysis</title>
<p>Mean response times (RT) and error rates were calculated for each participant separately for each of the six experimental conditions. For “memorized color” trials, RTs were collapsed across all hues from the same category as the memory item. For “neutral colors,” RTs were collapsed across all hues from all categories to which the memory item did not belong. Only trials in which all three tasks (search task, motor task, and memory task) were performed correctly and trials without exceedingly long search RTs (>2000 ms) or short RTs (<300 ms) remained in the RT analyses. These criteria were reached in 64.5 % (SD = 8.8%) of the trials. Data were submitted to a 2 × 3 ANOVA with the factors color (absent versus memorized versus neutral) and movement (pointing versus grasping). Greenhouse-Geisser correction was applied when appropriate. As measures of effect size, partial eta squared (
<italic>η</italic>
<sup>2</sup>
) is reported for ANOVAs, and epsilon (
<italic>ε</italic>
) is reported for
<italic>t</italic>
-tests.</p>
</sec>
</sec>
<sec id="sec3">
<title>3. Results</title>
<sec id="sec3.1">
<title>3.1. Search Task</title>
<p>Search RTs depended on the presence of a color distractor,
<italic>F</italic>
(2,40) = 32.96,
<italic>p</italic>
< 0.001,
<italic>η</italic>
<sup>2</sup>
= 0.622. RTs were shortest when color was absent (
<italic>M</italic>
= 789 ms) followed by distractors with neutral colors (
<italic>M</italic>
= 830 ms) and distractors with memorized colors (
<italic>M</italic>
= 854 ms), all
<italic>p</italic>
< 0.001 (contrasts); see
<xref ref-type="fig" rid="fig2">Figure 2</xref>
. How much search RTs were modulated by color singleton depended on preparation of a movement,
<italic>F</italic>
(2,40) = 5.44,
<italic>p</italic>
= 0.008,
<italic>η</italic>
<sup>2</sup>
= 0.214. Follow-up
<italic>t</italic>
-test for dependent measures showed that differential movement preparation (pointing versus grasping) did not affect neither trials without color distractors (Δ
<italic>M</italic>
= 6 ms),
<italic>t</italic>
(21) = 0.79,
<italic>p</italic>
= 0.440,
<italic>ε</italic>
= 0.24 nor trials with neutral color distractors (Δ
<italic>M</italic>
= 4 ms),
<italic>t</italic>
(21) = 0.61,
<italic>p</italic>
= 0.548,
<italic>ε</italic>
= 0.19. In trials with memorized color distractors, however, preparing a grasping movement increased search RTs compared to preparing a pointing movement (Δ
<italic>M</italic>
= 19 ms),
<italic>t</italic>
(21) = 2.85,
<italic>p</italic>
= 0.010,
<italic>ε</italic>
= 0.88. To confirm that the 2-way interaction is not a merely additive effect of WM and action planning, an additional ANOVA was calculated in which the capture effect was taken as a dependent measure (mean RTs for “color absent” were subtracted from mean RTs for “memorized color” and “neutral color”, resp.). A 2 × 2 ANOVA with the factors color (memorized versus neutral) and movement (pointing versus grasping) was then run. Results showed that the capture effect was not modulated by the preparation of a movement (
<italic>p</italic>
= 0.084) but was modulated by the distractor type (
<italic>M</italic>
<sub>mem</sub>
= 65 ms versus
<italic>M</italic>
<sub>neutr</sub>
= 41 ms),
<italic>F</italic>
(1,40) = 22.59,
<italic>p</italic>
< 0.001,
<italic>η</italic>
<sup>2</sup>
= 0.530. The increase in attentional capture for memorized colors was more pronounced for grasping (Δ
<italic>M</italic>
= 35 ms) than for pointing (Δ
<italic>M</italic>
= 13 ms),
<italic>F</italic>
(1,40) = 7.72,
<italic>p</italic>
= 0.012,
<italic>η</italic>
<sup>2</sup>
= 0.279. ANOVA for error rates revealed no effects (all
<italic>p</italic>
≥ 0.437).</p>
</sec>
<sec id="sec3.2">
<title>3.2. Motor Task</title>
<p>The correct movement according to the movement cue was executed equally often for grasping (93.3%) as for pointing (92.3%),
<italic>p</italic>
> 0.5.</p>
</sec>
<sec id="sec3.3">
<title>3.3. Memory Task</title>
<p>The memory items were correctly identified (in terms of executing the movement towards the item of the hue that was shown in the beginning of the trial) in 71.0% of the trials (SD = 2.1%). To reveal whether those participants that were best in memorizing were also the ones that were most distracted by memorized color distractors, Pearson's product-moment correlation was computed for memory accuracy and RT difference for color absent versus
<italic> memorized</italic>
color (across movement conditions). Results showed a strong correlation (
<italic>ρ</italic>
= 0.44;
<italic>p</italic>
= 0.024); that is, the better memory performance, the more RT impairment due to memorized colors; see
<xref ref-type="fig" rid="fig3">Figure 3</xref>
. No such correlation was found for memory performance and RT impairment due to
<italic> neutral</italic>
colors (
<italic>p</italic>
= 0.127).</p>
</sec>
</sec>
<sec id="sec4">
<title>4. Discussion</title>
<p>The key result of the present study is an interrelation of action planning and maintenance in working memory (WM). Attention was particularly biased towards colors matching WM content when participants prepared a grasping movement compared to a pointing movement. When no color distractor was presented or the color distractor had a color unrelated to WM content, the preparation of the movement did not affect attention deployment.</p>
<p>The presence of a color distractor impaired visual search even though colors were entirely search-irrelevant. Even though the task could be solved and the target be found most of the times (overall error rates ~3%), response times were slowed down. This is a replication of earlier findings showing that salient stimuli can capture attention against the intention of an observer [
<xref rid="B52" ref-type="bibr">2</xref>
,
<xref rid="B26" ref-type="bibr">39</xref>
<xref rid="B63" ref-type="bibr">41</xref>
]. Apparently, salient distracting information needs to be rejected before attention can be directed towards the task-relevant stimulus, a time demanding process. Current visual attention models account for attentional capture, for example, by assuming that the weight of any bottom-up feature map cannot be set to zero by the observer, regardless of the task-relevance of the feature dimension (
<italic>Guided Search</italic>
, [
<xref rid="B57" ref-type="bibr">11</xref>
,
<xref rid="B56" ref-type="bibr">14</xref>
]). By this means, salient stimuli will always project on the master map of activations (or,
<italic> priority map</italic>
, [
<xref rid="B13" ref-type="bibr">9</xref>
]), based on which attention deployment is being made.</p>
<p>The present study also showed that the attentional capture was particularly pronounced when the color distractor matched the color category that was held in WM. This suggests that stimuli matching information maintained in WM are given more priority in visual processing than stimuli of equal salience that were not maintained in WM.</p>
<p>It should be noted that the longer response times for trials in which task-irrelevant color distractors were present do not necessarily indicate that those distractors were processed in a bottom-up manner. According to Bacon and Egeth [
<xref rid="B3" ref-type="bibr">51</xref>
], two search modes would have been applicable in the present search task:
<italic> singleton detection</italic>
mode in which observers search for anything that stands out from the background and
<italic> feature search</italic>
mode in which observers search for a predefined feature (here, diamond), a search mode only possible when the target feature is known and does not change between trials. As in the present paradigm observers searched for a diamond-shape target throughout the experiment while ignoring color both search modes could have been used. Applying the feature search mode (rather than singleton detection) would have been particularly beneficial to color-present trials as distraction by the irrelevant color singleton would have been minimized. In color absent trials, however, observers could have applied the simpler singleton detection mode as this search mode was sufficient to efficiently find the target. If this was the case longer RTs for color-present trials may have been due to differences in search strategy and not to bottom-up attentional capture. Different search modes in color-absent and color-present trials seem, however, rather unlikely as the trial types were completely randomized between trials. This makes it unlikely that observers switched their search mode between trials because they could not predict which trial type would follow. Only as soon as stimuli showed up on the screen could observers know whether a color was present or not.</p>
<p>Regardless of the applied search mode, more priority to WM-related stimuli is well in line with the notion that visual attention and WM may rely on the same mechanism of prioritization of items [
<xref rid="B7" ref-type="bibr">52</xref>
<xref rid="B46" ref-type="bibr">54</xref>
] and replicates earlier results showing that guidance of attention from WM occurs even when it is detrimental to performance [
<xref rid="B44" ref-type="bibr">13</xref>
,
<xref rid="B42" ref-type="bibr">23</xref>
,
<xref rid="B50" ref-type="bibr">25</xref>
,
<xref rid="B34" ref-type="bibr">55</xref>
]. For example, Olivers and colleagues [
<xref rid="B44" ref-type="bibr">13</xref>
,
<xref rid="B42" ref-type="bibr">23</xref>
] argue that search templates and other representations in WM compete for resources. As a search template, items have full access to the sensory input and can bias selection towards matching objects. Maintaining an item in WM (e.g., because it will be probed in the end of a trial) is similar to adopting a search template (or an “attentional set”; [
<xref rid="B42" ref-type="bibr">23</xref>
]). Such representations (so-called “accessory memory items”) have a passive status after being encoded into WM to not interfere with an ongoing task (here, the search task) and can be reactivated to regain the status of a search template when they become relevant (here, when memory probes are presented). Reactivation of accessory memory items may also happen involuntarily, for example, when a WM matching distractor is presented during the search task. This leads to prioritization of features held in WM, attentional capture results which may impair performance (see also [
<xref rid="B49" ref-type="bibr">24</xref>
,
<xref rid="B50" ref-type="bibr">25</xref>
]). In the present study this was the case in the “memorized color” condition. In terms of salience maps, it seems that weights for features in the WM task spill over to visual search and bias attention accordingly (e.g., [
<xref rid="B33" ref-type="bibr">53</xref>
,
<xref rid="B28" ref-type="bibr">56</xref>
]).</p>
<p>The increased attentional capture by color distractors matching the item held in WM could also be due to color priming from the WM displays to the search displays [
<xref rid="B2" ref-type="bibr">7</xref>
,
<xref rid="B38" ref-type="bibr">57</xref>
]. Previous studies using a similar paradigm, however, could rule out the possibility of priming effects (e.g., [
<xref rid="B49" ref-type="bibr">24</xref>
,
<xref rid="B43" ref-type="bibr">26</xref>
,
<xref rid="B68" ref-type="bibr">58</xref>
]). Those studies showed that attentional capture during a search task occurred only when previously presented items had to be remembered. When observers were merely exposed to the crucial features, no such effects were found. Additional evidence comes from an imaging study [
<xref rid="B67" ref-type="bibr">59</xref>
] when WM content was repeated in a search task, enhanced activity in a variety of brain regions known to be sensitive to the prior history of events was found. Conversely, when items only had to be identified but not held in WM, their repetition elicited a suppressed response in the same regions. Given the similar paradigm it seems likely that, also in the present experiment, visual search costs were due to WM content rather than repetition effects.</p>
<p>Interestingly, the present results indicate that guidance of attention from WM was most pronounced when participants prepared a grasping movement. This indicates that apart from overlaps between visual attention and WM there may also be a connection between WM and action planning; see WM model in
<xref ref-type="fig" rid="fig4">Figure 4</xref>
. There is quite some evidence that action planning has a strong impact on perceptual processes, even in situations when action and perception are not directed to the same objects but merely overlap in time (e.g., [
<xref rid="B8" ref-type="bibr">28</xref>
<xref rid="B61" ref-type="bibr">34</xref>
]). For example, when observers have the intention to perform an action, such as grasping or pointing, their attention can be biased towards simultaneously presented yet unrelated visual objects. This leads to faster target detection when the target is congruent to the planned action compared to incongruent targets [
<xref rid="B62" ref-type="bibr">32</xref>
,
<xref rid="B61" ref-type="bibr">34</xref>
].</p>
<p>In the present study, the feature dimension “shape” was crucial to the search task; the feature “diamond” was task-relevant as targets were diamond-shaped; the feature “circle” was task-irrelevant as distractors were circle-shaped. Shape is a dimension also relevant to grasping as grasping requires the specification of shape-related parameters. For example, for a safe grip of an object, an agent needs to know the properties of its surface; a ball is grasped differently than a cube (e.g., [
<xref rid="B16" ref-type="bibr">37</xref>
,
<xref rid="B22" ref-type="bibr">38</xref>
]). In the present study, participants had to grasp circular items in the memory probe display, rendering the feature “circle” particularly crucial for action planning. Conversely, when participants had to point at the circular items, no feature should have been rendered more crucial because none of the features in the search task (shape, color) were particularly relevant for pointing. Our results show that movement planning modulates attention guidance from WM. It appears that when circles were made relevant through planning of a grasping movement, circular distractors captured more attention than when a pointing movement was planned but only if their color matched WM content. Thus WM might be a mediating process involved in the relation of action planning and attention. In terms of the WM model by Olivers and colleagues the planning of an action such as a grasping movement might increase the demand on WM and thus cause additional interference in WM because it requires the maintenance of information for subsequent action execution (see
<xref ref-type="fig" rid="fig3">Figure 3</xref>
). In the present study preparing a grasping movement may have needed the maintenance of an action-relevant feature “circle shape” in WM. This action-relevant feature may have prioritized processing of circle distractors in memorized colors in the search task, thus increasing interference with target processing and impairing performance.</p>
<p>Our data show that action planning only modulated search performance when participants prepared a grasping movement
<italic> and</italic>
one of the distractors was in a memorized color. This suggests that only when both
<italic> circle prioritization</italic>
by action-planning and
<italic> color prioritization</italic>
by WM maintenance coincided did attentional capture by the color singleton particularly impair search performance. This is strong evidence for a common mechanism underlying selective attention, WM, and action planning. The present results thus add to the previous literature showing that action planning is a rather dominant source of top-down control in selection and not only can modulate attention deployment but also can interact with WM content.</p>
<p>Interestingly, participants differentiated hues in the memory task quite well. Even though nine hues had to be distinguished within one color category, participants correctly remembered the hue in ~71% of the cases (chance level 1/3). If the ability to discriminate hues was as good for color distractors as for memory probes, one would expect no distraction away from the target as the color singleton never exactly matched the hue of the memorized color. However, hues within the same color category induced a significant increase in target search time compared to a neutral color category. This indicates that, whereas participants were able to keep a relatively precise representation of the memory item in WM, a much broader variety of hues, actually the entire color category, was able to involuntarily capture attention. Perception of similar hues as one color category is a basic mechanism of the visual system [
<xref rid="B24" ref-type="bibr">60</xref>
,
<xref rid="B55" ref-type="bibr">61</xref>
] and is, for example, crucial to perceive a constant surface under varying lighting conditions [
<xref rid="B45" ref-type="bibr">62</xref>
]. In the present study, whether hues were perceived as belonging to one category or not might have been due to varying time pressure or processing strategies. For example, observers may have been biased towards the entire WM-relevant color category under the time pressure of the search task (RT was stressed for the search task) that did not allow the visual system to differentiate between hues. When the memory probe was shown in the end of a trial, however, observers were able to make more precise color judgments (precision was stressed for the memory task). Moreover, the visual system may have relied on color categories when no explicit incentive to differentiate between hues was present (such as for task-irrelevant distractors during search); thus attention was biased towards the entire category. This may in fact be an adaptive strategy of the visual system to cope with the invariance of physical features in real world settings. For example, “color constancy” describes the effect that observers perceive the color of an object constant even though the exact wavelength may change drastically as a function of environmental variables such as illumination, perspective, shading, and distance [
<xref rid="B21" ref-type="bibr">63</xref>
,
<xref rid="B39" ref-type="bibr">64</xref>
]. More recently it was found that attention deployment can be biased towards perceptual categories that typically share very few low-level features, even when this is detrimental to performance [
<xref rid="B25" ref-type="bibr">65</xref>
]. The present results may provide an example in which attention deployment is biased towards a color category even though only one subset of that category (a specific hue) was task-relevant. A strategy to more thoroughly process colors, however, might have been used when observers had the incentive to correctly identify one hue among similar ones (such as for the memory probe). This notion is in line with findings suggesting that how prominent the effect of color category on hue perception is relies on various factors such as the specific task, cognitive demands, and strategies of the observer [
<xref rid="B53" ref-type="bibr">66</xref>
].</p>
<p>In the present study we argue that the additional singleton captured attention against the will of the observers. It should be noted that some studies suggest that longer response times for distractor-present trials in additional singleton paradigms are due to nonspatial filtering costs [
<xref rid="B11" ref-type="bibr">42</xref>
<xref rid="B59" ref-type="bibr">45</xref>
] whereas other studies suggest they are due to attentional capture by the distractor [
<xref rid="B26" ref-type="bibr">39</xref>
,
<xref rid="B15" ref-type="bibr">46</xref>
<xref rid="B32" ref-type="bibr">48</xref>
]. One reason for the diverging results may be that singletons only capture attention when they match the observer's goal [
<xref rid="B1" ref-type="bibr">49</xref>
]. Although the present study cannot contribute to answering this open question, we assume that in the present study attentional capture accounts for the longer response times for distractor-present trials. Even though color distractors never matched the target category, they did match the WM content, namely, in the “memorized color” condition. As it was the observers' goal to maintain items in WM, attentional capture by items matching WM content may therefore be considered attentional capture due to matching of the observer's goal [
<xref rid="B1" ref-type="bibr">49</xref>
]. In line with this, in a study using a similar paradigm as the present study, an N2pc component contralateral to the memory-matching distractor (i.e., a distractor negativity) was found, suggesting that indeed stimuli sharing features of WM content capture attention [
<xref rid="B35" ref-type="bibr">50</xref>
].</p>
</sec>
<sec id="sec5">
<title>5. Conclusions</title>
<p>To sum up, the present results showed that action planning not only determines the way we perceive our visual environment but also determines how working memory (WM) drives attention deployment. Observers were distracted from target search when a salient color item was presented concurrently to the target. This distraction was more pronounced when the colored item was related to a color held in WM, indicating attention guidance by WM content. Preparing a grasping movement enhanced WM guided attention deployment. We conclude that target templates, action plans, and WM maintenance have common underlying mechanisms and compete for processing capacity.</p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments</title>
<p>This research was supported by the Deutsche Forschungsgemeinschaft (German Research Foundation), SFB/TRR 135, TP B3. The authors thank Ulrich Ansorge and an anonymous reviewer for their helpful comments on a previous version of this paper.</p>
</ack>
<app-group>
<app>
<title>Appendix </title>
<p>See (
<xref ref-type="table" rid="tab1">Table 1</xref>
).</p>
</app>
</app-group>
<sec sec-type="conflict">
<title>Conflict of Interests</title>
<p>The authors declare that there is no conflict of interests regarding the publication of this paper.</p>
</sec>
<ref-list>
<ref id="B40">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nothdurft</surname>
<given-names>H.-C.</given-names>
</name>
</person-group>
<article-title>Feature analysis and the role of similarity in preattentive vision</article-title>
<source>
<italic>Perception & Psychophysics</italic>
</source>
<year>1992</year>
<volume>52</volume>
<issue>4</issue>
<fpage>355</fpage>
<lpage>375</lpage>
<pub-id pub-id-type="doi">10.3758/bf03206697</pub-id>
<pub-id pub-id-type="other">2-s2.0-0026940898</pub-id>
<pub-id pub-id-type="pmid">1437470</pub-id>
</element-citation>
</ref>
<ref id="B52">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Theeuwes</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Top-down and bottom-up control of visual selection</article-title>
<source>
<italic>Acta Psychologica</italic>
</source>
<year>2010</year>
<volume>135</volume>
<issue>2</issue>
<fpage>77</fpage>
<lpage>99</lpage>
<pub-id pub-id-type="doi">10.1016/j.actpsy.2010.02.006</pub-id>
<pub-id pub-id-type="other">2-s2.0-77957124566</pub-id>
<pub-id pub-id-type="pmid">20507828</pub-id>
</element-citation>
</ref>
<ref id="B20">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Folk</surname>
<given-names>C. L.</given-names>
</name>
<name>
<surname>Remington</surname>
<given-names>R. W.</given-names>
</name>
<name>
<surname>Johnston</surname>
<given-names>J. C.</given-names>
</name>
</person-group>
<article-title>Involuntary covert orienting is contingent on attentional control settings</article-title>
<source>
<italic>Journal of Experimental Psychology: Human Perception and Performance</italic>
</source>
<year>1992</year>
<volume>18</volume>
<issue>4</issue>
<fpage>1030</fpage>
<lpage>1044</lpage>
<pub-id pub-id-type="doi">10.1037/0096-1523.18.4.1030</pub-id>
<pub-id pub-id-type="other">2-s2.0-0026955381</pub-id>
<pub-id pub-id-type="pmid">1431742</pub-id>
</element-citation>
</ref>
<ref id="B36">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Leber</surname>
<given-names>A. B.</given-names>
</name>
<name>
<surname>Egeth</surname>
<given-names>H. E.</given-names>
</name>
</person-group>
<article-title>It's under control: top-down search strategies can override attentional capture</article-title>
<source>
<italic>Psychonomic Bulletin and Review</italic>
</source>
<year>2006</year>
<volume>13</volume>
<issue>1</issue>
<fpage>132</fpage>
<lpage>138</lpage>
<pub-id pub-id-type="doi">10.3758/bf03193824</pub-id>
<pub-id pub-id-type="other">2-s2.0-33748790122</pub-id>
<pub-id pub-id-type="pmid">16724780</pub-id>
</element-citation>
</ref>
<ref id="B14">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Feldmann-Wüstefeld</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Schmidt-Daffy</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Schubö</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Neural evidence for the threat detection advantage: differential attention allocation to angry and happy faces</article-title>
<source>
<italic>Psychophysiology</italic>
</source>
<year>2011</year>
<volume>48</volume>
<issue>5</issue>
<fpage>697</fpage>
<lpage>707</lpage>
<pub-id pub-id-type="doi">10.1111/j.1469-8986.2010.01130.x</pub-id>
<pub-id pub-id-type="other">2-s2.0-79952833635</pub-id>
<pub-id pub-id-type="pmid">20883506</pub-id>
</element-citation>
</ref>
<ref id="B41">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Öhman</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Lundqvist</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Esteves</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>The face in the crowd revisited: a threat advantage with schematic stimuli</article-title>
<source>
<italic>Journal of Personality and Social Psychology</italic>
</source>
<year>2001</year>
<volume>80</volume>
<issue>3</issue>
<fpage>381</fpage>
<lpage>396</lpage>
<pub-id pub-id-type="doi">10.1037/0022-3514.80.3.381</pub-id>
<pub-id pub-id-type="other">2-s2.0-0035291836</pub-id>
<pub-id pub-id-type="pmid">11300573</pub-id>
</element-citation>
</ref>
<ref id="B2">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Awh</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Belopolsky</surname>
<given-names>A. V.</given-names>
</name>
<name>
<surname>Theeuwes</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Top-down versus bottom-up attentional control: a failed theoretical dichotomy</article-title>
<source>
<italic>Trends in Cognitive Sciences</italic>
</source>
<year>2012</year>
<volume>16</volume>
<issue>8</issue>
<fpage>437</fpage>
<lpage>443</lpage>
<pub-id pub-id-type="doi">10.1016/j.tics.2012.06.010</pub-id>
<pub-id pub-id-type="other">2-s2.0-84864034017</pub-id>
<pub-id pub-id-type="pmid">22795563</pub-id>
</element-citation>
</ref>
<ref id="B9">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Desimone</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Duncan</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Neural mechanisms of selective visual attention</article-title>
<source>
<italic>Annual Review of Neuroscience</italic>
</source>
<year>1995</year>
<volume>18</volume>
<fpage>193</fpage>
<lpage>222</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.ne.18.030195.001205</pub-id>
<pub-id pub-id-type="other">2-s2.0-0028951934</pub-id>
</element-citation>
</ref>
<ref id="B13">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fecteau</surname>
<given-names>J. J. H.</given-names>
</name>
<name>
<surname>Munoz</surname>
<given-names>D. P. D.</given-names>
</name>
</person-group>
<article-title>Salience, relevance, and firing: a priority map for target selection</article-title>
<source>
<italic>Trends in Cognitive Sciences</italic>
</source>
<year>2006</year>
<volume>10</volume>
<issue>8</issue>
<fpage>382</fpage>
<lpage>390</lpage>
<pub-id pub-id-type="doi">10.1016/j.tics.2006.06.011</pub-id>
<pub-id pub-id-type="other">2-s2.0-33746257277</pub-id>
<pub-id pub-id-type="pmid">16843702</pub-id>
</element-citation>
</ref>
<ref id="B31">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Itti</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Koch</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>A saliency-based search mechanism for overt and covert shifts of visual attention</article-title>
<source>
<italic>Vision Research</italic>
</source>
<year>2000</year>
<volume>40</volume>
<issue>10–12</issue>
<fpage>1489</fpage>
<lpage>1506</lpage>
<pub-id pub-id-type="doi">10.1016/s0042-6989(99)00163-7</pub-id>
<pub-id pub-id-type="other">2-s2.0-0034003645</pub-id>
<pub-id pub-id-type="pmid">10788654</pub-id>
</element-citation>
</ref>
<ref id="B57">
<label>11</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Wolfe</surname>
<given-names>J. M.</given-names>
</name>
</person-group>
<article-title>Guided search 4.0</article-title>
<source>
<italic>Integrated Models of Cognitive Systems</italic>
</source>
<year>2007</year>
<fpage>99</fpage>
<lpage>119</lpage>
<pub-id pub-id-type="doi">10.1093/acprof:oso/9780195189193.003.0008</pub-id>
</element-citation>
</ref>
<ref id="B10">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Duncan</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Humphreys</surname>
<given-names>G. W.</given-names>
</name>
</person-group>
<article-title>Visual Search and Stimulus Similarity</article-title>
<source>
<italic>Psychological Review</italic>
</source>
<year>1989</year>
<volume>96</volume>
<issue>3</issue>
<fpage>433</fpage>
<lpage>458</lpage>
<pub-id pub-id-type="doi">10.1037/0033-295X.96.3.433</pub-id>
<pub-id pub-id-type="other">2-s2.0-0024696502</pub-id>
<pub-id pub-id-type="pmid">2756067</pub-id>
</element-citation>
</ref>
<ref id="B44">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Olivers</surname>
<given-names>C. N. L.</given-names>
</name>
<name>
<surname>Peters</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Houtkamp</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Roelfsema</surname>
<given-names>P. R.</given-names>
</name>
</person-group>
<article-title>Different states in visual working memory: when it guides attention and when it does not</article-title>
<source>
<italic>Trends in Cognitive Sciences</italic>
</source>
<year>2011</year>
<volume>15</volume>
<issue>7</issue>
<fpage>327</fpage>
<lpage>334</lpage>
<pub-id pub-id-type="doi">10.1016/j.tics.2011.05.004</pub-id>
<pub-id pub-id-type="other">2-s2.0-79959892838</pub-id>
<pub-id pub-id-type="pmid">21665518</pub-id>
</element-citation>
</ref>
<ref id="B56">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wolfe</surname>
<given-names>J. M.</given-names>
</name>
</person-group>
<article-title>Guided search 2.0 A revised model of visual search</article-title>
<source>
<italic>Psychonomic Bulletin & Review</italic>
</source>
<year>1994</year>
<volume>1</volume>
<issue>2</issue>
<fpage>202</fpage>
<lpage>238</lpage>
<pub-id pub-id-type="doi">10.3758/BF03200774</pub-id>
<pub-id pub-id-type="pmid">24203471</pub-id>
</element-citation>
</ref>
<ref id="B17">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Folk</surname>
<given-names>C. L.</given-names>
</name>
<name>
<surname>Leber</surname>
<given-names>A. B.</given-names>
</name>
<name>
<surname>Egeth</surname>
<given-names>H. E.</given-names>
</name>
</person-group>
<article-title>Top-down control settings and the attentional blink: evidence for nonspatial contingent capture</article-title>
<source>
<italic>Visual Cognition</italic>
</source>
<year>2008</year>
<volume>16</volume>
<issue>5</issue>
<fpage>616</fpage>
<lpage>642</lpage>
<pub-id pub-id-type="doi">10.1080/13506280601134018</pub-id>
<pub-id pub-id-type="other">2-s2.0-46949110321</pub-id>
</element-citation>
</ref>
<ref id="B19">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Folk</surname>
<given-names>C. L.</given-names>
</name>
<name>
<surname>Remington</surname>
<given-names>R. W.</given-names>
</name>
</person-group>
<article-title>Top-down modulation of preattentive processing: testing the recovery account of contingent capture</article-title>
<source>
<italic>Visual Cognition</italic>
</source>
<year>2006</year>
<volume>14</volume>
<issue>4–8</issue>
<fpage>445</fpage>
<lpage>465</lpage>
<pub-id pub-id-type="doi">10.1080/13506280500193545</pub-id>
<pub-id pub-id-type="other">2-s2.0-33745846838</pub-id>
</element-citation>
</ref>
<ref id="B4">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bundesen</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Habekost</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kyllingsbaek</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>A neural theory of visual attention: bridging cognition and neurophysiology</article-title>
<source>
<italic>Psychological Review</italic>
</source>
<year>2005</year>
<volume>112</volume>
<issue>2</issue>
<fpage>291</fpage>
<lpage>328</lpage>
<pub-id pub-id-type="doi">10.1037/0033-295x.112.2.291</pub-id>
<pub-id pub-id-type="other">2-s2.0-16244423377</pub-id>
<pub-id pub-id-type="pmid">15783288</pub-id>
</element-citation>
</ref>
<ref id="B5">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carlisle</surname>
<given-names>N. B.</given-names>
</name>
<name>
<surname>Arita</surname>
<given-names>J. T.</given-names>
</name>
<name>
<surname>Pardo</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Woodman</surname>
<given-names>G. F.</given-names>
</name>
</person-group>
<article-title>Attentional templates in visual working memory</article-title>
<source>
<italic>The Journal of Neuroscience</italic>
</source>
<year>2011</year>
<volume>31</volume>
<issue>25</issue>
<fpage>9315</fpage>
<lpage>9322</lpage>
<pub-id pub-id-type="doi">10.1523/jneurosci.1097-11.2011</pub-id>
<pub-id pub-id-type="other">2-s2.0-79959654946</pub-id>
<pub-id pub-id-type="pmid">21697381</pub-id>
</element-citation>
</ref>
<ref id="B6">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chelazzi</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Duncan</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>E. K.</given-names>
</name>
<name>
<surname>Desimone</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Responses of neurons in inferior temporal cortex during memory-guided visual search</article-title>
<source>
<italic>Journal of Neurophysiology</italic>
</source>
<year>1998</year>
<volume>80</volume>
<issue>6</issue>
<fpage>2918</fpage>
<lpage>2940</lpage>
<pub-id pub-id-type="other">2-s2.0-0032418270</pub-id>
<pub-id pub-id-type="pmid">9862896</pub-id>
</element-citation>
</ref>
<ref id="B29">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Horowitz</surname>
<given-names>T. S.</given-names>
</name>
<name>
<surname>Wolfe</surname>
<given-names>J. M.</given-names>
</name>
</person-group>
<article-title>Search for multiple targets: remember the targets, forget the search</article-title>
<source>
<italic>Perception & Psychophysics</italic>
</source>
<year>2001</year>
<volume>63</volume>
<issue>2</issue>
<fpage>272</fpage>
<lpage>285</lpage>
<pub-id pub-id-type="doi">10.3758/bf03194468</pub-id>
<pub-id pub-id-type="other">2-s2.0-0035258398</pub-id>
<pub-id pub-id-type="pmid">11281102</pub-id>
</element-citation>
</ref>
<ref id="B65">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Woodman</surname>
<given-names>G. F.</given-names>
</name>
<name>
<surname>Arita</surname>
<given-names>J. T.</given-names>
</name>
</person-group>
<article-title>Direct electrophysiological measurement of attentional templates in visual working memory</article-title>
<source>
<italic>Psychological Science</italic>
</source>
<year>2011</year>
<volume>22</volume>
<issue>2</issue>
<fpage>212</fpage>
<lpage>215</lpage>
<pub-id pub-id-type="doi">10.1177/0956797610395395</pub-id>
<pub-id pub-id-type="other">2-s2.0-79952044002</pub-id>
<pub-id pub-id-type="pmid">21193780</pub-id>
</element-citation>
</ref>
<ref id="B23">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gazzaley</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Nobre</surname>
<given-names>A. C.</given-names>
</name>
</person-group>
<article-title>Top-down modulation: bridging selective attention and working memory</article-title>
<source>
<italic>Trends in Cognitive Sciences</italic>
</source>
<year>2012</year>
<volume>16</volume>
<issue>2</issue>
<fpage>129</fpage>
<lpage>135</lpage>
<pub-id pub-id-type="doi">10.1016/j.tics.2011.11.014</pub-id>
<pub-id pub-id-type="other">2-s2.0-84856332094</pub-id>
<pub-id pub-id-type="pmid">22209601</pub-id>
</element-citation>
</ref>
<ref id="B42">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Olivers</surname>
<given-names>C. N. L.</given-names>
</name>
<name>
<surname>Eimer</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>On the difference between working memory and attentional set</article-title>
<source>
<italic>Neuropsychologia</italic>
</source>
<year>2011</year>
<volume>49</volume>
<issue>6</issue>
<fpage>1553</fpage>
<lpage>1558</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuropsychologia.2010.11.033</pub-id>
<pub-id pub-id-type="other">2-s2.0-79955860792</pub-id>
<pub-id pub-id-type="pmid">21145332</pub-id>
</element-citation>
</ref>
<ref id="B49">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Soto</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Heinke</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Humphreys</surname>
<given-names>G. W.</given-names>
</name>
<name>
<surname>Blanco</surname>
<given-names>M. J.</given-names>
</name>
</person-group>
<article-title>Early, involuntary top-down guidance of attention from working memory</article-title>
<source>
<italic>Journal of Experimental Psychology: Human Perception and Performance</italic>
</source>
<year>2005</year>
<volume>31</volume>
<issue>2</issue>
<fpage>248</fpage>
<lpage>261</lpage>
<pub-id pub-id-type="doi">10.1037/0096-1523.31.2.248</pub-id>
<pub-id pub-id-type="other">2-s2.0-17744375201</pub-id>
<pub-id pub-id-type="pmid">15826228</pub-id>
</element-citation>
</ref>
<ref id="B50">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Soto</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Hodsoll</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Rotshtein</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Humphreys</surname>
<given-names>G. W.</given-names>
</name>
</person-group>
<article-title>Automatic guidance of attention from working memory</article-title>
<source>
<italic>Trends in Cognitive Sciences</italic>
</source>
<year>2008</year>
<volume>12</volume>
<issue>9</issue>
<fpage>342</fpage>
<lpage>348</lpage>
<pub-id pub-id-type="doi">10.1016/j.tics.2008.05.007</pub-id>
<pub-id pub-id-type="other">2-s2.0-49549091526</pub-id>
<pub-id pub-id-type="pmid">18693131</pub-id>
</element-citation>
</ref>
<ref id="B43">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Olivers</surname>
<given-names>C. N. L.</given-names>
</name>
<name>
<surname>Meijer</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Theeuwes</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Feature-based memory-driven attentional capture: visual working memory content affects visual attention</article-title>
<source>
<italic>Journal of Experimental Psychology: Human Perception and Performance</italic>
</source>
<year>2006</year>
<volume>32</volume>
<issue>5</issue>
<fpage>1243</fpage>
<lpage>1265</lpage>
<pub-id pub-id-type="doi">10.1037/0096-1523.32.5.1243</pub-id>
<pub-id pub-id-type="other">2-s2.0-33749445919</pub-id>
<pub-id pub-id-type="pmid">17002535</pub-id>
</element-citation>
</ref>
<ref id="B66">
<label>27</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Allport</surname>
<given-names>A.</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Heuer</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Sanders</surname>
<given-names>A. F.</given-names>
</name>
</person-group>
<article-title>Selection for action: some behavioral and neurophysiological considerations of attention and action</article-title>
<source>
<italic>Perspectives on Perception and Action</italic>
</source>
<year>1987</year>
<publisher-loc>Hillsdale, NJ, USA</publisher-loc>
<publisher-name>Lawrence Erlbaum Associates</publisher-name>
<fpage>395</fpage>
<lpage>419</lpage>
</element-citation>
</ref>
<ref id="B8">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Craighero</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Fadiga</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Rizzolatti</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Umiltà</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Action for perception: a motor-visual attentional effect</article-title>
<source>
<italic>Journal of Experimental Psychology: Human Perception and Performance</italic>
</source>
<year>1999</year>
<volume>25</volume>
<issue>6</issue>
<fpage>1673</fpage>
<lpage>1692</lpage>
<pub-id pub-id-type="doi">10.1037/0096-1523.25.6.1673</pub-id>
<pub-id pub-id-type="other">2-s2.0-0033250208</pub-id>
<pub-id pub-id-type="pmid">10641315</pub-id>
</element-citation>
</ref>
<ref id="B12">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fagioli</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Hommel</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Schubotz</surname>
<given-names>R. I.</given-names>
</name>
</person-group>
<article-title>Intentional control of attention: action planning primes action-related stimulus dimensions</article-title>
<source>
<italic>Psychological Research</italic>
</source>
<year>2007</year>
<volume>71</volume>
<issue>1</issue>
<fpage>22</fpage>
<lpage>29</lpage>
<pub-id pub-id-type="doi">10.1007/s00426-005-0033-3</pub-id>
<pub-id pub-id-type="other">2-s2.0-33846397382</pub-id>
<pub-id pub-id-type="pmid">16317565</pub-id>
</element-citation>
</ref>
<ref id="B30">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Humphreys</surname>
<given-names>G. W.</given-names>
</name>
<name>
<surname>Riddoch</surname>
<given-names>M. J.</given-names>
</name>
</person-group>
<article-title>Detection by action: neuropsychological evidence for action-defined templates in search</article-title>
<source>
<italic>Nature Neuroscience</italic>
</source>
<year>2001</year>
<volume>4</volume>
<issue>1</issue>
<fpage>84</fpage>
<lpage>88</lpage>
<pub-id pub-id-type="doi">10.1038/82940</pub-id>
<pub-id pub-id-type="other">2-s2.0-0035152957</pub-id>
</element-citation>
</ref>
<ref id="B47">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schubö</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Aschersleben</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Prinz</surname>
<given-names>W.</given-names>
</name>
</person-group>
<article-title>Interactions between perception and action in a reaction task with overlapping S-R assignments</article-title>
<source>
<italic>Psychological Research</italic>
</source>
<year>2001</year>
<volume>65</volume>
<issue>3</issue>
<fpage>145</fpage>
<lpage>157</lpage>
<pub-id pub-id-type="doi">10.1007/s004260100061</pub-id>
<pub-id pub-id-type="other">2-s2.0-0035236758</pub-id>
<pub-id pub-id-type="pmid">11571910</pub-id>
</element-citation>
</ref>
<ref id="B62">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wykowska</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Schubö</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Hommel</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>How you move is what you see: action planning biases selection in visual search</article-title>
<source>
<italic>Journal of Experimental Psychology: Human Perception and Performance</italic>
</source>
<year>2009</year>
<volume>35</volume>
<issue>6</issue>
<fpage>1755</fpage>
<lpage>1769</lpage>
<pub-id pub-id-type="doi">10.1037/a0016798</pub-id>
<pub-id pub-id-type="other">2-s2.0-73649138885</pub-id>
<pub-id pub-id-type="pmid">19968433</pub-id>
</element-citation>
</ref>
<ref id="B60">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wykowska</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Schubö</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Action intentions modulate allocation of visual attention: electrophysiological evidence</article-title>
<source>
<italic>Frontiers in Psychology</italic>
</source>
<year>2012</year>
<volume>3, article 379</volume>
<pub-id pub-id-type="doi">10.3389/fpsyg.2012.00379</pub-id>
<pub-id pub-id-type="other">2-s2.0-84870953240</pub-id>
</element-citation>
</ref>
<ref id="B61">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wykowska</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Schubö</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Perception and action as two sides of the same coin. a review of the importance of action-perception links in humans for social robot design and research</article-title>
<source>
<italic>International Journal of Social Robotics</italic>
</source>
<year>2012</year>
<volume>4</volume>
<issue>1</issue>
<fpage>5</fpage>
<lpage>14</lpage>
<pub-id pub-id-type="doi">10.1007/s12369-011-0127-6</pub-id>
<pub-id pub-id-type="other">2-s2.0-84856791781</pub-id>
</element-citation>
</ref>
<ref id="B58">
<label>35</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wykowska</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Hommel</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Schubö</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Action-induced effects on perception depend neither on element-level nor on set-level similarity between stimulus and response sets</article-title>
<source>
<italic>Attention, Perception, & Psychophysics</italic>
</source>
<year>2011</year>
<volume>73</volume>
<issue>4</issue>
<fpage>1034</fpage>
<lpage>1041</lpage>
<pub-id pub-id-type="doi">10.3758/s13414-011-0122-x</pub-id>
<pub-id pub-id-type="other">2-s2.0-79955837153</pub-id>
</element-citation>
</ref>
<ref id="B48">
<label>36</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schubö</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Prinz</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Aschersleben</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Perceiving while acting: action affects perception</article-title>
<source>
<italic>Psychological Research</italic>
</source>
<year>2004</year>
<volume>68</volume>
<issue>4</issue>
<fpage>208</fpage>
<lpage>215</lpage>
<pub-id pub-id-type="doi">10.1007/s00426-003-0133-x</pub-id>
<pub-id pub-id-type="other">2-s2.0-6344239512</pub-id>
<pub-id pub-id-type="pmid">12898251</pub-id>
</element-citation>
</ref>
<ref id="B16">
<label>37</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fleming</surname>
<given-names>R. W.</given-names>
</name>
</person-group>
<article-title>Visual perception of materials and their properties</article-title>
<source>
<italic>Vision Research</italic>
</source>
<year>2014</year>
<volume>94</volume>
<fpage>62</fpage>
<lpage>75</lpage>
<pub-id pub-id-type="doi">10.1016/j.visres.2013.11.004</pub-id>
<pub-id pub-id-type="pmid">24291494</pub-id>
</element-citation>
</ref>
<ref id="B22">
<label>38</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gaißert</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Waterkamp</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Fleming</surname>
<given-names>R. W.</given-names>
</name>
<name>
<surname>Bülthoff</surname>
<given-names>I.</given-names>
</name>
</person-group>
<article-title>Haptic categorical perception of shape</article-title>
<source>
<italic>PLoS ONE</italic>
</source>
<year>2012</year>
<volume>7</volume>
<issue>8</issue>
<pub-id pub-id-type="publisher-id">e43062</pub-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0043062</pub-id>
<pub-id pub-id-type="other">2-s2.0-84864979655</pub-id>
</element-citation>
</ref>
<ref id="B26">
<label>39</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hickey</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>McDonald</surname>
<given-names>J. J.</given-names>
</name>
<name>
<surname>Theeuwes</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Electrophysiological evidence of the capture of visual attention</article-title>
<source>
<italic>Journal of Cognitive Neuroscience</italic>
</source>
<year>2006</year>
<volume>18</volume>
<issue>4</issue>
<fpage>604</fpage>
<lpage>613</lpage>
<pub-id pub-id-type="doi">10.1162/jocn.2006.18.4.604</pub-id>
<pub-id pub-id-type="other">2-s2.0-33646756919</pub-id>
<pub-id pub-id-type="pmid">16768363</pub-id>
</element-citation>
</ref>
<ref id="B51">
<label>40</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Theeuwes</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Stimulus-driven capture and attentional set: selective search for color and visual abrupt onsets</article-title>
<source>
<italic>Journal of Experimental Psychology: Human Perception and Performance</italic>
</source>
<year>1994</year>
<volume>20</volume>
<issue>4</issue>
<fpage>799</fpage>
<lpage>806</lpage>
<pub-id pub-id-type="doi">10.1037/0096-1523.20.4.799</pub-id>
<pub-id pub-id-type="other">2-s2.0-0028489873</pub-id>
<pub-id pub-id-type="pmid">8083635</pub-id>
</element-citation>
</ref>
<ref id="B63">
<label>41</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yantis</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Stimulus-driven attentional capture</article-title>
<source>
<italic>Current Directions in Psychological Science</italic>
</source>
<year>1993</year>
<volume>2</volume>
<issue>5</issue>
<fpage>156</fpage>
<lpage>161</lpage>
<pub-id pub-id-type="doi">10.1111/1467-8721.ep10768973</pub-id>
</element-citation>
</ref>
<ref id="B11">
<label>42</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eimer</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kiss</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Involuntary attentional capture is determined by task set: evidence from event-related brain potentials</article-title>
<source>
<italic>Journal of Cognitive Neuroscience</italic>
</source>
<year>2008</year>
<volume>20</volume>
<issue>8</issue>
<fpage>1423</fpage>
<lpage>1433</lpage>
<pub-id pub-id-type="doi">10.1162/jocn.2008.20099</pub-id>
<pub-id pub-id-type="other">2-s2.0-48749083596</pub-id>
<pub-id pub-id-type="pmid">18303979</pub-id>
</element-citation>
</ref>
<ref id="B18">
<label>43</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Folk</surname>
<given-names>C. L.</given-names>
</name>
<name>
<surname>Remington</surname>
<given-names>R. W.</given-names>
</name>
</person-group>
<article-title>Selectivity in distraction by irrelevant featural singletons: evidence for two forms of attentional capture</article-title>
<source>
<italic>Journal of Experimental Psychology: Human Perception and Performance</italic>
</source>
<year>1998</year>
<volume>24</volume>
<issue>3</issue>
<fpage>847</fpage>
<lpage>858</lpage>
<pub-id pub-id-type="doi">10.1037/0096-1523.24.3.847</pub-id>
<pub-id pub-id-type="other">2-s2.0-0032092790</pub-id>
<pub-id pub-id-type="pmid">9627420</pub-id>
</element-citation>
</ref>
<ref id="B37">
<label>44</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lien</surname>
<given-names>M.-C.</given-names>
</name>
<name>
<surname>Ruthruff</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Goodin</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Remington</surname>
<given-names>R. W.</given-names>
</name>
</person-group>
<article-title>Contingent attentional capture by top-down control settings: converging evidence from event-related potentials</article-title>
<source>
<italic>Journal of Experimental Psychology: Human Perception and Performance</italic>
</source>
<year>2008</year>
<volume>34</volume>
<issue>3</issue>
<fpage>509</fpage>
<lpage>530</lpage>
<pub-id pub-id-type="doi">10.1037/0096-1523.34.3.509</pub-id>
<pub-id pub-id-type="other">2-s2.0-44449115789</pub-id>
<pub-id pub-id-type="pmid">18505320</pub-id>
</element-citation>
</ref>
<ref id="B59">
<label>45</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wykowska</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Schubö</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Irrelevant singletons in visual search do not capture attention but can produce nonspatial filtering costs</article-title>
<source>
<italic>Journal of Cognitive Neuroscience</italic>
</source>
<year>2011</year>
<volume>23</volume>
<issue>3</issue>
<fpage>645</fpage>
<lpage>660</lpage>
<pub-id pub-id-type="doi">10.1162/jocn.2009.21390</pub-id>
<pub-id pub-id-type="other">2-s2.0-78650364803</pub-id>
<pub-id pub-id-type="pmid">19929330</pub-id>
</element-citation>
</ref>
<ref id="B15">
<label>46</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Feldmann-Wüstefeld</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Schubö</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Context homogeneity facilitates both distractor inhibition and target enhancement</article-title>
<source>
<italic>Journal of Vision</italic>
</source>
<year>2013</year>
<volume>13</volume>
<issue>3, article 11</issue>
<fpage>12</fpage>
<pub-id pub-id-type="doi">10.1167/13.3.11</pub-id>
<pub-id pub-id-type="other">2-s2.0-84878354215</pub-id>
</element-citation>
</ref>
<ref id="B27">
<label>47</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hickey</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>van Zoest</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Theeuwes</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>The time course of exogenous and endogenous control of covert attention</article-title>
<source>
<italic>Experimental Brain Research</italic>
</source>
<year>2010</year>
<volume>201</volume>
<issue>4</issue>
<fpage>789</fpage>
<lpage>796</lpage>
<pub-id pub-id-type="doi">10.1007/s00221-009-2094-9</pub-id>
<pub-id pub-id-type="other">2-s2.0-77951090611</pub-id>
<pub-id pub-id-type="pmid">19940982</pub-id>
</element-citation>
</ref>
<ref id="B32">
<label>48</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kiss</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Grubert</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Petersen</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Eimer</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Attentional capture by salient distractors during visual search is determined by temporal task demands</article-title>
<source>
<italic>Journal of Cognitive Neuroscience</italic>
</source>
<year>2012</year>
<volume>24</volume>
<issue>3</issue>
<fpage>749</fpage>
<lpage>759</lpage>
<pub-id pub-id-type="doi">10.1162/jocn_a_00127</pub-id>
<pub-id pub-id-type="other">2-s2.0-84856344265</pub-id>
<pub-id pub-id-type="pmid">21861683</pub-id>
</element-citation>
</ref>
<ref id="B1">
<label>49</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ansorge</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Horstmann</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Worschech</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Attentional capture by masked colour singletons</article-title>
<source>
<italic>Vision Research</italic>
</source>
<year>2010</year>
<volume>50</volume>
<issue>19</issue>
<fpage>2015</fpage>
<lpage>2027</lpage>
<pub-id pub-id-type="doi">10.1016/j.visres.2010.07.015</pub-id>
<pub-id pub-id-type="other">2-s2.0-77955843432</pub-id>
<pub-id pub-id-type="pmid">20659496</pub-id>
</element-citation>
</ref>
<ref id="B35">
<label>50</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kumar</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Soto</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Humphreys</surname>
<given-names>G. W.</given-names>
</name>
</person-group>
<article-title>Electrophysiological evidence for attentional guidance by the contents of working memory</article-title>
<source>
<italic>The European Journal of Neuroscience</italic>
</source>
<year>2009</year>
<volume>30</volume>
<issue>2</issue>
<fpage>307</fpage>
<lpage>317</lpage>
<pub-id pub-id-type="doi">10.1111/j.1460-9568.2009.06805.x</pub-id>
<pub-id pub-id-type="other">2-s2.0-67651173231</pub-id>
<pub-id pub-id-type="pmid">19691812</pub-id>
</element-citation>
</ref>
<ref id="B3">
<label>51</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bacon</surname>
<given-names>W. F.</given-names>
</name>
<name>
<surname>Egeth</surname>
<given-names>H. E.</given-names>
</name>
</person-group>
<article-title>Overriding stimulus-driven attentional capture</article-title>
<source>
<italic>Perception & Psychophysics</italic>
</source>
<year>1994</year>
<volume>55</volume>
<issue>5</issue>
<fpage>485</fpage>
<lpage>496</lpage>
<pub-id pub-id-type="doi">10.3758/bf03205306</pub-id>
<pub-id pub-id-type="other">2-s2.0-0028435565</pub-id>
<pub-id pub-id-type="pmid">8008550</pub-id>
</element-citation>
</ref>
<ref id="B7">
<label>52</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chun</surname>
<given-names>M. M.</given-names>
</name>
</person-group>
<article-title>Visual working memory as visual attention sustained internally over time</article-title>
<source>
<italic>Neuropsychologia</italic>
</source>
<year>2011</year>
<volume>49</volume>
<issue>6</issue>
<fpage>1407</fpage>
<lpage>1409</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuropsychologia.2011.01.029</pub-id>
<pub-id pub-id-type="other">2-s2.0-79955819903</pub-id>
<pub-id pub-id-type="pmid">21295047</pub-id>
</element-citation>
</ref>
<ref id="B33">
<label>53</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kiyonaga</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Egner</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Working memory as internal attention: toward an integrative account of internal and external selection processes</article-title>
<source>
<italic>Psychonomic Bulletin & Review</italic>
</source>
<year>2013</year>
<volume>20</volume>
<issue>2</issue>
<fpage>228</fpage>
<lpage>242</lpage>
<pub-id pub-id-type="doi">10.3758/s13423-012-0359-y</pub-id>
<pub-id pub-id-type="other">2-s2.0-84874721393</pub-id>
<pub-id pub-id-type="pmid">23233157</pub-id>
</element-citation>
</ref>
<ref id="B46">
<label>54</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Postle</surname>
<given-names>B. R.</given-names>
</name>
</person-group>
<article-title>Working memory as an emergent property of the mind and brain</article-title>
<source>
<italic>Neuroscience</italic>
</source>
<year>2006</year>
<volume>139</volume>
<issue>1</issue>
<fpage>23</fpage>
<lpage>38</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuroscience.2005.06.005</pub-id>
<pub-id pub-id-type="other">2-s2.0-33645871604</pub-id>
<pub-id pub-id-type="pmid">16324795</pub-id>
</element-citation>
</ref>
<ref id="B34">
<label>55</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kiyonaga</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Egner</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Resource-sharing between internal maintenance and external selection modulates attentional capture by working memory content</article-title>
<source>
<italic>Frontiers in Human Neuroscience</italic>
</source>
<year>2014</year>
<volume>8, article 670</volume>
<pub-id pub-id-type="doi">10.3389/fnhum.2014.00670</pub-id>
</element-citation>
</ref>
<ref id="B28">
<label>56</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hollingworth</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Hwang</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>The relationship between visual working memory and attention: retention of precise colour information in the absence of effects on perceptual selection</article-title>
<source>
<italic>Philosophical transactions of the Royal Society of London. Series B, Biological sciences</italic>
</source>
<year>2013</year>
<volume>368</volume>
<issue>1628</issue>
<pub-id pub-id-type="doi">10.1098/rstb.2013.0061</pub-id>
<pub-id pub-id-type="other">2-s2.0-84896588122</pub-id>
</element-citation>
</ref>
<ref id="B38">
<label>57</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maljkovic</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Nakayama</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Priming of pop-out: I. Role of features</article-title>
<source>
<italic>Memory & Cognition</italic>
</source>
<year>1994</year>
<volume>22</volume>
<issue>6</issue>
<fpage>657</fpage>
<lpage>672</lpage>
<pub-id pub-id-type="doi">10.3758/bf03209251</pub-id>
<pub-id pub-id-type="other">2-s2.0-0028035021</pub-id>
<pub-id pub-id-type="pmid">7808275</pub-id>
</element-citation>
</ref>
<ref id="B68">
<label>58</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Downing</surname>
<given-names>P. E.</given-names>
</name>
</person-group>
<article-title>Interactions between visual working memory and selective attention</article-title>
<source>
<italic>Psychological Science</italic>
</source>
<year>2000</year>
<volume>11</volume>
<issue>6</issue>
<fpage>467</fpage>
<lpage>473</lpage>
<pub-id pub-id-type="doi">10.1111/1467-9280.00290</pub-id>
<pub-id pub-id-type="other">2-s2.0-0034326471</pub-id>
<pub-id pub-id-type="pmid">11202491</pub-id>
</element-citation>
</ref>
<ref id="B67">
<label>59</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brown</surname>
<given-names>M. W.</given-names>
</name>
<name>
<surname>Xiang</surname>
<given-names>J. Z.</given-names>
</name>
</person-group>
<article-title>Recognition memory: neuronal substrates of the judgement of prior occurrence</article-title>
<source>
<italic>Progress in Neurobiology</italic>
</source>
<year>1998</year>
<volume>55</volume>
<issue>2</issue>
<fpage>149</fpage>
<lpage>189</lpage>
<pub-id pub-id-type="doi">10.1016/s0301-0082(98)00002-1</pub-id>
<pub-id pub-id-type="other">2-s2.0-0031960607</pub-id>
<pub-id pub-id-type="pmid">9618747</pub-id>
</element-citation>
</ref>
<ref id="B24">
<label>60</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gilbert</surname>
<given-names>A. L.</given-names>
</name>
<name>
<surname>Regier</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kay</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Ivry</surname>
<given-names>R. B.</given-names>
</name>
</person-group>
<article-title>Whorf hypothesis is supported in the right visual field but not the left</article-title>
<source>
<italic>Proceedings of the National Academy of Sciences of the United States of America</italic>
</source>
<year>2006</year>
<volume>103</volume>
<issue>2</issue>
<fpage>489</fpage>
<lpage>494</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0509868103</pub-id>
<pub-id pub-id-type="other">2-s2.0-31044435892</pub-id>
<pub-id pub-id-type="pmid">16387848</pub-id>
</element-citation>
</ref>
<ref id="B55">
<label>61</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Witzel</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Gegenfurtner</surname>
<given-names>K. R.</given-names>
</name>
</person-group>
<article-title>Categorical sensitivity to color differences</article-title>
<source>
<italic>Journal of Vision</italic>
</source>
<year>2013</year>
<volume>13</volume>
<issue>7, article 1</issue>
<pub-id pub-id-type="doi">10.1167/13.7.1</pub-id>
<pub-id pub-id-type="other">2-s2.0-84882661566</pub-id>
</element-citation>
</ref>
<ref id="B45">
<label>62</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Olkkonen</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hansen</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Gegenfurtner</surname>
<given-names>K. R.</given-names>
</name>
</person-group>
<article-title>Categorical color constancy for simulated surfaces</article-title>
<source>
<italic>Journal of Vision</italic>
</source>
<year>2009</year>
<volume>9</volume>
<issue>12</issue>
<fpage>1</fpage>
<lpage>18</lpage>
<pub-id pub-id-type="doi">10.1167/9.12.1</pub-id>
<pub-id pub-id-type="other">2-s2.0-77950348683</pub-id>
<pub-id pub-id-type="pmid">20053097</pub-id>
</element-citation>
</ref>
<ref id="B21">
<label>63</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Foster</surname>
<given-names>D. H.</given-names>
</name>
</person-group>
<article-title>Color constancy</article-title>
<source>
<italic>Vision Research</italic>
</source>
<year>2011</year>
<volume>51</volume>
<issue>7</issue>
<fpage>674</fpage>
<lpage>700</lpage>
<pub-id pub-id-type="doi">10.1016/j.visres.2010.09.006</pub-id>
<pub-id pub-id-type="other">2-s2.0-79953756859</pub-id>
<pub-id pub-id-type="pmid">20849875</pub-id>
</element-citation>
</ref>
<ref id="B39">
<label>64</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maloney</surname>
<given-names>L. T.</given-names>
</name>
<name>
<surname>Wandell</surname>
<given-names>B. A.</given-names>
</name>
</person-group>
<article-title>Color constancy: a method for recovering surface spectral reflectance</article-title>
<source>
<italic>Journal of the Optical Society of America A: Optics and Image Science, and Vision</italic>
</source>
<year>1986</year>
<volume>3</volume>
<issue>1</issue>
<fpage>29</fpage>
<lpage>33</lpage>
<pub-id pub-id-type="doi">10.1364/josaa.3.000029</pub-id>
<pub-id pub-id-type="other">2-s2.0-0022559263</pub-id>
</element-citation>
</ref>
<ref id="B25">
<label>65</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hickey</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Kaiser</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Peelen</surname>
<given-names>M. V.</given-names>
</name>
</person-group>
<article-title>Reward guides attention to object categories in real-world scenes</article-title>
<source>
<italic>Journal of Experimental Psychology: General</italic>
</source>
<year>2015</year>
<volume>144</volume>
<issue>2</issue>
<fpage>264</fpage>
<lpage>273</lpage>
<pub-id pub-id-type="doi">10.1037/a0038627</pub-id>
<pub-id pub-id-type="pmid">25559653</pub-id>
</element-citation>
</ref>
<ref id="B53">
<label>66</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Webster</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Kay</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Color categories and color appearance</article-title>
<source>
<italic>Cognition</italic>
</source>
<year>2012</year>
<volume>122</volume>
<issue>3</issue>
<fpage>375</fpage>
<lpage>392</lpage>
<pub-id pub-id-type="doi">10.1016/j.cognition.2011.11.008</pub-id>
<pub-id pub-id-type="other">2-s2.0-84855874484</pub-id>
<pub-id pub-id-type="pmid">22176751</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="fig1" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>(a) shows the three color conditions used in the present study. The memory item was a centrally presented filled circle (left side) that had one out of thirty-six color hues. Participants had to remember the hue until the end of a trial. In the search task (right side), participants had to report the letter (“
<italic>M</italic>
” or “
<italic>N</italic>
”) embedded in the grey diamond-shaped target. Distractors had an embedded tilted hourglass. In the “color absent” condition all distractors were grey. In the “memorized color” condition, one of the distractors had a hue from the same color category as the memory item previously shown. In the “neutral color” condition, one of the distractors had a hue from another color category. (b) shows the movement cues. When a grasping hand was shown, participants had to plan a grasping movement (upper picture). When a pointing hand was shown, participants had to plan a pointing movement (lower picture). Execution of the movement had to be withheld until the end of the trial. (c) shows a trial procedure. Participants had to plan a movement (move cue) and remember a color hue (memory item) while performing a visual search task (search display). After search was completed, participants had to perform the planned movement towards the colored item they thought would match the original memory item.</p>
</caption>
<graphic xlink:href="JOPH2015-387378.001"></graphic>
</fig>
<fig id="fig2" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>Response times (left
<italic>y</italic>
-axis) and error rates (right
<italic>y</italic>
-axis). White bars and lines represent performance in trials in which participants planned a grasping movement. Shaded bars and black lines represent performance in trials in which participants planned a pointing movement. Asterisks (
<italic>∗∗</italic>
) indicate a
<italic>p</italic>
value ≤ 0.01 for a direct comparison of grasp and point. Error bars represent standard errors of the mean.</p>
</caption>
<graphic xlink:href="JOPH2015-387378.002"></graphic>
</fig>
<fig id="fig3" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<p>Scatter plot showing the bivariate correlation between the capture by memorized colors and the performance in the memory task. Capture is defined by the RT increase in trials with distractors with memorized colors compared to trials with no colored distractor. Each black circle represents one participant. The pattern of results shows that participants that were good in memorizing colors in the working memory task were more likely distracted by memorized colors in the search task.</p>
</caption>
<graphic xlink:href="JOPH2015-387378.003"></graphic>
</fig>
<fig id="fig4" orientation="portrait" position="float">
<label>Figure 4</label>
<caption>
<p>Potential extension of a visual working memory (WM) model suggested by Olivers et al. [
<xref rid="B44" ref-type="bibr">13</xref>
] to account for the interactions between working memory and action planning in the present study. A representation of the target (
<italic>T</italic>
) is kept in WM in form of a search template that facilitates finding targets in visual search displays [1]. Accessory memory items (
<italic>A</italic>
) are representations of objects that are in principle accessible to the visual system but are currently not relevant for the task. In the current study, accessory memory items are color hues to be remembered at the end of a trial but completely irrelevant in the search task (
<italic>A</italic>
<sup>MEM</sup>
). In “memorized color” trials they can impair search performance by enhancing an irrelevant distractor (
<italic>D</italic>
) that shares their color category [2]. Our data suggest that distraction from target by objects of memorized colors is more pronounced when a grasping (rather than a pointing) movement is being prepared. We hypothesize that maintenance of information for subsequent action execution (“action plan”) induces an accessory memory item for action relevant features (
<italic>A</italic>
<sup>ACT</sup>
). As the to-be-grasped object is a circle, circular distractors with memorized colors receive further enhancement, thus increasing further interference with the target [3].</p>
</caption>
<graphic xlink:href="JOPH2015-387378.004"></graphic>
</fig>
<table-wrap id="tab1" orientation="portrait" position="float">
<label>Table 1</label>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1"></th>
<th align="center" rowspan="1" colspan="1">Red 1</th>
<th align="center" rowspan="1" colspan="1">Red 2</th>
<th align="center" rowspan="1" colspan="1">Red 3</th>
<th align="center" rowspan="1" colspan="1">Red 4</th>
<th align="center" rowspan="1" colspan="1">Red 5</th>
<th align="center" rowspan="1" colspan="1">Red 6</th>
<th align="center" rowspan="1" colspan="1">Red 7</th>
<th align="center" rowspan="1" colspan="1">Red 8</th>
<th align="center" rowspan="1" colspan="1">Red 9</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">R </td>
<td align="center" rowspan="1" colspan="1">239</td>
<td align="center" rowspan="1" colspan="1">228</td>
<td align="center" rowspan="1" colspan="1">216</td>
<td align="center" rowspan="1" colspan="1">239</td>
<td align="center" rowspan="1" colspan="1"> 228</td>
<td align="center" rowspan="1" colspan="1">217 </td>
<td align="center" rowspan="1" colspan="1">237 </td>
<td align="center" rowspan="1" colspan="1">227</td>
<td align="center" rowspan="1" colspan="1">216</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">G</td>
<td align="center" rowspan="1" colspan="1">30</td>
<td align="center" rowspan="1" colspan="1">55</td>
<td align="center" rowspan="1" colspan="1">70</td>
<td align="center" rowspan="1" colspan="1">33</td>
<td align="center" rowspan="1" colspan="1">56</td>
<td align="center" rowspan="1" colspan="1">71</td>
<td align="center" rowspan="1" colspan="1">43</td>
<td align="center" rowspan="1" colspan="1">60</td>
<td align="center" rowspan="1" colspan="1">73</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> B </td>
<td align="center" rowspan="1" colspan="1">82</td>
<td align="center" rowspan="1" colspan="1">86</td>
<td align="center" rowspan="1" colspan="1">89</td>
<td align="center" rowspan="1" colspan="1">63 </td>
<td align="center" rowspan="1" colspan="1">69 </td>
<td align="center" rowspan="1" colspan="1">75 </td>
<td align="center" rowspan="1" colspan="1">42 </td>
<td align="center" rowspan="1" colspan="1">51 </td>
<td align="center" rowspan="1" colspan="1">60</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CIE(
<italic>x</italic>
)</td>
<td align="center" rowspan="1" colspan="1">0.574</td>
<td align="center" rowspan="1" colspan="1">0.546 </td>
<td align="center" rowspan="1" colspan="1">0.522</td>
<td align="center" rowspan="1" colspan="1">0.596</td>
<td align="center" rowspan="1" colspan="1">0.569</td>
<td align="center" rowspan="1" colspan="1">0.540</td>
<td align="center" rowspan="1" colspan="1">0.609</td>
<td align="center" rowspan="1" colspan="1">0.583</td>
<td align="center" rowspan="1" colspan="1">0.558</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CIE(
<italic>y</italic>
)</td>
<td align="center" rowspan="1" colspan="1">0.312</td>
<td align="center" rowspan="1" colspan="1">0.319</td>
<td align="center" rowspan="1" colspan="1">0.326</td>
<td align="center" rowspan="1" colspan="1">0.327</td>
<td align="center" rowspan="1" colspan="1">0.334 </td>
<td align="center" rowspan="1" colspan="1">0.341</td>
<td align="center" rowspan="1" colspan="1">0.343</td>
<td align="center" rowspan="1" colspan="1">0.350</td>
<td align="center" rowspan="1" colspan="1">0.355</td>
</tr>
<tr>
<td align="center" colspan="10" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">Blue 1</td>
<td align="center" rowspan="1" colspan="1">Blue 2</td>
<td align="center" rowspan="1" colspan="1">Blue 3</td>
<td align="center" rowspan="1" colspan="1">Blue 4 </td>
<td align="center" rowspan="1" colspan="1">Blue 5 </td>
<td align="center" rowspan="1" colspan="1">Blue 6 </td>
<td align="center" rowspan="1" colspan="1">Blue 7</td>
<td align="center" rowspan="1" colspan="1">Blue 8 </td>
<td align="center" rowspan="1" colspan="1">Blue 9</td>
</tr>
<tr>
<td align="center" colspan="10" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">R </td>
<td align="center" rowspan="1" colspan="1">0 </td>
<td align="center" rowspan="1" colspan="1">42 </td>
<td align="center" rowspan="1" colspan="1">65</td>
<td align="center" rowspan="1" colspan="1">90</td>
<td align="center" rowspan="1" colspan="1"> 95 </td>
<td align="center" rowspan="1" colspan="1">100 </td>
<td align="center" rowspan="1" colspan="1">107</td>
<td align="center" rowspan="1" colspan="1">109 </td>
<td align="center" rowspan="1" colspan="1">111</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">G</td>
<td align="center" rowspan="1" colspan="1">121</td>
<td align="center" rowspan="1" colspan="1">121</td>
<td align="center" rowspan="1" colspan="1">121</td>
<td align="center" rowspan="1" colspan="1">111</td>
<td align="center" rowspan="1" colspan="1">113</td>
<td align="center" rowspan="1" colspan="1">115 </td>
<td align="center" rowspan="1" colspan="1"> 108</td>
<td align="center" rowspan="1" colspan="1"> 111</td>
<td align="center" rowspan="1" colspan="1">113</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> B </td>
<td align="center" rowspan="1" colspan="1">234</td>
<td align="center" rowspan="1" colspan="1">218</td>
<td align="center" rowspan="1" colspan="1">203 </td>
<td align="center" rowspan="1" colspan="1"> 230</td>
<td align="center" rowspan="1" colspan="1">216 </td>
<td align="center" rowspan="1" colspan="1">202</td>
<td align="center" rowspan="1" colspan="1">227</td>
<td align="center" rowspan="1" colspan="1">214</td>
<td align="center" rowspan="1" colspan="1">200</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CIE(
<italic>x</italic>
)</td>
<td align="center" rowspan="1" colspan="1">0.175</td>
<td align="center" rowspan="1" colspan="1">0.183</td>
<td align="center" rowspan="1" colspan="1">0.193</td>
<td align="center" rowspan="1" colspan="1">0.201 </td>
<td align="center" rowspan="1" colspan="1">0.211</td>
<td align="center" rowspan="1" colspan="1">0.223</td>
<td align="center" rowspan="1" colspan="1">0.215</td>
<td align="center" rowspan="1" colspan="1">0.224</td>
<td align="center" rowspan="1" colspan="1">0.234</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CIE(
<italic>y</italic>
)</td>
<td align="center" rowspan="1" colspan="1">0.173</td>
<td align="center" rowspan="1" colspan="1">0.194</td>
<td align="center" rowspan="1" colspan="1">0.198 </td>
<td align="center" rowspan="1" colspan="1">0.176 </td>
<td align="center" rowspan="1" colspan="1">0.194</td>
<td align="center" rowspan="1" colspan="1">0.213 </td>
<td align="center" rowspan="1" colspan="1">0.180</td>
<td align="center" rowspan="1" colspan="1"> 0.196</td>
<td align="center" rowspan="1" colspan="1">0.215</td>
</tr>
<tr>
<td align="center" colspan="10" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">Green 1</td>
<td align="center" rowspan="1" colspan="1">Green 2</td>
<td align="center" rowspan="1" colspan="1">Green 3</td>
<td align="center" rowspan="1" colspan="1">Green 4</td>
<td align="center" rowspan="1" colspan="1">Green 5</td>
<td align="center" rowspan="1" colspan="1">Green 6</td>
<td align="center" rowspan="1" colspan="1">Green 7</td>
<td align="center" rowspan="1" colspan="1">Green 8</td>
<td align="center" rowspan="1" colspan="1">Green 9</td>
</tr>
<tr>
<td align="center" colspan="10" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">R </td>
<td align="center" rowspan="1" colspan="1">91</td>
<td align="center" rowspan="1" colspan="1">97</td>
<td align="center" rowspan="1" colspan="1">104</td>
<td align="center" rowspan="1" colspan="1">71</td>
<td align="center" rowspan="1" colspan="1">82</td>
<td align="center" rowspan="1" colspan="1">93</td>
<td align="center" rowspan="1" colspan="1">46</td>
<td align="center" rowspan="1" colspan="1">68</td>
<td align="center" rowspan="1" colspan="1">84</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">G</td>
<td align="center" rowspan="1" colspan="1">134</td>
<td align="center" rowspan="1" colspan="1">132</td>
<td align="center" rowspan="1" colspan="1">130</td>
<td align="center" rowspan="1" colspan="1">137</td>
<td align="center" rowspan="1" colspan="1">134</td>
<td align="center" rowspan="1" colspan="1">131</td>
<td align="center" rowspan="1" colspan="1">139</td>
<td align="center" rowspan="1" colspan="1">136</td>
<td align="center" rowspan="1" colspan="1">133</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> B </td>
<td align="center" rowspan="1" colspan="1">0</td>
<td align="center" rowspan="1" colspan="1">39</td>
<td align="center" rowspan="1" colspan="1">63</td>
<td align="center" rowspan="1" colspan="1">29</td>
<td align="center" rowspan="1" colspan="1">54</td>
<td align="center" rowspan="1" colspan="1">73</td>
<td align="center" rowspan="1" colspan="1">50</td>
<td align="center" rowspan="1" colspan="1">67</td>
<td align="center" rowspan="1" colspan="1">81</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CIE(
<italic>x</italic>
)</td>
<td align="center" rowspan="1" colspan="1">0.335</td>
<td align="center" rowspan="1" colspan="1">0.340</td>
<td align="center" rowspan="1" colspan="1">0.337</td>
<td align="center" rowspan="1" colspan="1">0.305</td>
<td align="center" rowspan="1" colspan="1">0.311</td>
<td align="center" rowspan="1" colspan="1">0.314</td>
<td align="center" rowspan="1" colspan="1">0.272</td>
<td align="center" rowspan="1" colspan="1">0.285</td>
<td align="center" rowspan="1" colspan="1">0.295</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CIE(
<italic>y</italic>
)</td>
<td align="center" rowspan="1" colspan="1">0.551</td>
<td align="center" rowspan="1" colspan="1">0.524</td>
<td align="center" rowspan="1" colspan="1">0.482</td>
<td align="center" rowspan="1" colspan="1">0.560</td>
<td align="center" rowspan="1" colspan="1">0.518</td>
<td align="center" rowspan="1" colspan="1">0.473</td>
<td align="center" rowspan="1" colspan="1">0.552</td>
<td align="center" rowspan="1" colspan="1">0.505</td>
<td align="center" rowspan="1" colspan="1">0.464</td>
</tr>
<tr>
<td align="center" colspan="10" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">Yellow 1</td>
<td align="center" rowspan="1" colspan="1">Yellow 2</td>
<td align="center" rowspan="1" colspan="1">Yellow 3</td>
<td align="center" rowspan="1" colspan="1">Yellow 4</td>
<td align="center" rowspan="1" colspan="1">Yellow 5</td>
<td align="center" rowspan="1" colspan="1">Yellow 6</td>
<td align="center" rowspan="1" colspan="1">Yellow 7</td>
<td align="center" rowspan="1" colspan="1">Yellow 8</td>
<td align="center" rowspan="1" colspan="1">Yellow 9</td>
</tr>
<tr>
<td align="center" colspan="10" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">R </td>
<td align="center" rowspan="1" colspan="1">254</td>
<td align="center" rowspan="1" colspan="1">248</td>
<td align="center" rowspan="1" colspan="1">242</td>
<td align="center" rowspan="1" colspan="1">245</td>
<td align="center" rowspan="1" colspan="1">240</td>
<td align="center" rowspan="1" colspan="1">234 </td>
<td align="center" rowspan="1" colspan="1">236</td>
<td align="center" rowspan="1" colspan="1">229</td>
<td align="center" rowspan="1" colspan="1">225</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">G</td>
<td align="center" rowspan="1" colspan="1">190 </td>
<td align="center" rowspan="1" colspan="1">192</td>
<td align="center" rowspan="1" colspan="1">193</td>
<td align="center" rowspan="1" colspan="1">194</td>
<td align="center" rowspan="1" colspan="1">195</td>
<td align="center" rowspan="1" colspan="1">197 </td>
<td align="center" rowspan="1" colspan="1">194</td>
<td align="center" rowspan="1" colspan="1">199</td>
<td align="center" rowspan="1" colspan="1">200</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> B </td>
<td align="center" rowspan="1" colspan="1">37</td>
<td align="center" rowspan="1" colspan="1">74</td>
<td align="center" rowspan="1" colspan="1">101</td>
<td align="center" rowspan="1" colspan="1">8</td>
<td align="center" rowspan="1" colspan="1">66</td>
<td align="center" rowspan="1" colspan="1">96 </td>
<td align="center" rowspan="1" colspan="1">0</td>
<td align="center" rowspan="1" colspan="1">57</td>
<td align="center" rowspan="1" colspan="1">90</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CIE(
<italic>x</italic>
)</td>
<td align="center" rowspan="1" colspan="1">0.458</td>
<td align="center" rowspan="1" colspan="1">0.439</td>
<td align="center" rowspan="1" colspan="1">0.419</td>
<td align="center" rowspan="1" colspan="1">0.449</td>
<td align="center" rowspan="1" colspan="1">0.433</td>
<td align="center" rowspan="1" colspan="1">0.412 </td>
<td align="center" rowspan="1" colspan="1">0.440</td>
<td align="center" rowspan="1" colspan="1">0.422</td>
<td align="center" rowspan="1" colspan="1">0.405</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CIE(
<italic>y</italic>
)</td>
<td align="center" rowspan="1" colspan="1">0.466</td>
<td align="center" rowspan="1" colspan="1">0.455</td>
<td align="center" rowspan="1" colspan="1">0.439</td>
<td align="center" rowspan="1" colspan="1">0.478</td>
<td align="center" rowspan="1" colspan="1">0.465</td>
<td align="center" rowspan="1" colspan="1">0.450 </td>
<td align="center" rowspan="1" colspan="1">0.484</td>
<td align="center" rowspan="1" colspan="1">0.479</td>
<td align="center" rowspan="1" colspan="1">0.461</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>Color definitions for the 36 hues used for the search and memory task. RGB (red, green, and blue) values and CIE(
<italic>x</italic>
,
<italic>y</italic>
) values, measured with the
<italic>HCFR</italic>
Monitor Calibration Software (
<ext-link ext-link-type="uri" xlink:href="http://sourceforge.net/projects/hcfr/">http://sourceforge.net/projects/hcfr/</ext-link>
) using an
<italic>x-rite i1 DisplayPro</italic>
colorimeter, are specified.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</floats-group>
</pmc>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>District de Giessen</li>
<li>Hesse (Land)</li>
</region>
<settlement>
<li>Marbourg</li>
</settlement>
</list>
<tree>
<country name="Allemagne">
<region name="Hesse (Land)">
<name sortKey="Feldmann Wustefeld, Tobias" sort="Feldmann Wustefeld, Tobias" uniqKey="Feldmann Wustefeld T" first="Tobias" last="Feldmann-Wüstefeld">Tobias Feldmann-Wüstefeld</name>
</region>
<name sortKey="Schubo, Anna" sort="Schubo, Anna" uniqKey="Schubo A" first="Anna" last="Schubö">Anna Schubö</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003A87 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 003A87 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     PMC:4485979
   |texte=   Action Planning Mediates Guidance of Visual Attention from Working Memory
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:26171241" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024