Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cross-Modal Calibration of Vestibular Afference for Human Balance

Identifieur interne : 003871 ( Ncbi/Merge ); précédent : 003870; suivant : 003872

Cross-Modal Calibration of Vestibular Afference for Human Balance

Auteurs : Martin E. Héroux [Canada] ; Tammy C. Y. Law [Canada] ; Richard C. Fitzpatrick [Australie] ; Jean-Sébastien Blouin [Canada]

Source :

RBID : PMC:4403994

Abstract

To determine how the vestibular sense controls balance, we used instantaneous head angular velocity to drive a galvanic vestibular stimulus so that afference would signal that head movement was faster or slower than actual. In effect, this changed vestibular afferent gain. This increased sway 4-fold when subjects (N = 8) stood without vision. However, after a 240 s conditioning period with stable balance achieved through reliable visual or somatosensory cues, sway returned to normal. An equivalent galvanic stimulus unrelated to sway (not driven by head motion) was equally destabilising but in this situation the conditioning period of stable balance did not reduce sway. Reflex muscle responses evoked by an independent, higher bandwidth vestibular stimulus were initially reduced in amplitude by the galvanic stimulus but returned to normal levels after the conditioning period, contrary to predictions that they would decrease after adaptation to increased sensory gain and increase after adaptation to decreased sensory gain. We conclude that an erroneous vestibular signal of head motion during standing has profound effects on balance control. If it is unrelated to current head motion, the CNS has no immediate mechanism of ignoring the vestibular signal to reduce its influence on destabilising balance. This result is inconsistent with sensory reweighting based on disturbances. The increase in sway with increased sensory gain is also inconsistent with a simple feedback model of vestibular reflex action. Thus, we propose that recalibration of a forward sensory model best explains the reinterpretation of an altered reafferent signal of head motion during stable balance.


Url:
DOI: 10.1371/journal.pone.0124532
PubMed: 25894558
PubMed Central: 4403994

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:4403994

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cross-Modal Calibration of Vestibular Afference for Human Balance</title>
<author>
<name sortKey="Heroux, Martin E" sort="Heroux, Martin E" uniqKey="Heroux M" first="Martin E" last="Héroux">Martin E. Héroux</name>
<affiliation wicri:level="1">
<nlm:aff id="aff001">
<addr-line>School of Kinesiology, University of British Columbia, Vancouver, Canada</addr-line>
</nlm:aff>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>School of Kinesiology, University of British Columbia, Vancouver</wicri:regionArea>
<wicri:noRegion>Vancouver</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Law, Tammy C Y" sort="Law, Tammy C Y" uniqKey="Law T" first="Tammy C. Y." last="Law">Tammy C. Y. Law</name>
<affiliation wicri:level="1">
<nlm:aff id="aff001">
<addr-line>School of Kinesiology, University of British Columbia, Vancouver, Canada</addr-line>
</nlm:aff>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>School of Kinesiology, University of British Columbia, Vancouver</wicri:regionArea>
<wicri:noRegion>Vancouver</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fitzpatrick, Richard C" sort="Fitzpatrick, Richard C" uniqKey="Fitzpatrick R" first="Richard C." last="Fitzpatrick">Richard C. Fitzpatrick</name>
<affiliation wicri:level="1">
<nlm:aff id="aff002">
<addr-line>Neuroscience Research Australia and School of Medical Sciences, University of New South Wales, Sydney, Australia</addr-line>
</nlm:aff>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Neuroscience Research Australia and School of Medical Sciences, University of New South Wales, Sydney</wicri:regionArea>
<wicri:noRegion>Sydney</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Blouin, Jean Sebastien" sort="Blouin, Jean Sebastien" uniqKey="Blouin J" first="Jean-Sébastien" last="Blouin">Jean-Sébastien Blouin</name>
<affiliation wicri:level="1">
<nlm:aff id="aff001">
<addr-line>School of Kinesiology, University of British Columbia, Vancouver, Canada</addr-line>
</nlm:aff>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>School of Kinesiology, University of British Columbia, Vancouver</wicri:regionArea>
<wicri:noRegion>Vancouver</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff003">
<addr-line>Djavad Mowafaghian Centre for Brain Health & Institute for Computing, Information and Cognitive Systems, University of British Columbia, Vancouver, Canada</addr-line>
</nlm:aff>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Djavad Mowafaghian Centre for Brain Health & Institute for Computing, Information and Cognitive Systems, University of British Columbia, Vancouver</wicri:regionArea>
<wicri:noRegion>Vancouver</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25894558</idno>
<idno type="pmc">4403994</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4403994</idno>
<idno type="RBID">PMC:4403994</idno>
<idno type="doi">10.1371/journal.pone.0124532</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000287</idno>
<idno type="wicri:Area/Pmc/Curation">000287</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000666</idno>
<idno type="wicri:Area/Ncbi/Merge">003871</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Cross-Modal Calibration of Vestibular Afference for Human Balance</title>
<author>
<name sortKey="Heroux, Martin E" sort="Heroux, Martin E" uniqKey="Heroux M" first="Martin E" last="Héroux">Martin E. Héroux</name>
<affiliation wicri:level="1">
<nlm:aff id="aff001">
<addr-line>School of Kinesiology, University of British Columbia, Vancouver, Canada</addr-line>
</nlm:aff>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>School of Kinesiology, University of British Columbia, Vancouver</wicri:regionArea>
<wicri:noRegion>Vancouver</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Law, Tammy C Y" sort="Law, Tammy C Y" uniqKey="Law T" first="Tammy C. Y." last="Law">Tammy C. Y. Law</name>
<affiliation wicri:level="1">
<nlm:aff id="aff001">
<addr-line>School of Kinesiology, University of British Columbia, Vancouver, Canada</addr-line>
</nlm:aff>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>School of Kinesiology, University of British Columbia, Vancouver</wicri:regionArea>
<wicri:noRegion>Vancouver</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fitzpatrick, Richard C" sort="Fitzpatrick, Richard C" uniqKey="Fitzpatrick R" first="Richard C." last="Fitzpatrick">Richard C. Fitzpatrick</name>
<affiliation wicri:level="1">
<nlm:aff id="aff002">
<addr-line>Neuroscience Research Australia and School of Medical Sciences, University of New South Wales, Sydney, Australia</addr-line>
</nlm:aff>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Neuroscience Research Australia and School of Medical Sciences, University of New South Wales, Sydney</wicri:regionArea>
<wicri:noRegion>Sydney</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Blouin, Jean Sebastien" sort="Blouin, Jean Sebastien" uniqKey="Blouin J" first="Jean-Sébastien" last="Blouin">Jean-Sébastien Blouin</name>
<affiliation wicri:level="1">
<nlm:aff id="aff001">
<addr-line>School of Kinesiology, University of British Columbia, Vancouver, Canada</addr-line>
</nlm:aff>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>School of Kinesiology, University of British Columbia, Vancouver</wicri:regionArea>
<wicri:noRegion>Vancouver</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff003">
<addr-line>Djavad Mowafaghian Centre for Brain Health & Institute for Computing, Information and Cognitive Systems, University of British Columbia, Vancouver, Canada</addr-line>
</nlm:aff>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Djavad Mowafaghian Centre for Brain Health & Institute for Computing, Information and Cognitive Systems, University of British Columbia, Vancouver</wicri:regionArea>
<wicri:noRegion>Vancouver</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS ONE</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>To determine how the vestibular sense controls balance, we used instantaneous head angular velocity to drive a galvanic vestibular stimulus so that afference would signal that head movement was faster or slower than actual. In effect, this changed vestibular afferent gain. This increased sway 4-fold when subjects (N = 8) stood without vision. However, after a 240 s conditioning period with stable balance achieved through reliable visual or somatosensory cues, sway returned to normal. An equivalent galvanic stimulus unrelated to sway (not driven by head motion) was equally destabilising but in this situation the conditioning period of stable balance did not reduce sway. Reflex muscle responses evoked by an independent, higher bandwidth vestibular stimulus were initially reduced in amplitude by the galvanic stimulus but returned to normal levels after the conditioning period, contrary to predictions that they would decrease after adaptation to increased sensory gain and increase after adaptation to decreased sensory gain. We conclude that an erroneous vestibular signal of head motion during standing has profound effects on balance control. If it is unrelated to current head motion, the CNS has no immediate mechanism of ignoring the vestibular signal to reduce its influence on destabilising balance. This result is inconsistent with sensory reweighting based on disturbances. The increase in sway with increased sensory gain is also inconsistent with a simple feedback model of vestibular reflex action. Thus, we propose that recalibration of a forward sensory model best explains the reinterpretation of an altered reafferent signal of head motion during stable balance.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Fitzpatrick, R" uniqKey="Fitzpatrick R">R Fitzpatrick</name>
</author>
<author>
<name sortKey="Rogers, Dk" uniqKey="Rogers D">DK Rogers</name>
</author>
<author>
<name sortKey="Mccloskey, Di" uniqKey="Mccloskey D">DI McCloskey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dilda, V" uniqKey="Dilda V">V Dilda</name>
</author>
<author>
<name sortKey="Morris, Tr" uniqKey="Morris T">TR Morris</name>
</author>
<author>
<name sortKey="Yungher, Da" uniqKey="Yungher D">DA Yungher</name>
</author>
<author>
<name sortKey="Macdougall, Hg" uniqKey="Macdougall H">HG MacDougall</name>
</author>
<author>
<name sortKey="Moore, St" uniqKey="Moore S">ST Moore</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kitazaki, M" uniqKey="Kitazaki M">M Kitazaki</name>
</author>
<author>
<name sortKey="Kimura, T" uniqKey="Kimura T">T Kimura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oie, Ks" uniqKey="Oie K">KS Oie</name>
</author>
<author>
<name sortKey="Kiemel, T" uniqKey="Kiemel T">T Kiemel</name>
</author>
<author>
<name sortKey="Jeka, Jj" uniqKey="Jeka J">JJ Jeka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cenciarini, M" uniqKey="Cenciarini M">M Cenciarini</name>
</author>
<author>
<name sortKey="Peterka, Rj" uniqKey="Peterka R">RJ Peterka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pasma, Jh" uniqKey="Pasma J">JH Pasma</name>
</author>
<author>
<name sortKey="Boonstra, Ta" uniqKey="Boonstra T">TA Boonstra</name>
</author>
<author>
<name sortKey="Campfens, Sf" uniqKey="Campfens S">SF Campfens</name>
</author>
<author>
<name sortKey="Schouten, Ac" uniqKey="Schouten A">AC Schouten</name>
</author>
<author>
<name sortKey="Van Der Kooij, H" uniqKey="Van Der Kooij H">H Van der Kooij</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schmidt, Ra" uniqKey="Schmidt R">RA Schmidt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wolpert, Dm" uniqKey="Wolpert D">DM Wolpert</name>
</author>
<author>
<name sortKey="Miall, Rc" uniqKey="Miall R">RC Miall</name>
</author>
<author>
<name sortKey="Kawato, M" uniqKey="Kawato M">M Kawato</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fernandez, C" uniqKey="Fernandez C">C Fernandez</name>
</author>
<author>
<name sortKey="Goldberg, Jm" uniqKey="Goldberg J">JM Goldberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goldberg, Jm" uniqKey="Goldberg J">JM Goldberg</name>
</author>
<author>
<name sortKey="Fernandez, C" uniqKey="Fernandez C">C Fernandez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fitzpatrick, Rc" uniqKey="Fitzpatrick R">RC Fitzpatrick</name>
</author>
<author>
<name sortKey="Day, Bl" uniqKey="Day B">BL Day</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cathers, I" uniqKey="Cathers I">I Cathers</name>
</author>
<author>
<name sortKey="Day, Bl" uniqKey="Day B">BL Day</name>
</author>
<author>
<name sortKey="Fitzpatrick, Rc" uniqKey="Fitzpatrick R">RC Fitzpatrick</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Day, Bl" uniqKey="Day B">BL Day</name>
</author>
<author>
<name sortKey="Fitzpatrick, Rc" uniqKey="Fitzpatrick R">RC Fitzpatrick</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goldberg, Jm" uniqKey="Goldberg J">JM Goldberg</name>
</author>
<author>
<name sortKey="Fernandez, C" uniqKey="Fernandez C">C Fernandez</name>
</author>
<author>
<name sortKey="Smith, Ce" uniqKey="Smith C">CE Smith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rabbitt, R" uniqKey="Rabbitt R">R Rabbitt</name>
</author>
<author>
<name sortKey="Boyle, R" uniqKey="Boyle R">R Boyle</name>
</author>
<author>
<name sortKey="Holstein, G" uniqKey="Holstein G">G Holstein</name>
</author>
<author>
<name sortKey="Highstein, S" uniqKey="Highstein S">S Highstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fitzpatrick, R" uniqKey="Fitzpatrick R">R Fitzpatrick</name>
</author>
<author>
<name sortKey="Butler, J" uniqKey="Butler J">J Butler</name>
</author>
<author>
<name sortKey="Day, B" uniqKey="Day B">B Day</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, J" uniqKey="Kim J">J Kim</name>
</author>
<author>
<name sortKey="Curthoys, Is" uniqKey="Curthoys I">IS Curthoys</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Day, Bl" uniqKey="Day B">BL Day</name>
</author>
<author>
<name sortKey="Cole, J" uniqKey="Cole J">J Cole</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wardman, Dl" uniqKey="Wardman D">DL Wardman</name>
</author>
<author>
<name sortKey="Taylor, Jl" uniqKey="Taylor J">JL Taylor</name>
</author>
<author>
<name sortKey="Fitzpatrick, Rc" uniqKey="Fitzpatrick R">RC Fitzpatrick</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mian, Os" uniqKey="Mian O">OS Mian</name>
</author>
<author>
<name sortKey="Dakin, Cj" uniqKey="Dakin C">CJ Dakin</name>
</author>
<author>
<name sortKey="Blouin, Js" uniqKey="Blouin J">JS Blouin</name>
</author>
<author>
<name sortKey="Fitzpatrick, Rc" uniqKey="Fitzpatrick R">RC Fitzpatrick</name>
</author>
<author>
<name sortKey="Day, Bl" uniqKey="Day B">BL Day</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reynolds, Rf" uniqKey="Reynolds R">RF Reynolds</name>
</author>
<author>
<name sortKey="Osler, Cj" uniqKey="Osler C">CJ Osler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dakin, Cj" uniqKey="Dakin C">CJ Dakin</name>
</author>
<author>
<name sortKey="Luu, Bl" uniqKey="Luu B">BL Luu</name>
</author>
<author>
<name sortKey="Van Den Doel, K" uniqKey="Van Den Doel K">K van den Doel</name>
</author>
<author>
<name sortKey="Inglis, Jt" uniqKey="Inglis J">JT Inglis</name>
</author>
<author>
<name sortKey="Blouin, Js" uniqKey="Blouin J">JS Blouin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Iwasaki, S" uniqKey="Iwasaki S">S Iwasaki</name>
</author>
<author>
<name sortKey="Yamamoto, Y" uniqKey="Yamamoto Y">Y Yamamoto</name>
</author>
<author>
<name sortKey="Togo, F" uniqKey="Togo F">F Togo</name>
</author>
<author>
<name sortKey="Kinoshita, M" uniqKey="Kinoshita M">M Kinoshita</name>
</author>
<author>
<name sortKey="Yoshifuji, Y" uniqKey="Yoshifuji Y">Y Yoshifuji</name>
</author>
<author>
<name sortKey="Fujimoto, C" uniqKey="Fujimoto C">C Fujimoto</name>
</author>
<author>
<name sortKey="Yamasoba, T" uniqKey="Yamasoba T">T Yamasoba</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dakin, Cj" uniqKey="Dakin C">CJ Dakin</name>
</author>
<author>
<name sortKey="Son, Gm" uniqKey="Son G">GM Son</name>
</author>
<author>
<name sortKey="Inglis, Jt" uniqKey="Inglis J">JT Inglis</name>
</author>
<author>
<name sortKey="Blouin, Js" uniqKey="Blouin J">JS Blouin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rosenberg, Jr" uniqKey="Rosenberg J">JR Rosenberg</name>
</author>
<author>
<name sortKey="Amjad, Am" uniqKey="Amjad A">AM Amjad</name>
</author>
<author>
<name sortKey="Breeze, P" uniqKey="Breeze P">P Breeze</name>
</author>
<author>
<name sortKey="Brillinger, Dr" uniqKey="Brillinger D">DR Brillinger</name>
</author>
<author>
<name sortKey="Halliday, Dm" uniqKey="Halliday D">DM Halliday</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Day, Bl" uniqKey="Day B">BL Day</name>
</author>
<author>
<name sortKey="Reynolds, Rf" uniqKey="Reynolds R">RF Reynolds</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fitzpatrick, Rc" uniqKey="Fitzpatrick R">RC Fitzpatrick</name>
</author>
<author>
<name sortKey="Marsden, J" uniqKey="Marsden J">J Marsden</name>
</author>
<author>
<name sortKey="Lord, Sr" uniqKey="Lord S">SR Lord</name>
</author>
<author>
<name sortKey="Day, Bl" uniqKey="Day B">BL Day</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schneider, E" uniqKey="Schneider E">E Schneider</name>
</author>
<author>
<name sortKey="Glasauer, S" uniqKey="Glasauer S">S Glasauer</name>
</author>
<author>
<name sortKey="Dieterich, M" uniqKey="Dieterich M">M Dieterich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wardman, Dl" uniqKey="Wardman D">DL Wardman</name>
</author>
<author>
<name sortKey="Day, Bl" uniqKey="Day B">BL Day</name>
</author>
<author>
<name sortKey="Fitzpatrick, Rc" uniqKey="Fitzpatrick R">RC Fitzpatrick</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Allum, Jh" uniqKey="Allum J">JH Allum</name>
</author>
<author>
<name sortKey="Adkin, Al" uniqKey="Adkin A">AL Adkin</name>
</author>
<author>
<name sortKey="Carpenter, Mg" uniqKey="Carpenter M">MG Carpenter</name>
</author>
<author>
<name sortKey="Held Ziolkowska, M" uniqKey="Held Ziolkowska M">M Held-Ziolkowska</name>
</author>
<author>
<name sortKey="Honegger, F" uniqKey="Honegger F">F Honegger</name>
</author>
<author>
<name sortKey="Pierchala, K" uniqKey="Pierchala K">K Pierchala</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Basta, D" uniqKey="Basta D">D Basta</name>
</author>
<author>
<name sortKey="Todt, I" uniqKey="Todt I">I Todt</name>
</author>
<author>
<name sortKey="Scherer, H" uniqKey="Scherer H">H Scherer</name>
</author>
<author>
<name sortKey="Clarke, A" uniqKey="Clarke A">A Clarke</name>
</author>
<author>
<name sortKey="Ernst, A" uniqKey="Ernst A">A Ernst</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Joyce, Gc" uniqKey="Joyce G">GC Joyce</name>
</author>
<author>
<name sortKey="Rack, Pm" uniqKey="Rack P">PM Rack</name>
</author>
<author>
<name sortKey="Ross, Hf" uniqKey="Ross H">HF Ross</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fitzpatrick, R" uniqKey="Fitzpatrick R">R Fitzpatrick</name>
</author>
<author>
<name sortKey="Burke, D" uniqKey="Burke D">D Burke</name>
</author>
<author>
<name sortKey="Gandevia, Sc" uniqKey="Gandevia S">SC Gandevia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guerraz, M" uniqKey="Guerraz M">M Guerraz</name>
</author>
<author>
<name sortKey="Day, B" uniqKey="Day B">B Day</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fetsch, Cr" uniqKey="Fetsch C">CR Fetsch</name>
</author>
<author>
<name sortKey="Turner, Ah" uniqKey="Turner A">AH Turner</name>
</author>
<author>
<name sortKey="Deangelis, Gc" uniqKey="Deangelis G">GC DeAngelis</name>
</author>
<author>
<name sortKey="Angelaki, De" uniqKey="Angelaki D">DE Angelaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Curthoys, Is" uniqKey="Curthoys I">IS Curthoys</name>
</author>
<author>
<name sortKey="Halmagyi, Gm" uniqKey="Halmagyi G">GM Halmagyi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Von Holst, E" uniqKey="Von Holst E">E von Holst</name>
</author>
<author>
<name sortKey="Mittelstaedt, H" uniqKey="Mittelstaedt H">H Mittelstaedt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wolpert, Dm" uniqKey="Wolpert D">DM Wolpert</name>
</author>
<author>
<name sortKey="Ghahramani, Z" uniqKey="Ghahramani Z">Z Ghahramani</name>
</author>
<author>
<name sortKey="Jordan, Mi" uniqKey="Jordan M">MI Jordan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roy, Je" uniqKey="Roy J">JE Roy</name>
</author>
<author>
<name sortKey="Cullen, Ke" uniqKey="Cullen K">KE Cullen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roy, Je" uniqKey="Roy J">JE Roy</name>
</author>
<author>
<name sortKey="Cullen, Ke" uniqKey="Cullen K">KE Cullen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fitzpatrick, R" uniqKey="Fitzpatrick R">R Fitzpatrick</name>
</author>
<author>
<name sortKey="Burke, D" uniqKey="Burke D">D Burke</name>
</author>
<author>
<name sortKey="Gandevia, Sc" uniqKey="Gandevia S">SC Gandevia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bacsi, Am" uniqKey="Bacsi A">AM Bacsi</name>
</author>
<author>
<name sortKey="Colebatch, Jg" uniqKey="Colebatch J">JG Colebatch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brooks, Jx" uniqKey="Brooks J">JX Brooks</name>
</author>
<author>
<name sortKey="Cullen, Ke" uniqKey="Cullen K">KE Cullen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brooks, Jx" uniqKey="Brooks J">JX Brooks</name>
</author>
<author>
<name sortKey="Cullen, Ke" uniqKey="Cullen K">KE Cullen</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PLoS One</journal-id>
<journal-id journal-id-type="iso-abbrev">PLoS ONE</journal-id>
<journal-id journal-id-type="publisher-id">plos</journal-id>
<journal-id journal-id-type="pmc">plosone</journal-id>
<journal-title-group>
<journal-title>PLoS ONE</journal-title>
</journal-title-group>
<issn pub-type="epub">1932-6203</issn>
<publisher>
<publisher-name>Public Library of Science</publisher-name>
<publisher-loc>San Francisco, CA USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25894558</article-id>
<article-id pub-id-type="pmc">4403994</article-id>
<article-id pub-id-type="doi">10.1371/journal.pone.0124532</article-id>
<article-id pub-id-type="publisher-id">PONE-D-15-05552</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Cross-Modal Calibration of Vestibular Afference for Human Balance</article-title>
<alt-title alt-title-type="running-head">Using Vestibular Afference for Balance</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Héroux</surname>
<given-names>Martin E</given-names>
</name>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Law</surname>
<given-names>Tammy C. Y.</given-names>
</name>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Fitzpatrick</surname>
<given-names>Richard C.</given-names>
</name>
<xref ref-type="aff" rid="aff002">
<sup>2</sup>
</xref>
<xref rid="cor001" ref-type="corresp">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Blouin</surname>
<given-names>Jean-Sébastien</given-names>
</name>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff003">
<sup>3</sup>
</xref>
</contrib>
</contrib-group>
<aff id="aff001">
<label>1</label>
<addr-line>School of Kinesiology, University of British Columbia, Vancouver, Canada</addr-line>
</aff>
<aff id="aff002">
<label>2</label>
<addr-line>Neuroscience Research Australia and School of Medical Sciences, University of New South Wales, Sydney, Australia</addr-line>
</aff>
<aff id="aff003">
<label>3</label>
<addr-line>Djavad Mowafaghian Centre for Brain Health & Institute for Computing, Information and Cognitive Systems, University of British Columbia, Vancouver, Canada</addr-line>
</aff>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Sakakibara</surname>
<given-names>Manabu</given-names>
</name>
<role>Academic Editor</role>
<xref ref-type="aff" rid="edit1"></xref>
</contrib>
</contrib-group>
<aff id="edit1">
<addr-line>Tokai University, JAPAN</addr-line>
</aff>
<author-notes>
<fn fn-type="conflict" id="coi001">
<p>
<bold>Competing Interests: </bold>
The authors have declared that no competing interests exist.</p>
</fn>
<fn fn-type="con" id="contrib001">
<p>Conceived and designed the experiments: MEH RCF JSB. Performed the experiments: MEH TL RCF JSB. Analyzed the data: MEH TL RCF JSB. Contributed reagents/materials/analysis tools: RCF JSB. Wrote the paper: MEH TL RCF JSB. Designed the software used to collect data: MEH RCF JSB.</p>
</fn>
<corresp id="cor001">* E-mail:
<email>r.fitzpatrick@neura.edu.au</email>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>20</day>
<month>4</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="collection">
<year>2015</year>
</pub-date>
<volume>10</volume>
<issue>4</issue>
<elocation-id>e0124532</elocation-id>
<history>
<date date-type="received">
<day>5</day>
<month>2</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>16</day>
<month>3</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-year>2015</copyright-year>
<copyright-holder>Héroux et al</copyright-holder>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open access article distributed under the terms of the
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution License</ext-link>
, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:type="simple" xlink:href="pone.0124532.pdf"></self-uri>
<abstract>
<p>To determine how the vestibular sense controls balance, we used instantaneous head angular velocity to drive a galvanic vestibular stimulus so that afference would signal that head movement was faster or slower than actual. In effect, this changed vestibular afferent gain. This increased sway 4-fold when subjects (N = 8) stood without vision. However, after a 240 s conditioning period with stable balance achieved through reliable visual or somatosensory cues, sway returned to normal. An equivalent galvanic stimulus unrelated to sway (not driven by head motion) was equally destabilising but in this situation the conditioning period of stable balance did not reduce sway. Reflex muscle responses evoked by an independent, higher bandwidth vestibular stimulus were initially reduced in amplitude by the galvanic stimulus but returned to normal levels after the conditioning period, contrary to predictions that they would decrease after adaptation to increased sensory gain and increase after adaptation to decreased sensory gain. We conclude that an erroneous vestibular signal of head motion during standing has profound effects on balance control. If it is unrelated to current head motion, the CNS has no immediate mechanism of ignoring the vestibular signal to reduce its influence on destabilising balance. This result is inconsistent with sensory reweighting based on disturbances. The increase in sway with increased sensory gain is also inconsistent with a simple feedback model of vestibular reflex action. Thus, we propose that recalibration of a forward sensory model best explains the reinterpretation of an altered reafferent signal of head motion during stable balance.</p>
</abstract>
<funding-group>
<funding-statement>This research was supported by a grant to JSB from the Natural Sciences and Engineering Research Council of Canada (
<ext-link ext-link-type="uri" xlink:href="http://www.nserc-crsng.gc.ca/">www.nserc-crsng.gc.ca</ext-link>
). JSB received support from the Canadian Chiropractic Research Foundation (
<ext-link ext-link-type="uri" xlink:href="http://www.chiropractic.ca/research-foundation">www.chiropractic.ca/research-foundation</ext-link>
) and the Michael Smith Foundation for Health Research (
<ext-link ext-link-type="uri" xlink:href="http://www.msfhr.org/">www.msfhr.org</ext-link>
). RCF received support from the National Health and Medical Research Council of Australia (
<ext-link ext-link-type="uri" xlink:href="http://www.nhmrc.gov.au/">www.nhmrc.gov.au</ext-link>
). MEH received a post-doctoral fellowship from the Michael Smith Foundation for Health Research and the Canadian Institute for Health Research (
<ext-link ext-link-type="uri" xlink:href="http://www.cihr-irsc.gc.ca/">www.cihr-irsc.gc.ca</ext-link>
) and support from a Natural Sciences and Engineering Research Council of Canada Discovery Accelerator Supplement awarded to J. Timothy Inglis. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</funding-statement>
</funding-group>
<counts>
<fig-count count="5"></fig-count>
<table-count count="0"></table-count>
<page-count count="14"></page-count>
</counts>
<custom-meta-group>
<custom-meta id="data-availability">
<meta-name>Data Availability</meta-name>
<meta-value>With regard to data availability, ethical restrictions prevent deposition in a public repository. Data will be made available from the University of British Columbia Sensorimotor Physiology Laboratory for researchers who meet the criteria for access to confidential data. Requests for data access should be made to: Dr. JS. Blouin, University of British Columbia, School of Kinesiology, 210-6081 University Boulevard, Vancouver, BC Canada V6T 1Z1,
<email>jsblouin@mail.ubc.ca</email>
.</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
<notes>
<title>Data Availability</title>
<p>With regard to data availability, ethical restrictions prevent deposition in a public repository. Data will be made available from the University of British Columbia Sensorimotor Physiology Laboratory for researchers who meet the criteria for access to confidential data. Requests for data access should be made to: Dr. JS. Blouin, University of British Columbia, School of Kinesiology, 210-6081 University Boulevard, Vancouver, BC Canada V6T 1Z1,
<email>jsblouin@mail.ubc.ca</email>
.</p>
</notes>
</front>
<body>
<sec sec-type="intro" id="sec001">
<title>Introduction</title>
<p>Human balance control is based on the combined inflow of different sensory systems. Proprioceptive, visual, haptic, and vestibular sensors are considered the most important sources of information [
<xref rid="pone.0124532.ref001" ref-type="bibr">1</xref>
]. In many situations they provide largely redundant information so that loss of one is not critical. In situations where one sensory channel becomes critical for balance or another become false or unreliable, the CNS might selectively attend or ignore specific channels through a process of “reweighting” [
<xref rid="pone.0124532.ref002" ref-type="bibr">2</xref>
<xref rid="pone.0124532.ref006" ref-type="bibr">6</xref>
]. Current concepts of motor control are based on forward sensory and motor models [
<xref rid="pone.0124532.ref007" ref-type="bibr">7</xref>
<xref rid="pone.0124532.ref008" ref-type="bibr">8</xref>
] whereby the CNS responds to the sensed difference between the predicted sensory inflow for an action and the actual sensed inflow. It is not clear how the brain implements the forward sensory model and, particularly in the example of multisensory balance control, how different sensory channels contribute to the forward sensory expectation. Human standing with its multisensory control of a clearly defined motor task is an ideal model to explore these questions.</p>
<p>In the semicircular canals, the spontaneous discharge of primary afferent neurones is modulated bi-directionally by head angular motion. Angular acceleration of the head is transduced through a “mechanical integration” by inertial and visco-elastic properties of the cupula-endolymph system to generate a primary afferent signal that approximately represents the angular velocity of head motion [
<xref rid="pone.0124532.ref009" ref-type="bibr">9</xref>
<xref rid="pone.0124532.ref010" ref-type="bibr">10</xref>
]. How does the CNS use this signal to activate the postural muscles for balance control? Being a rate-coded signal, it is worth asking how the CNS knows what motion corresponds with what rate to generate motor output appropriate for balance control.</p>
<p>Small mastoidal electrical currents distort vestibular afferent signals without affecting other sensory systems [
<xref rid="pone.0124532.ref011" ref-type="bibr">11</xref>
]. When applied as a binaural bipolar stimulus it evokes a pattern of afferent firing that signals natural head rotation in roll [
<xref rid="pone.0124532.ref012" ref-type="bibr">12</xref>
<xref rid="pone.0124532.ref013" ref-type="bibr">13</xref>
]. When the CNS is repeatedly exposed to daily or weekly sessions of pseudorandom or sinusoidal vestibular stimulation, the stimulation initially causes severe postural disturbances, but this effect dissipates and balance returns to baseline levels after 7–8 sessions [
<xref rid="pone.0124532.ref002" ref-type="bibr">2</xref>
<xref rid="pone.0124532.ref003" ref-type="bibr">3</xref>
]. These results appear to reflect a reweighting of sensory inputs [
<xref rid="pone.0124532.ref002" ref-type="bibr">2</xref>
<xref rid="pone.0124532.ref003" ref-type="bibr">3</xref>
]. Because vestibulo-ocular reflexes remain affected despite repeated exposure to these same artificial vestibular stimuli, reweighting likely involves slow cerebellar processes rather than actual changes at the level of the vestibular end-organs or reflexes [
<xref rid="pone.0124532.ref002" ref-type="bibr">2</xref>
]. The purpose of the present experiment was to further explore balance control and how the CNS adapts to altered vestibular signals. To achieve this objective, we exposed standing subjects to a galvanic vestibular stimulus that was coupled to head motion so that vestibular afference signalled body sway that was slower or faster than actual. As galvanic stimulation bypasses mechanotransduction [
<xref rid="pone.0124532.ref014" ref-type="bibr">14</xref>
<xref rid="pone.0124532.ref015" ref-type="bibr">15</xref>
], measured head movement was passed through the canal mechanotransduction transfer function [
<xref rid="pone.0124532.ref009" ref-type="bibr">9</xref>
] to evoke an afferent firing pattern appropriate for the movement. We hypothesised that changing the size of the afferent response to head motion will result in unstable balance. To discover how the brain deals with such altered afference, we then provided a conditioning period with a reliable visual or somatosensory signal of body movement while the false vestibular signal continued. After this conditioning, we expected balance to be stable without the visual or somatosensory cues despite the continuing false vestibular signal and to become unstable again when the galvanic stimulus was removed. Our results confirmed these hypotheses, suggesting that, during the brief conditioning, the vestibular signal has been recalibrated to align it with other sensory channels and the sensation of stable balance.</p>
</sec>
<sec sec-type="materials|methods" id="sec002">
<title>Methods</title>
<sec id="sec003">
<title>Subjects</title>
<p>Eight adults (21–36 years, 2 female) with no history of neurological disease or injury participated in the first experiment and five of them participated in the second. The experiments were approved by the University of British Columbia Clinical Research Ethics Board and were conducted in accord with the Declaration of Helsinki after obtaining informed written consent.</p>
</sec>
<sec id="sec004">
<title>Changing vestibular gain</title>
<p>We used galvanic vestibular stimulation (GVS) to amplify or attenuate the vestibular afferent response to the head rotation that occurs with body sway during standing. In binaural bipolar configuration, the altered discharge of canal afferents evokes a net signal of head rotation about a specific axis [
<xref rid="pone.0124532.ref011" ref-type="bibr">11</xref>
]. This GVS axis is directed posteriorly and inclined ~18° above Reid's plane; approximately the axis of head roll [
<xref rid="pone.0124532.ref013" ref-type="bibr">13</xref>
,
<xref rid="pone.0124532.ref016" ref-type="bibr">16</xref>
]. While GVS also stimulates otolith afferents [
<xref rid="pone.0124532.ref017" ref-type="bibr">17</xref>
], the dominant postural responses are to this head roll while linear responses of otolithic origin are relatively minor [
<xref rid="pone.0124532.ref018" ref-type="bibr">18</xref>
<xref rid="pone.0124532.ref021" ref-type="bibr">21</xref>
]. Based on this evidence, we measured head rotation (angular velocity) about the GVS axis in standing subjects and used it to deliver a real-time galvanic stimulus to increase or decrease the normal canal response to that head rotation.</p>
<p>Subjects wore a lightweight “helmet” that supported 3 orthogonally-aligned angular rate sensors (resolution < 0.004°/s, 100 Hz low-pass; SDG500, Systron Donner Inertial, CA). Markers on the head and helmet were digitised (Polaris Vicra, NDI, Canada) to resolve instantaneous angular velocity of the head about the GVS axis. GVS bypasses canal mechano-transduction [
<xref rid="pone.0124532.ref009" ref-type="bibr">9</xref>
,
<xref rid="pone.0124532.ref015" ref-type="bibr">15</xref>
]. Thus, to make the real-time stimulus proportional to the canal afferent firing produced by the natural head movement, the measured signal was passed through the mechano-transduction transfer function of [
<xref rid="pone.0124532.ref010" ref-type="bibr">10</xref>
] (
<xref rid="pone.0124532.g001" ref-type="fig">Fig 1A</xref>
) before scaling to generate a galvanic stimulus of 0.125 mA per deg.s
<sup>-1</sup>
. Real-time data acquisition (LabVIEW Real-Time, PXI-6289 18-bit DAQ; National Instruments, TX) ensured < 1 ms point-by-point conversion and a 1 kHz output rate to the voltage controlled current stimulator (Stimsol, BIOPAC Systems, CA) so that there is effectively no delay in modulating vestibular afference. The stimulus was delivered through carbon-rubber electrodes (9 cm
<sup>2</sup>
) coated with conductive gel and fixed bilaterally over the mastoid processes. Stimulus noise was small (~0.015 mA RMS) and would have no effect on sway [
<xref rid="pone.0124532.ref022" ref-type="bibr">22</xref>
<xref rid="pone.0124532.ref023" ref-type="bibr">23</xref>
].</p>
<fig id="pone.0124532.g001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0124532.g001</object-id>
<label>Fig 1</label>
<caption>
<title>Experiment.</title>
<p>(A) Subjects stood on a foam pad. Signals from a tri-axial angular velocity sensor secured to the head were used to determine instantaneous head angular velocity (ω
<sub>G</sub>
) about the GVS axis. This signal was passed through the canal transfer function identified by Goldberg and Fernandez [
<xref rid="pone.0124532.ref010" ref-type="bibr">10</xref>
] to create the galvanic stimulus (GVS) that would evoke the pattern of afferent neuron firing that would arise from the head motion, and then scaled to 0.125 mA per deg.s-1. The bipolar stimulus (GVS) is delivered at the mastoid processes. This galvanic response, added to the natural stimulus, amplified the afferent response to the natural movement, and when subtracted (reverse stimulus polarity) attenuated the afferent response. (B) In each trial, subjects stood for 40 s as baseline before the GVS was delivered. Its effects were determined with the eyes shut before and after a 240 s period of conditioning with the eyes open.</p>
</caption>
<graphic xlink:href="pone.0124532.g001"></graphic>
</fig>
<p>A stimulus polarity that evoked an afferent signal in the same direction as the actual head rotation was used to create a net afferent signal of the head moving faster than actual (+Sway modulation). A stimulus polarity in the opposite direction created a net signal of slower head rotation (–Sway modulation). Of course, the galvanic stimulation will not mimic vestibular function exactly as there are undoubtedly residual differences in phase relationships and linearity of gain and bandwidth, but for the purpose of this study any consistent change in afferent responsiveness to head motion allows exploration of adaptation in the balance system.</p>
</sec>
<sec id="sec005">
<title>Experiment 1. Visual recalibration of vestibular signals</title>
<p>In this experiment, we determined whether the CNS can adapt to a destabilizing vestibular signal (coupled or not coupled to head motion) when a reliable visual signal of body movement is available. Balance (body sway) was assessed without vision before and after a period of visual conditioning. Subjects stood on 100 mm medium-density foam with the feet together to increase reliance on the vestibular sense but without making balance unstable or difficult; resting body sway approximately doubled on inspection and subjects did not lose balance. The head faced forward and was pitched slightly upward from the primary position (Reid’s plane tilted by 18°) so that the galvanic stimulus would evoke a vestibular signal that would normally be produced by body roll [
<xref rid="pone.0124532.ref012" ref-type="bibr">12</xref>
]. To begin each trial, subjects were asked to stand still with the eyes closed for 40 s while a baseline measure of sway was obtained (
<xref rid="pone.0124532.g001" ref-type="fig">Fig 1B</xref>
). The movement-coupled GVS was then turned on for the next 60 s and the balance response was measured. A 240 s conditioning period followed in which subjects had the eyes open and moved the head, mostly in roll, as they made simple body movements to look around the room and throw and catch a ball, while the movement-coupled GVS remained. They then shut the eyes for 60 s for a post-conditioning test as they attempted to stand still.</p>
<p>The protocol consisted of four trials: (i) no galvanic stimulus (always the first trial), (ii) +Sway modulation in which the galvanic stimulus amplified the afferent response, (iii)—Sway modulation in which the galvanic stimulus attenuated the afferent response, and (iv) random modulation—a control trial in which a pre-recorded signal, independent of actual head movement, was provided in the conditioning phase, while—Sway modulation was provided in the pre- and post-conditioning phases. Between trials, subjects sat and rested for at least 5 minutes to ensure no persisting effects of the stimulation from the previous trial.</p>
</sec>
<sec id="sec006">
<title>Experiment 2. Somatosensory recalibration of vestibular signals</title>
<p>In a separate experiment, we determined whether the CNS can adapt to a destabilizing vestibular signal (coupled or not coupled to head motion) when a reliable somatosensory signal of body movement is available. Five subjects participated in this experiment to determine if the vestibular signal used for balance is recalibrated to reliable somatosensory afference. The experiment proceeded with the protocol of Experiment 1 using only the—Sway modulation stimulus but the conditioning period had subjects step off the foam and onto the hard floor while keeping the eyes closed. Without vision they made similar volitional body movements while keeping the feet in place. For the post-conditioning assessment they stepped back onto the foam while keeping the eyes closed.</p>
</sec>
<sec id="sec007">
<title>Experiment 3. Visual recalibration of vestibular balance reflexes</title>
<p>To determine how the CNS adapts to a false vestibular signal, we measured lower limb vestibular reflexes pre- and post-conditioning. Specifically, vestibular muscle reflexes were measured in 8 subjects to determine if the vestibular gain modulation and the visual conditioning altered these reflexes. A stochastic vestibular stimulus (0.25–25 Hz bandwidth, 0.54 mA RMS) was applied to evoke short- and medium-latency reflex responses in the leg muscles. This stimulus was added to the movement-coupled stimulus but was uncorrelated with the sway and statistically independent. It evokes muscular responses with the same temporal and spatial profile as those evoked by traditional square-wave GVS [
<xref rid="pone.0124532.ref024" ref-type="bibr">24</xref>
]. Reflex responses were measured during the pre- and post-conditioning phases (
<xref rid="pone.0124532.g001" ref-type="fig">Fig 1B</xref>
) and each of the four trials (Experiment 1) were performed twice. Electromyography (EMG) signals were recorded from surface electrodes placed bilaterally over the medial gastrocnemii (MG) and tensor fascia latae (TFL) muscles (NeuroLog, Digitimer, UK). Signals were amplified (1,000–10,000) and band-pass filtered (10–1,000 Hz).</p>
</sec>
<sec id="sec008">
<title>Measurement and analysis</title>
<p>The vestibular stimulus, EMG, and angular rate sensor data were sampled at 2048 Hz with 18-bit precision (PXI-6289, National Instruments, TX). Body sway was recorded at 240 Hz at the level of the C7 spinous process using a 3-D motion-tracking system (TrakSTAR, Ascension Technology Corporation, VT). We report sway amplitude as the root mean square of the position signal at C7 to provide an index of sway variability.</p>
<p>In Experiments 1 and 2, medio-lateral body sway (C7 level) was calculated for each test as the RMS level after low-pass filtering the raw data (10 Hz, 2
<sup>nd</sup>
order dual-pass Butterworth).</p>
<p>In Experiment 3, the vestibular reflex response evoked by the stochastic stimulus was determined by calculating a cumulant density function. The inverse Fourier transform of the stimulus-EMG cross spectrum, the cumulant density function represents the time-domain relationship between the galvanic stimulus and the resulting muscle activity and typically shows the small short-latency (~60 ms) and a larger medium-latency (~100 ms) responses that are temporally and spatially similar to those obtained by trigger averaged responses to square-wave GVS [
<xref rid="pone.0124532.ref024" ref-type="bibr">24</xref>
]. EMG recordings were band-pass filtered (10–500 Hz, 4
<sup>th</sup>
order dual-pass Butterworth) and full-wave rectified before calculating the cumulant density function using the algorithm of [
<xref rid="pone.0124532.ref025" ref-type="bibr">25</xref>
]. Data from like trials were divided to produce 30 4-second windows, providing a frequency resolution of 0.25 Hz. The cumulant density function were normalised by the product of the vector norms of the input (stimulus) and output (EMG) signals to account for differences in background EMG levels and stimulus sensitivity [
<xref rid="pone.0124532.ref022" ref-type="bibr">22</xref>
]. The peak amplitude of the larger medium-latency response (latency ~100ms) was extracted for statistical analysis. As preliminary analysis revealed no side-to-side differences in response amplitude (MG: t
<sub>39</sub>
= 0.20, P = 0.84; TFL: t
<sub>39</sub>
= 0.65, P = 0.52), left and right absolute response amplitudes were averaged.</p>
<p>Both sway amplitude (Experiments 1 and 2) and vestibular reflex responses (Experiment 3) were examined by 2-way repeated-measures analysis of variance (ANOVA). In Experiments 1 and 3, factors were conditioning (pre, post) and modulating stimulus (none, +Sway, −Sway, random). Planned comparisons of significant main effects and interactions used Dunnett’s test to compare the three galvanic stimulus trials with the no-stimulus trial, and Fisher's least significant difference (LSD) test to compare across the pre- and post-conditioning phases. In Experiment 2, factors were conditioning (pre, post) and type (control, somatosensory). A repeated-measures ANOVA of sway amplitude during the pre-stimulus phase of every trial was used to determine if baseline sway amplitude had changed. Analyses were performed using SPSS 17 (SPSS Inc., Chicago IL) with significance set at P < 0.05. Figures present mean values and 95% confidence intervals.</p>
</sec>
</sec>
<sec sec-type="results" id="sec009">
<title>Results</title>
<sec id="sec010">
<title>Experiment 1. Visual-vestibular conditioning</title>
<p>Sway amplitude during the initial 40 s (no GVS) did not differ between experimental trials (F
<sub>3, 28</sub>
= 1.88, P = 0.16).
<xref rid="pone.0124532.g002" ref-type="fig">Fig 2A</xref>
, which shows data of a typical subject, illustrate the essential result of the study. When the amplifying GVS was turned on there was a dramatic increase in sway (a to b) but after the conditioning period of stable balance achieved with vision available, sway returned to normal levels (c) despite the continuing GVS, only to become unstable again when the stimulus was extinguished at the end of the post-conditioning test (d).</p>
<fig id="pone.0124532.g002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0124532.g002</object-id>
<label>Fig 2</label>
<caption>
<title>Visual-vestibular conditioning.</title>
<p>(A) Lateral body sway and the associated galvanic stimulus from a +Sway modulated trial for a typical subject. Initially, without GVS, sway is minimal. When GVS modulated by the head movement begins, large excursions appear. After the conditioning period with the eyes open, sway returned to baseline levels despite the continuing GVS. When finally extinguished, sway increased as if the natural vestibular signal was now inappropriate. (B) Sway traces of a typical subject during the pre- and post-conditioning phases for the four tests. In the no-GVS control trial, sway was small and unaffected by conditioning. The movement-coupled galvanic stimuli (+Sway,-Sway) created a large, predominantly lateral sway but this was reversed by visual conditioning. The galvanic stimulus that was not coherent with sway produced an equivalent large increase in sway that was not reversed by visual conditioning. (C) Group mean lateral sway and 95% CI for the four trials (N = 8; * P < 0.05 by ANOVA).</p>
</caption>
<graphic xlink:href="pone.0124532.g002"></graphic>
</fig>
<p>Sway trajectories in the antero-posterior and lateral planes for all four trials are shown in
<xref rid="pone.0124532.g003" ref-type="fig">Fig 3A</xref>
. Compared with the control trial (No GVS), exposure to any of the galvanic stimuli resulted in large increase in sway amplitude during the pre-conditioning phases (mean 364%, SD 112%). This instability was immediately apparent to all subjects. When the galvanic stimulus was driven by the sway, either amplifying or attenuating the vestibular afferent signal, the period of visual conditioning resulted in a return to control levels of sway when tested again with the eyes closed. If the modulating vestibular stimulus was not coherent with the current sway, conditioning had no effect on sway.</p>
<fig id="pone.0124532.g003" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0124532.g003</object-id>
<label>Fig 3</label>
<caption>
<title>Somatosensory-vestibular conditioning.</title>
<p>(A) Sway of a typical subject during the pre- and post-conditioning phases with the sway modulated signal. The movement-coupled galvanic stimulus created a large, predominantly lateral sway, which was reversed by the somatosensory conditioning. (B) Group mean lateral sway and 95% CI for the 4 trials (N = 8; * P < 0.05 by ANOVA).</p>
</caption>
<graphic xlink:href="pone.0124532.g003"></graphic>
</fig>
<p>Group mean results for this experiment are shown in
<xref rid="pone.0124532.g002" ref-type="fig">Fig 2C</xref>
. Two-way repeated measure ANOVA revealed a significant main effect of the stimulus (F
<sub>3,21</sub>
= 14.0, P < 0.001) and a significant interaction with conditioning (F
<sub>3,21</sub>
= 7.1, P = 0.002). In the pre-conditioning phase, sway was significantly greater (~ 4-fold) in the three stimulus trials than in the no-GVS control trial (Dunnett, P < 0.01). After the period of visual conditioning, sway amplitude was significantly reduced for both the +Sway and—Sway modulation stimuli (LSD, P < 0.05 for each) and not different to no-GVS control levels (Dunnett, P = 0.12). When the vestibular stimulus had the same intensity and bandwidth but was uncoupled from current head motion, visual conditioning had no effect on sway (LSD, P = 0.56), which remained significantly greater than no-GVS control levels (Dunett, P < 0.001).</p>
</sec>
<sec id="sec011">
<title>Experiment 2: Somatosensory-vestibular conditioning</title>
<p>
<xref rid="pone.0124532.g003" ref-type="fig">Fig 3</xref>
shows the results of Experiment 2 for a typical subject (3A) and for the group (3B). As in Experiment 1, sway amplitude increased ~4-fold with sway-coupled GVS during the preconditioning tests (LSD, P = 0.003). Subjects then stepped off the foam onto hard floor to condition body and head movements with the eyes closed. This somatic-vestibular conditioning significantly reduced sway amplitude (LSD, P = 0.025) so that it was not different from control trials (LSD, P = 0.21).</p>
</sec>
<sec id="sec012">
<title>Experiment 3: Visual-vestibular conditioning effects on vestibular reflexes</title>
<p>Typical EMG responses evoked by the stochastic vestibular stimulus in the right TFL muscle are shown in
<xref rid="pone.0124532.g004" ref-type="fig">Fig 4A</xref>
. This stochastic stimulus used to identify the response in vestibular reflex pathways is unrelated to the sway modulated stimuli being examined. Without a sway-modulated stimulus, robust biphasic reflex responses were seen with a short-latency response at ~50 ms and a medium-latency response at ~100 ms. Similar responses were observed in both muscles (TFL, MG) bilaterally. Both the sway-modulated stimulus and the non-coherent stimulus markedly reduced the short- and medium-latency vestibular reflex responses compared with the no-stimulus trials (compare gray plots). After visual conditioning of the sway-modulated stimuli, the responses increased in amplitude to approach the levels of the no-stimulus control (black lines). This was not seen with the visual conditioning of the non-coherent stimulus.</p>
<fig id="pone.0124532.g004" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0124532.g004</object-id>
<label>Fig 4</label>
<caption>
<title>Vestibular reflex responses to galvanic stimuli.</title>
<p>(A) For a typical subject, responses in right tensor fascia lata muscle (TFL) muscle measured as cumulant density to stochastic galvanic stimulation are shown for each GVS modulation stimulus, before (gray) and after (black) visual conditioning. The biphasic short-latency (~50ms) and long-latency responses are evident. (B) Group mean of peak medium latency response amplitude with 95% CIs in medial gastrocnemius (MG) and TFL. * P < 0.05.</p>
</caption>
<graphic xlink:href="pone.0124532.g004"></graphic>
</fig>
<p>Group mean amplitudes of the medium latency response for both TFL and MG show the same pattern (
<xref rid="pone.0124532.g005" ref-type="fig">Fig 5B</xref>
), with statistical significance seen in the modulating stimulus (F
<sub>3,2</sub>
= 10.6 [TFL] and 36.4 [MG], P < 0.001) and stimulus-conditioning interaction (F
<sub>1,4</sub>
= 8.2 (TFL] and 14.2 [MG], P < 0.003). Pre-conditioning vestibular-evoked muscular responses were approximately halved in both muscles compared with the no-stimulus control (Dunnett, P < 0.005). After visual conditioning, there was a significant increase in the amplitude of vestibular-evoked muscular responses for the sway-modulated stimuli in both muscles (LSD, P < 0.005) so that they were no longer different from those of the control trial (Dunnett, P = 0.26). This was not so for visual conditioning of the non-coherent stimulus where there reflex muscle responses were unchanged by conditioning (LSD, P = 0.38) and remained different from the control (Dunnett, P < 0.005).</p>
<fig id="pone.0124532.g005" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0124532.g005</object-id>
<label>Fig 5</label>
<caption>
<title>Model of vestibular sensory control for balance.</title>
<p>Motion sensed by the vestibular system (gray arrows: sensed ω
<sub>v</sub>
) is aligned with desired motion (desired ω
<sub>v</sub>
) by a forward prediction of the vestibular response to the command (predicted ω
<sub>v</sub>
) to identify disturbances (exafference signal). Disturbances are corrected by passing exafference through an inverse model of the motor response (motor command mc to sensed ω
<sub>v</sub>
). We change vestibular afferent gain at xM. Motor reflex responses are probed with an independent perturbation (δ-GVS). Initially, a gain change creates an exafferent signal that increases sway as it is not aligned with predicted ω
<sub>v</sub>
. When conditioned with another sensory channel, the forward model changes the exafference to reafference, which is cancelled. The perturbation, δ-GVS, evokes the same balance response in the calibrated system.</p>
</caption>
<graphic xlink:href="pone.0124532.g005"></graphic>
</fig>
</sec>
</sec>
<sec sec-type="conclusions" id="sec013">
<title>Discussion</title>
<p>A rapid change in vestibular sensitivity disrupts balance until a period of stable balance is achieved by other sensory inflow. When stable balance is achieved, the vestibular signal becomes useful for balance control rather than a disturbance. A vestibular signal with no relationship with head motion cannot be transformed in this way nor overridden, at least in the short term, so that it continues to create a strong disturbance. Clinically, we see this in pathological situations where aberrant vestibular discharge has dramatic effects on balance compared with the situation of compensated loss of canal afference.</p>
<sec id="sec014">
<title>Afferents and pathways</title>
<p>GVS evokes a strong afferent signal of head rotation [
<xref rid="pone.0124532.ref012" ref-type="bibr">12</xref>
<xref rid="pone.0124532.ref013" ref-type="bibr">13</xref>
,
<xref rid="pone.0124532.ref016" ref-type="bibr">16</xref>
,
<xref rid="pone.0124532.ref018" ref-type="bibr">18</xref>
,
<xref rid="pone.0124532.ref026" ref-type="bibr">26</xref>
]. Thus, the adaptation observed here must include an action on signals of semicircular canal origin. Although an otolithic balance response to GVS has been more difficult to identify [
<xref rid="pone.0124532.ref016" ref-type="bibr">16</xref>
,
<xref rid="pone.0124532.ref020" ref-type="bibr">20</xref>
<xref rid="pone.0124532.ref021" ref-type="bibr">21</xref>
,
<xref rid="pone.0124532.ref027" ref-type="bibr">27</xref>
<xref rid="pone.0124532.ref029" ref-type="bibr">29</xref>
], otolithic afferent stimulation undoubtedly evokes some net signal of linear acceleration [
<xref rid="pone.0124532.ref011" ref-type="bibr">11</xref>
], which, if significant, must also be subject to these adaptive processes. The present study provides no evidence for the descending pathways recruited but it would not be surprising if it included more than one of the vestibulospinal, reticulospinal or corticospinal tracts.</p>
</sec>
<sec id="sec015">
<title>Feedback control?</title>
<p>Pathological loss of vestibular sensor gain is associated with increased sway [
<xref rid="pone.0124532.ref030" ref-type="bibr">30</xref>
<xref rid="pone.0124532.ref031" ref-type="bibr">31</xref>
], suggesting that increasing sensor gain by +Sway modulation might reduce sway. However, high gain coupled with long conduction delays creates instability in reflex-feedback loops [
<xref rid="pone.0124532.ref032" ref-type="bibr">32</xref>
]. If the increased sway observed with +Sway modulation resulted from instability in the pathways of balance control, we would expect reduced sway with-Sway modulation. Instead we see similar increases in sway with both modulations (
<xref rid="pone.0124532.g002" ref-type="fig">Fig 2B</xref>
). This leads us to conclude that the vestibular influence on balance is not through a simple negative feedback loop, which is in agreement with the very low loop gain (approximately unity) estimated for balance control pathways [
<xref rid="pone.0124532.ref033" ref-type="bibr">33</xref>
].</p>
</sec>
<sec id="sec016">
<title>Sensory reweighting?</title>
<p>When the non-coherent vestibular stimulus was first delivered without visual cues it evoked a balance-correcting response that increased sway. During conditioning, visual and somatosensory signals of body sway allowed successful balance. The sensory reweighing hypothesis suggests that adaptation would up-weight visual and somatosensory cues and down-weight vestibular cues [
<xref rid="pone.0124532.ref005" ref-type="bibr">5</xref>
]. This is what appears to occur when the CNS is repeatedly exposed, over the period of days to months, to non-coherent vestibular stimulus [
<xref rid="pone.0124532.ref002" ref-type="bibr">2</xref>
<xref rid="pone.0124532.ref003" ref-type="bibr">3</xref>
]. However, this was not observed in the present study. Visual conditioning did not reduce sway with the non-coherent vestibular signals (
<xref rid="pone.0124532.g002" ref-type="fig">Fig 2</xref>
) and did not increase vestibular-evoked muscle reflexes (
<xref rid="pone.0124532.g004" ref-type="fig">Fig 4</xref>
).</p>
<p>Unlike visual disturbances, self-triggered, anticipated and unexpected vestibular stimuli all evoke identical responses that do not extinguish with repetition within a single session [
<xref rid="pone.0124532.ref034" ref-type="bibr">34</xref>
]. As visual and somatic signals can represent self- or surround-motion, there must exist flexible weighting networks to deliver appropriate balance responses for different settings. In contrast, a physiological vestibular signal can only represent self-motion in the gravito-inertial frame of balance control so there is not the same biological need to suppress vestibular responses. With acute exposure to non-coherent vestibular stimulus, the lack of suppression of vestibular responses is consistent with the greater weight placed on unreliable vestibular cues over visual cues in perceiving self-motion [
<xref rid="pone.0124532.ref035" ref-type="bibr">35</xref>
].</p>
<p>We conclude, cautiously, that sensory reweighting for balance control does not operate on a vestibular error signal (exafference) in the minute-to-minute adaption for balance control. This argument does not apply to the longer-term processes of accommodation and compensation [
<xref rid="pone.0124532.ref002" ref-type="bibr">2</xref>
<xref rid="pone.0124532.ref003" ref-type="bibr">3</xref>
,
<xref rid="pone.0124532.ref036" ref-type="bibr">36</xref>
] typical after vestibular injury or chronic exposure to non-coherent vestibular stimuli.</p>
</sec>
<sec id="sec017">
<title>Reafference and prediction</title>
<p>The results are considered in terms of the related models of reafference [
<xref rid="pone.0124532.ref037" ref-type="bibr">37</xref>
] and forward sensory prediction [
<xref rid="pone.0124532.ref038" ref-type="bibr">38</xref>
]. This model (
<xref rid="pone.0124532.g005" ref-type="fig">Fig 5</xref>
) identifies causality between motor output and sensory inflow to predict the sensory outcomes of motor actions and allow vestibular reafference (sensory consequence of action) and exafference (sensory consequence external forces) to be extracted from the vestibular signal [
<xref rid="pone.0124532.ref039" ref-type="bibr">39</xref>
<xref rid="pone.0124532.ref040" ref-type="bibr">40</xref>
].</p>
<p>Before conditioning, both the +Sway and-Sway modulation created an afferent error signal, or exafference, that was treated as an external perturbation. During conditioning this afference acquired new meaning as the reafferent consequence of motor action making it useful for monitoring and correcting motor actions, and for creating the forward model for correcting external disturbances. The CNS found a solution that generated the same behavioural outcome so that sway returned to normal.</p>
<p>This solution was not found for non-coherent vestibular afference, which remained as exafference so that the uncontrolled sway was unchanged after conditioning. Thus, correlation with an efferent or efferent-copy signal is critical for the CNS to identify the reafferent component of total vestibular sensory inflow so that it only responds to the exafferent component of the signal. We see in these results that the forward sensory model persists for long periods until a period of stable balance is achieved through other sensory inflow.</p>
<p>The reflexes evoked by the stochastic stimulus (
<xref rid="pone.0124532.g004" ref-type="fig">Fig 4</xref>
) give clues about the control process. First exposure to the sway-modulated stimulus halved their pre-stimulus level. This is explained by the vestibular reflex being swamped by larger balance responses that could arise from direct vestibular action or volitional reactions based on perception [
<xref rid="pone.0124532.ref041" ref-type="bibr">41</xref>
<xref rid="pone.0124532.ref042" ref-type="bibr">42</xref>
]. Conditioning restored the reflex as the balance system treated the modulated vestibular afference (+Sway and-Sway) as reafference of its motor output rather than an external disturbance. A recalibrated vestibular forward sensory model [
<xref rid="pone.0124532.ref008" ref-type="bibr">8</xref>
] can now predict and cancel this reafference to estimate the stochastic stimulus disturbance to drive an appropriate reflex output. This contradicts the reweighting hypothesis prediction of reduced vestibular reflexes if conditioning determines that they were not useful for the task.</p>
<p>When +Sway modulation amplified the afferent signal of head movement, recalibration at the level of vestibular afference would mean the stimulus that elicited the reflex represented a smaller real disturbance. This recalibration would evoke a smaller post-conditioning reflex if the rest of the control network remained unchanged. However, conditioning to the amplified vestibular signal aligns the desired, predicted and sensed movement (ω) as if there were no external postural disturbances (δ-P). Recalibration, by updating the forward model, changes the exafference of the modulated signal into reafference that is cancelled from total vestibular afference (summation of the vestibular reafference and exafference). The residual vestibular exafference (probed by stochastic GVS) is not recalibrated so that δ-P always evokes the same balance response in a calibrated system.</p>
<p>There is strong neurophysiological evidence for this vestibular processing. At early stages of processing, vestibular nuclei neurons distinguish the reafference of active motion from the exafference of passive motion [
<xref rid="pone.0124532.ref039" ref-type="bibr">39</xref>
] while neurons in the cerebellar rostral fastigial nuclei code selectively for exafference [
<xref rid="pone.0124532.ref043" ref-type="bibr">43</xref>
]. For this vestibular processing to cancel reafference and extract exafference, Brooks and Cullen [
<xref rid="pone.0124532.ref044" ref-type="bibr">44</xref>
] show that there must be no discrepancy between the predicted and actual proprioceptive sensory consequences of self-motion. This neural mechanism could contribute to the recalibration of the GVS-modulated gain change of vestibular afference described here. In Experiment 2, vestibular processing cannot discriminate active from passive self-motion without a reliable somatosensory signal. We propose that reliable visual afference serves the same role.</p>
</sec>
</sec>
<sec sec-type="conclusions" id="sec018">
<title>Conclusions</title>
<p>An erroneous vestibular signal has profound effects on balance. If it is unrelated to head motion, the CNS has no immediate mechanism of reweighting it to reduce its influence on balance. If it is causally related to head motion, the CNS will reinterpret and use it to restore balance stability. Recalibration of a forward sensory control model explains this. These adaptations occur during a short period when stable balance is achieved, which in these studies was through another reliable sensory cue.</p>
</sec>
</body>
<back>
<ref-list>
<title>References</title>
<ref id="pone.0124532.ref001">
<label>1</label>
<mixed-citation publication-type="journal">
<name>
<surname>Fitzpatrick</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Rogers</surname>
<given-names>DK</given-names>
</name>
,
<name>
<surname>McCloskey</surname>
<given-names>DI</given-names>
</name>
.
<article-title>Stable human standing with lower-limb muscle afferents providing the only sensory input</article-title>
.
<source>J Physiol</source>
.
<year>1994</year>
;
<volume>480</volume>
:
<fpage>395</fpage>
<lpage>403</lpage>
.
<pub-id pub-id-type="pmid">7869254</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0124532.ref002">
<label>2</label>
<mixed-citation publication-type="journal">
<name>
<surname>Dilda</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Morris</surname>
<given-names>TR</given-names>
</name>
,
<name>
<surname>Yungher</surname>
<given-names>DA</given-names>
</name>
,
<name>
<surname>MacDougall</surname>
<given-names>HG</given-names>
</name>
,
<name>
<surname>Moore</surname>
<given-names>ST</given-names>
</name>
.
<article-title>Central adaptation to repeated galvanic vestibular stimulation: implications for pre-flight astronaut training</article-title>
.
<source>PLoS One</source>
<year>2014</year>
;
<volume>9</volume>
:
<fpage>e112131</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pone.0112131">10.1371/journal.pone.0112131</ext-link>
</comment>
<pub-id pub-id-type="pmid">25409443</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0124532.ref003">
<label>3</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kitazaki</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Kimura</surname>
<given-names>T</given-names>
</name>
.
<article-title>Effects of long-term adaptation to sway-yoked visual motion and galvanic vestibular stimulation on visual and vestibular control of posture</article-title>
.
<source>Presence</source>
<year>2010</year>
;
<volume>19</volume>
:
<fpage>544</fpage>
<lpage>556</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0124532.ref004">
<label>4</label>
<mixed-citation publication-type="journal">
<name>
<surname>Oie</surname>
<given-names>KS</given-names>
</name>
,
<name>
<surname>Kiemel</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Jeka</surname>
<given-names>JJ</given-names>
</name>
.
<article-title>Multisensory fusion: simultaneous re-weighting of vision and touch for the control of human posture</article-title>
.
<source>Cog Brain Res</source>
.
<year>2002</year>
;
<volume>14</volume>
:
<fpage>164</fpage>
<lpage>176</lpage>
.
<pub-id pub-id-type="pmid">12063140</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0124532.ref005">
<label>5</label>
<mixed-citation publication-type="journal">
<name>
<surname>Cenciarini</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Peterka</surname>
<given-names>RJ</given-names>
</name>
.
<article-title>Stimulus-dependent changes in the vestibular contribution to human postural control</article-title>
.
<source>J Neurophysiol</source>
.
<year>2006</year>
;
<volume>95</volume>
:
<fpage>2733</fpage>
<lpage>2750</lpage>
.
<pub-id pub-id-type="pmid">16467429</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0124532.ref006">
<label>6</label>
<mixed-citation publication-type="journal">
<name>
<surname>Pasma</surname>
<given-names>JH</given-names>
</name>
,
<name>
<surname>Boonstra</surname>
<given-names>TA</given-names>
</name>
,
<name>
<surname>Campfens</surname>
<given-names>SF</given-names>
</name>
,
<name>
<surname>Schouten</surname>
<given-names>AC</given-names>
</name>
,
<name>
<surname>Van der Kooij</surname>
<given-names>H</given-names>
</name>
.
<article-title>Sensory reweighting of proprioceptive information of the left and right leg during human balance control</article-title>
.
<source>J Neurophysiol</source>
.
<year>2012</year>
;
<volume>108</volume>
:
<fpage>1138</fpage>
<lpage>1148</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1152/jn.01008.2011">10.1152/jn.01008.2011</ext-link>
</comment>
<pub-id pub-id-type="pmid">22623486</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0124532.ref007">
<label>7</label>
<mixed-citation publication-type="journal">
<name>
<surname>Schmidt</surname>
<given-names>RA</given-names>
</name>
.
<article-title>A schema theory of discrete motor skill learning</article-title>
.
<source>Psych Rev</source>
<year>1975</year>
;
<volume>82</volume>
:
<fpage>225</fpage>
<lpage>260</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0124532.ref008">
<label>8</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wolpert</surname>
<given-names>DM</given-names>
</name>
,
<name>
<surname>Miall</surname>
<given-names>RC</given-names>
</name>
,
<name>
<surname>Kawato</surname>
<given-names>M</given-names>
</name>
.
<article-title>Internal models in the cerebellum</article-title>
.
<source>Trends Cogn Sci</source>
.
<year>1998</year>
;
<volume>2</volume>
:
<fpage>338</fpage>
<lpage>347</lpage>
.
<pub-id pub-id-type="pmid">21227230</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0124532.ref009">
<label>9</label>
<mixed-citation publication-type="journal">
<name>
<surname>Fernandez</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Goldberg</surname>
<given-names>JM</given-names>
</name>
.
<article-title>Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system</article-title>
.
<source>J Neurophysiol</source>
.
<year>1971</year>
;
<volume>34</volume>
:
<fpage>661</fpage>
<lpage>675</lpage>
.
<pub-id pub-id-type="pmid">5000363</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0124532.ref010">
<label>10</label>
<mixed-citation publication-type="journal">
<name>
<surname>Goldberg</surname>
<given-names>JM</given-names>
</name>
,
<name>
<surname>Fernandez</surname>
<given-names>C</given-names>
</name>
.
<article-title>Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. I. Resting discharge and response to constant angular accelerations</article-title>
.
<source>J Neurophysiol</source>
.
<year>1971</year>
;
<volume>34</volume>
:
<fpage>635</fpage>
<lpage>660</lpage>
.
<pub-id pub-id-type="pmid">5000362</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0124532.ref011">
<label>11</label>
<mixed-citation publication-type="journal">
<name>
<surname>Fitzpatrick</surname>
<given-names>RC</given-names>
</name>
,
<name>
<surname>Day</surname>
<given-names>BL</given-names>
</name>
.
<article-title>Probing the human vestibular system with galvanic stimulation</article-title>
.
<source>J Appl Physiol</source>
<year>2004</year>
;
<volume>96</volume>
:
<fpage>2301</fpage>
<lpage>2316</lpage>
.
<pub-id pub-id-type="pmid">15133017</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0124532.ref012">
<label>12</label>
<mixed-citation publication-type="journal">
<name>
<surname>Cathers</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Day</surname>
<given-names>BL</given-names>
</name>
,
<name>
<surname>Fitzpatrick</surname>
<given-names>RC</given-names>
</name>
.
<article-title>Otolith and canal reflexes in human standing</article-title>
.
<source>J Physiol</source>
.
<year>2005</year>
;
<volume>563</volume>
:
<fpage>229</fpage>
<lpage>234</lpage>
.
<pub-id pub-id-type="pmid">15618274</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0124532.ref013">
<label>13</label>
<mixed-citation publication-type="journal">
<name>
<surname>Day</surname>
<given-names>BL</given-names>
</name>
,
<name>
<surname>Fitzpatrick</surname>
<given-names>RC</given-names>
</name>
.
<article-title>Virtual head rotation reveals a process of route reconstruction from human vestibular signals</article-title>
.
<source>J Physiol</source>
.
<year>2005</year>
;
<volume>567</volume>
:
<fpage>591</fpage>
<lpage>597</lpage>
.
<pub-id pub-id-type="pmid">16002439</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0124532.ref014">
<label>14</label>
<mixed-citation publication-type="journal">
<name>
<surname>Goldberg</surname>
<given-names>JM</given-names>
</name>
,
<name>
<surname>Fernandez</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Smith</surname>
<given-names>CE</given-names>
</name>
.
<article-title>Responses of vestibular-nerve afferents in the squirrel monkey to externally applied galvanic currents</article-title>
.
<source>Brain Res</source>
.
<year>1982</year>
;
<volume>252</volume>
:
<fpage>156</fpage>
<lpage>160</lpage>
.
<pub-id pub-id-type="pmid">6293651</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0124532.ref015">
<label>15</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rabbitt</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Boyle</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Holstein</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Highstein</surname>
<given-names>S</given-names>
</name>
.
<article-title>Hair-cell versus afferent adaptation in the semicircular canals</article-title>
.
<source>J Neurophysiol</source>
.
<year>2005</year>
;
<volume>93</volume>
:
<fpage>424</fpage>
<lpage>436</lpage>
.
<pub-id pub-id-type="pmid">15306633</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0124532.ref016">
<label>16</label>
<mixed-citation publication-type="journal">
<name>
<surname>Fitzpatrick</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Butler</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Day</surname>
<given-names>B</given-names>
</name>
.
<article-title>Resolving head rotation for human bipedalism</article-title>
.
<source>Curr Biol</source>
.
<year>2006</year>
;
<volume>16</volume>
:
<fpage>1509</fpage>
<lpage>1514</lpage>
.
<pub-id pub-id-type="pmid">16890526</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0124532.ref017">
<label>17</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kim</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Curthoys</surname>
<given-names>IS</given-names>
</name>
.
<article-title>Responses of primary vestibular neurons to galvanic vestibular stimulation (GVS) in the anaesthetised guinea pig</article-title>
.
<source>Brain Res Bull</source>
.
<year>2004</year>
;
<volume>64</volume>
:
<fpage>265</fpage>
<lpage>271</lpage>
.
<pub-id pub-id-type="pmid">15464864</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0124532.ref018">
<label>18</label>
<mixed-citation publication-type="journal">
<name>
<surname>Day</surname>
<given-names>BL</given-names>
</name>
,
<name>
<surname>Cole</surname>
<given-names>J</given-names>
</name>
.
<article-title>Vestibular-evoked postural responses in the absence of somatosensory information</article-title>
.
<source>Brain</source>
<year>2002</year>
;
<volume>125</volume>
:
<fpage>2081</fpage>
<lpage>2088</lpage>
.
<pub-id pub-id-type="pmid">12183353</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0124532.ref019">
<label>19</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wardman</surname>
<given-names>DL</given-names>
</name>
,
<name>
<surname>Taylor</surname>
<given-names>JL</given-names>
</name>
,
<name>
<surname>Fitzpatrick</surname>
<given-names>RC</given-names>
</name>
.
<article-title>Effects of galvanic vestibular stimulation on human posture and perception while standing</article-title>
.
<source>J Physiol</source>
.
<year>2003</year>
;
<volume>551</volume>
:
<fpage>1033</fpage>
<lpage>1042</lpage>
.
<pub-id pub-id-type="pmid">12865505</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0124532.ref020">
<label>20</label>
<mixed-citation publication-type="journal">
<name>
<surname>Mian</surname>
<given-names>OS</given-names>
</name>
,
<name>
<surname>Dakin</surname>
<given-names>CJ</given-names>
</name>
,
<name>
<surname>Blouin</surname>
<given-names>JS</given-names>
</name>
,
<name>
<surname>Fitzpatrick</surname>
<given-names>RC</given-names>
</name>
,
<name>
<surname>Day</surname>
<given-names>BL</given-names>
</name>
.
<article-title>Lack of otolith involvement in balance responses evoked by mastoid electrical stimulation</article-title>
.
<source>J Physiol</source>
.
<year>2010</year>
;
<volume>588</volume>
:
<fpage>4441</fpage>
<lpage>4451</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1113/jphysiol.2010.195222">10.1113/jphysiol.2010.195222</ext-link>
</comment>
<pub-id pub-id-type="pmid">20855437</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0124532.ref021">
<label>21</label>
<mixed-citation publication-type="journal">
<name>
<surname>Reynolds</surname>
<given-names>RF</given-names>
</name>
,
<name>
<surname>Osler</surname>
<given-names>CJ</given-names>
</name>
.
<article-title>Galvanic Vestibular Stimulation Produces Sensations of Rotation Consistent with Activation of Semicircular Canal Afferents</article-title>
.
<source>Frontiers Neurol</source>
.
<year>2012</year>
;
<volume>3</volume>
:
<fpage>104</fpage>
<pub-id pub-id-type="pmid">23015797</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0124532.ref022">
<label>22</label>
<mixed-citation publication-type="journal">
<name>
<surname>Dakin</surname>
<given-names>CJ</given-names>
</name>
,
<name>
<surname>Luu</surname>
<given-names>BL</given-names>
</name>
,
<name>
<surname>van den Doel</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Inglis</surname>
<given-names>JT</given-names>
</name>
,
<name>
<surname>Blouin</surname>
<given-names>JS</given-names>
</name>
.
<article-title>Frequency-specific modulation of vestibular-evoked sway responses in humans</article-title>
.
<source>J Neurophysiol</source>
.
<year>2010</year>
;
<volume>103</volume>
:
<fpage>1048</fpage>
<lpage>1056</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1152/jn.00881.2009">10.1152/jn.00881.2009</ext-link>
</comment>
<pub-id pub-id-type="pmid">20032237</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0124532.ref023">
<label>23</label>
<mixed-citation publication-type="journal">
<name>
<surname>Iwasaki</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Yamamoto</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Togo</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Kinoshita</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Yoshifuji</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Fujimoto</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Yamasoba</surname>
<given-names>T</given-names>
</name>
.
<article-title>Noisy vestibular stimulation improves body balance in bilateral vestibulopathy</article-title>
.
<source>Neurology</source>
<year>2014</year>
;
<volume>82</volume>
:
<fpage>969</fpage>
<lpage>975</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1212/WNL.0000000000000215">10.1212/WNL.0000000000000215</ext-link>
</comment>
<pub-id pub-id-type="pmid">24532279</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0124532.ref024">
<label>24</label>
<mixed-citation publication-type="journal">
<name>
<surname>Dakin</surname>
<given-names>CJ</given-names>
</name>
,
<name>
<surname>Son</surname>
<given-names>GM</given-names>
</name>
,
<name>
<surname>Inglis</surname>
<given-names>JT</given-names>
</name>
,
<name>
<surname>Blouin</surname>
<given-names>JS</given-names>
</name>
.
<article-title>Frequency response of human vestibular reflexes characterized by stochastic stimuli</article-title>
.
<source>J Physiol</source>
.
<year>2007</year>
;
<volume>583</volume>
:
<fpage>1117</fpage>
<lpage>1127</lpage>
.
<pub-id pub-id-type="pmid">17640935</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0124532.ref025">
<label>25</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rosenberg</surname>
<given-names>JR</given-names>
</name>
,
<name>
<surname>Amjad</surname>
<given-names>AM</given-names>
</name>
,
<name>
<surname>Breeze</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Brillinger</surname>
<given-names>DR</given-names>
</name>
,
<name>
<surname>Halliday</surname>
<given-names>DM</given-names>
</name>
.
<article-title>The Fourier approach to the identification of functional coupling between neuronal spike trains</article-title>
.
<source>Prog Biophys Mol Biol</source>
.
<year>1989</year>
;
<volume>53</volume>
:
<fpage>1</fpage>
<lpage>31</lpage>
.
<pub-id pub-id-type="pmid">2682781</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0124532.ref026">
<label>26</label>
<mixed-citation publication-type="journal">
<name>
<surname>Day</surname>
<given-names>BL</given-names>
</name>
,
<name>
<surname>Reynolds</surname>
<given-names>RF</given-names>
</name>
.
<article-title>Vestibular reafference shapes voluntary movement</article-title>
.
<source>Curr Biol</source>
.
<year>2005</year>
;
<volume>15</volume>
:
<fpage>1390</fpage>
<lpage>1394</lpage>
.
<pub-id pub-id-type="pmid">16085491</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0124532.ref027">
<label>27</label>
<mixed-citation publication-type="journal">
<name>
<surname>Fitzpatrick</surname>
<given-names>RC</given-names>
</name>
,
<name>
<surname>Marsden</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Lord</surname>
<given-names>SR</given-names>
</name>
,
<name>
<surname>Day</surname>
<given-names>BL</given-names>
</name>
.
<article-title>Galvanic vestibular stimulation evokes sensations of body rotation</article-title>
.
<source>Neuroreport</source>
<year>2002</year>
;
<volume>13</volume>
:
<fpage>2379</fpage>
<lpage>2383</lpage>
.
<pub-id pub-id-type="pmid">12499833</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0124532.ref028">
<label>28</label>
<mixed-citation publication-type="journal">
<name>
<surname>Schneider</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Glasauer</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Dieterich</surname>
<given-names>M</given-names>
</name>
.
<article-title>Comparison of human ocular torsion patterns during natural and galvanic vestibular stimulation</article-title>
.
<source>J Neurophysiol</source>
.
<year>2002</year>
;
<volume>87</volume>
:
<fpage>2064</fpage>
<lpage>2073</lpage>
.
<pub-id pub-id-type="pmid">11929924</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0124532.ref029">
<label>29</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wardman</surname>
<given-names>DL</given-names>
</name>
,
<name>
<surname>Day</surname>
<given-names>BL</given-names>
</name>
,
<name>
<surname>Fitzpatrick</surname>
<given-names>RC</given-names>
</name>
.
<article-title>Position and velocity responses to galvanic vestibular stimulation during standing</article-title>
.
<source>J Physiol</source>
.
<year>2003</year>
;
<volume>549</volume>
:
<fpage>293</fpage>
<lpage>299</lpage>
.
<pub-id pub-id-type="pmid">12562970</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0124532.ref030">
<label>30</label>
<mixed-citation publication-type="journal">
<name>
<surname>Allum</surname>
<given-names>JH</given-names>
</name>
,
<name>
<surname>Adkin</surname>
<given-names>AL</given-names>
</name>
,
<name>
<surname>Carpenter</surname>
<given-names>MG</given-names>
</name>
,
<name>
<surname>Held-Ziolkowska</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Honegger</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Pierchala</surname>
<given-names>K</given-names>
</name>
.
<article-title>Trunk sway measures of postural stability during clinical balance tests: Effects of a unilateral vestibular deficit</article-title>
.
<source>Gait Posture</source>
<year>2001</year>
;
<volume>14</volume>
:
<fpage>227</fpage>
<lpage>237</lpage>
.
<pub-id pub-id-type="pmid">11600326</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0124532.ref031">
<label>31</label>
<mixed-citation publication-type="journal">
<name>
<surname>Basta</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Todt</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Scherer</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Clarke</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Ernst</surname>
<given-names>A</given-names>
</name>
.
<article-title>Postural control in otolith disorders</article-title>
.
<source>Hum Movement Sci</source>
.
<year>2005</year>
;
<volume>24</volume>
:
<fpage>268</fpage>
<lpage>279</lpage>
.
<pub-id pub-id-type="pmid">15953652</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0124532.ref032">
<label>32</label>
<mixed-citation publication-type="journal">
<name>
<surname>Joyce</surname>
<given-names>GC</given-names>
</name>
,
<name>
<surname>Rack</surname>
<given-names>PM</given-names>
</name>
,
<name>
<surname>Ross</surname>
<given-names>HF</given-names>
</name>
.
<article-title>The forces generated at the human elbow joint in response to imposed sinusoidal movements of the forearm</article-title>
.
<source>J Physiol</source>
.
<year>1974</year>
;
<volume>240</volume>
:
<fpage>351</fpage>
<lpage>374</lpage>
.
<pub-id pub-id-type="pmid">4420490</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0124532.ref033">
<label>33</label>
<mixed-citation publication-type="journal">
<name>
<surname>Fitzpatrick</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Burke</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Gandevia</surname>
<given-names>SC</given-names>
</name>
.
<article-title>Loop gain of reflexes controlling human standing measured with the use of postural and vestibular disturbances</article-title>
.
<source>J Neurophysiol</source>
.
<year>1996</year>
;
<volume>76</volume>
:
<fpage>3994</fpage>
<lpage>4008</lpage>
.
<pub-id pub-id-type="pmid">8985895</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0124532.ref034">
<label>34</label>
<mixed-citation publication-type="journal">
<name>
<surname>Guerraz</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Day</surname>
<given-names>B</given-names>
</name>
.
<article-title>Expectation and the vestibular control of balance</article-title>
.
<source>J Cog Neurosci</source>
.
<year>2005</year>
;
<volume>17</volume>
:
<fpage>463</fpage>
<lpage>469</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0124532.ref035">
<label>35</label>
<mixed-citation publication-type="journal">
<name>
<surname>Fetsch</surname>
<given-names>CR</given-names>
</name>
,
<name>
<surname>Turner</surname>
<given-names>AH</given-names>
</name>
,
<name>
<surname>DeAngelis</surname>
<given-names>GC</given-names>
</name>
,
<name>
<surname>Angelaki</surname>
<given-names>DE</given-names>
</name>
.
<article-title>Dynamic reweighting of visual and vestibular cues during self-motion perception</article-title>
.
<source>J Neurosci</source>
.
<year>2009</year>
;
<volume>29</volume>
:
<fpage>15601</fpage>
<lpage>15612</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1523/JNEUROSCI.2574-09.2009">10.1523/JNEUROSCI.2574-09.2009</ext-link>
</comment>
<pub-id pub-id-type="pmid">20007484</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0124532.ref036">
<label>36</label>
<mixed-citation publication-type="journal">
<name>
<surname>Curthoys</surname>
<given-names>IS</given-names>
</name>
,
<name>
<surname>Halmagyi</surname>
<given-names>GM</given-names>
</name>
.
<article-title>Vestibular compensation: A review of the oculomotor, neural, and clinical consequences of unilateral vestibular loss</article-title>
.
<source>J Vest Res</source>
.
<year>1995</year>
;
<volume>5</volume>
:
<fpage>67</fpage>
<lpage>107</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0124532.ref037">
<label>37</label>
<mixed-citation publication-type="journal">
<name>
<surname>von Holst</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Mittelstaedt</surname>
<given-names>H</given-names>
</name>
.
<article-title>Das reafferenzprinzip</article-title>
.
<source>Naturwissenschaften</source>
<year>1959</year>
;
<volume>7</volume>
:
<fpage>1109</fpage>
<lpage>1116</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0124532.ref038">
<label>38</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wolpert</surname>
<given-names>DM</given-names>
</name>
,
<name>
<surname>Ghahramani</surname>
<given-names>Z</given-names>
</name>
,
<name>
<surname>Jordan</surname>
<given-names>MI</given-names>
</name>
.
<article-title>An internal model for sensorimotor integration</article-title>
.
<source>Science</source>
<year>1995</year>
;
<volume>269</volume>
:
<fpage>1880</fpage>
<lpage>1882</lpage>
.
<pub-id pub-id-type="pmid">7569931</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0124532.ref039">
<label>39</label>
<mixed-citation publication-type="journal">
<name>
<surname>Roy</surname>
<given-names>JE</given-names>
</name>
,
<name>
<surname>Cullen</surname>
<given-names>KE</given-names>
</name>
.
<article-title>Selective processing of vestibular reafference during self-generated head motion</article-title>
.
<source>J Neurosci</source>
<year>2001</year>
;
<volume>21</volume>
:
<fpage>2131</fpage>
<lpage>2142</lpage>
.
<pub-id pub-id-type="pmid">11245697</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0124532.ref040">
<label>40</label>
<mixed-citation publication-type="journal">
<name>
<surname>Roy</surname>
<given-names>JE</given-names>
</name>
,
<name>
<surname>Cullen</surname>
<given-names>KE</given-names>
</name>
.
<article-title>Dissociating self-generated from passively applied head motion: neural mechanisms in the vestibular nuclei</article-title>
.
<source>J Neurosci</source>
<year>2004</year>
;
<volume>4</volume>
:
<fpage>2102</fpage>
<lpage>2111</lpage>
.
<pub-id pub-id-type="pmid">14999061</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0124532.ref041">
<label>41</label>
<mixed-citation publication-type="journal">
<name>
<surname>Fitzpatrick</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Burke</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Gandevia</surname>
<given-names>SC</given-names>
</name>
.
<article-title>Task-dependent reflex responses and movement illusions evoked by galvanic vestibular stimulation in standing humans</article-title>
.
<source>J Physiol</source>
.
<year>1994</year>
;
<volume>478</volume>
:
<fpage>363</fpage>
<lpage>372</lpage>
.
<pub-id pub-id-type="pmid">7965852</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0124532.ref042">
<label>42</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bacsi</surname>
<given-names>AM</given-names>
</name>
,
<name>
<surname>Colebatch</surname>
<given-names>JG</given-names>
</name>
.
<article-title>Evidence for reflex and perceptual vestibular contributions to postural control</article-title>
.
<source>Exp Brain Res</source>
.
<year>2005</year>
;
<volume>160</volume>
:
<fpage>22</fpage>
<lpage>28</lpage>
.
<pub-id pub-id-type="pmid">15322784</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0124532.ref043">
<label>43</label>
<mixed-citation publication-type="journal">
<name>
<surname>Brooks</surname>
<given-names>JX</given-names>
</name>
,
<name>
<surname>Cullen</surname>
<given-names>KE</given-names>
</name>
.
<article-title>The primate cerebellum selectively encodes unexpected self-motion</article-title>
.
<source>Curr Biol</source>
<year>2013</year>
;
<volume>3</volume>
:
<fpage>947</fpage>
<lpage>955</lpage>
.
<pub-id pub-id-type="pmid">23684973</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0124532.ref044">
<label>44</label>
<mixed-citation publication-type="journal">
<name>
<surname>Brooks</surname>
<given-names>JX</given-names>
</name>
,
<name>
<surname>Cullen</surname>
<given-names>KE</given-names>
</name>
.
<article-title>Early vestibular processing does not discriminate active from passive self-motion if there is a discrepancy between predicted and actual proprioceptive feedback</article-title>
.
<source>Neurophysiol</source>
.
<year>2014</year>
;
<volume>111</volume>
:
<fpage>2465</fpage>
<lpage>2478</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1152/jn.00600.2013">10.1152/jn.00600.2013</ext-link>
</comment>
<pub-id pub-id-type="pmid">24671531</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>Canada</li>
</country>
</list>
<tree>
<country name="Canada">
<noRegion>
<name sortKey="Heroux, Martin E" sort="Heroux, Martin E" uniqKey="Heroux M" first="Martin E" last="Héroux">Martin E. Héroux</name>
</noRegion>
<name sortKey="Blouin, Jean Sebastien" sort="Blouin, Jean Sebastien" uniqKey="Blouin J" first="Jean-Sébastien" last="Blouin">Jean-Sébastien Blouin</name>
<name sortKey="Blouin, Jean Sebastien" sort="Blouin, Jean Sebastien" uniqKey="Blouin J" first="Jean-Sébastien" last="Blouin">Jean-Sébastien Blouin</name>
<name sortKey="Law, Tammy C Y" sort="Law, Tammy C Y" uniqKey="Law T" first="Tammy C. Y." last="Law">Tammy C. Y. Law</name>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Fitzpatrick, Richard C" sort="Fitzpatrick, Richard C" uniqKey="Fitzpatrick R" first="Richard C." last="Fitzpatrick">Richard C. Fitzpatrick</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003871 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 003871 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     PMC:4403994
   |texte=   Cross-Modal Calibration of Vestibular Afference for Human Balance
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:25894558" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024