Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Decoding upper limb residual muscle activity in severe chronic stroke

Identifieur interne : 003663 ( Ncbi/Merge ); précédent : 003662; suivant : 003664

Decoding upper limb residual muscle activity in severe chronic stroke

Auteurs : Ander Ramos-Murguialday [Allemagne, Espagne] ; Eliana García-Cossio [Allemagne] ; Armin Walter [Allemagne] ; Woosang Cho [Allemagne, Corée du Sud] ; Doris Broetz [Allemagne] ; Martin Bogdan [Allemagne] ; Leonardo G. Cohen [États-Unis] ; Niels Birbaumer [Allemagne, Italie]

Source :

RBID : PMC:4301668

Abstract

Objective

Stroke is a leading cause of long-term motor disability. Stroke patients with severe hand weakness do not profit from rehabilitative treatments. Recently, brain-controlled robotics and sequential functional electrical stimulation allowed some improvement. However, for such therapies to succeed, it is required to decode patients' intentions for different arm movements. Here, we evaluated whether residual muscle activity could be used to predict movements from paralyzed joints in severely impaired chronic stroke patients.

Methods

Muscle activity was recorded with surface-electromyography (EMG) in 41 patients, with severe hand weakness (Fugl-Meyer Assessment [FMA] hand subscores of 2.93 ± 2.7), in order to decode their intention to perform six different motions of the affected arm, required for voluntary muscle activity and to control neuroprostheses. Decoding of paretic and nonparetic muscle activity was performed using a feed-forward neural network classifier. The contribution of each muscle to the intended movement was determined.

Results

Decoding of up to six arm movements was accurate (>65%) in more than 97% of nonparetic and 46% of paretic muscles.

Interpretation

These results demonstrate that some level of neuronal innervation to the paretic muscle remains preserved and can be used to implement neurorehabilitative treatments in 46% of patients with severe paralysis and extensive cortical and/or subcortical lesions. Such decoding may allow these patients for the first time after stroke to control different motions of arm prostheses through muscle-triggered rehabilitative treatments.


Url:
DOI: 10.1002/acn3.122
PubMed: 25642429
PubMed Central: 4301668

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:4301668

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Decoding upper limb residual muscle activity in severe chronic stroke</title>
<author>
<name sortKey="Ramos Murguialday, Ander" sort="Ramos Murguialday, Ander" uniqKey="Ramos Murguialday A" first="Ander" last="Ramos-Murguialday">Ander Ramos-Murguialday</name>
<affiliation wicri:level="3">
<nlm:aff id="au1">
<institution>Institute of Medical Psychology and Behavioral Neurobiology and MEG Center, University of Tübingen</institution>
<addr-line>Silcherstraße 5, 72076, Tübingen, Germany</addr-line>
</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Silcherstraße 5, 72076, Tübingen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Tübingen</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="au2">
<institution>TECNALIA</institution>
<addr-line>Mikeletegi Pasalekua 1, 20009, San Sebastian, Spain</addr-line>
</nlm:aff>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Mikeletegi Pasalekua 1, 20009, San Sebastian</wicri:regionArea>
<wicri:noRegion>San Sebastian</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Garcia Cossio, Eliana" sort="Garcia Cossio, Eliana" uniqKey="Garcia Cossio E" first="Eliana" last="García-Cossio">Eliana García-Cossio</name>
<affiliation wicri:level="3">
<nlm:aff id="au1">
<institution>Institute of Medical Psychology and Behavioral Neurobiology and MEG Center, University of Tübingen</institution>
<addr-line>Silcherstraße 5, 72076, Tübingen, Germany</addr-line>
</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Silcherstraße 5, 72076, Tübingen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Tübingen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Walter, Armin" sort="Walter, Armin" uniqKey="Walter A" first="Armin" last="Walter">Armin Walter</name>
<affiliation wicri:level="3">
<nlm:aff id="au3">
<institution>Department of Computer Engineering, Wilhelm-Schickard-Institute, University of Tübingen</institution>
<addr-line>Sand 14, 72076, Tübingen, Germany</addr-line>
</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Sand 14, 72076, Tübingen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Tübingen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cho, Woosang" sort="Cho, Woosang" uniqKey="Cho W" first="Woosang" last="Cho">Woosang Cho</name>
<affiliation wicri:level="3">
<nlm:aff id="au1">
<institution>Institute of Medical Psychology and Behavioral Neurobiology and MEG Center, University of Tübingen</institution>
<addr-line>Silcherstraße 5, 72076, Tübingen, Germany</addr-line>
</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Silcherstraße 5, 72076, Tübingen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Tübingen</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="au4">
<institution>Daegu Gyeongbuk Institute of Science and Technology (DGIST)</institution>
<addr-line>333, Techno jungang-daero, Hyeonpung-myeon, Dalseong-gun, 711-873, Daegu, Korea</addr-line>
</nlm:aff>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>333, Techno jungang-daero, Hyeonpung-myeon, Dalseong-gun, 711-873, Daegu</wicri:regionArea>
<wicri:noRegion>Daegu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Broetz, Doris" sort="Broetz, Doris" uniqKey="Broetz D" first="Doris" last="Broetz">Doris Broetz</name>
<affiliation wicri:level="3">
<nlm:aff id="au1">
<institution>Institute of Medical Psychology and Behavioral Neurobiology and MEG Center, University of Tübingen</institution>
<addr-line>Silcherstraße 5, 72076, Tübingen, Germany</addr-line>
</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Silcherstraße 5, 72076, Tübingen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Tübingen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bogdan, Martin" sort="Bogdan, Martin" uniqKey="Bogdan M" first="Martin" last="Bogdan">Martin Bogdan</name>
<affiliation wicri:level="3">
<nlm:aff id="au3">
<institution>Department of Computer Engineering, Wilhelm-Schickard-Institute, University of Tübingen</institution>
<addr-line>Sand 14, 72076, Tübingen, Germany</addr-line>
</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Sand 14, 72076, Tübingen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Tübingen</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:aff id="au5">
<institution>Department of Computer Engineering, University of Leipzig</institution>
<addr-line>Augustusplatz 10, 04109, Leipzig, Germany</addr-line>
</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Augustusplatz 10, 04109, Leipzig</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Saxe (Land)</region>
<region type="district" nuts="2">District de Leipzig</region>
<settlement type="city">Leipzig</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cohen, Leonardo G" sort="Cohen, Leonardo G" uniqKey="Cohen L" first="Leonardo G" last="Cohen">Leonardo G. Cohen</name>
<affiliation wicri:level="2">
<nlm:aff id="au6">
<institution>Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institute of Health</institution>
<addr-line>10 Center Drive, 20892, Bethesda, Maryland</addr-line>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>10 Center Drive, 20892, Bethesda</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Birbaumer, Niels" sort="Birbaumer, Niels" uniqKey="Birbaumer N" first="Niels" last="Birbaumer">Niels Birbaumer</name>
<affiliation wicri:level="3">
<nlm:aff id="au1">
<institution>Institute of Medical Psychology and Behavioral Neurobiology and MEG Center, University of Tübingen</institution>
<addr-line>Silcherstraße 5, 72076, Tübingen, Germany</addr-line>
</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Silcherstraße 5, 72076, Tübingen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Tübingen</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="au7">
<institution>Ospedale San Camillo, Istituto di Ricovero e Cura a Carattere Scientifico</institution>
<addr-line>Via Alberoni, 70, 30126, Venezia, Italy</addr-line>
</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Via Alberoni, 70, 30126, Venezia</wicri:regionArea>
<wicri:noRegion>Venezia</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="au8">
<institution>German Center for Diabetes Research (DZD)</institution>
<addr-line>Tubingen, Germany</addr-line>
</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Tubingen</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25642429</idno>
<idno type="pmc">4301668</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4301668</idno>
<idno type="RBID">PMC:4301668</idno>
<idno type="doi">10.1002/acn3.122</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">001B70</idno>
<idno type="wicri:Area/Pmc/Curation">001B70</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000D22</idno>
<idno type="wicri:Area/Ncbi/Merge">003663</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Decoding upper limb residual muscle activity in severe chronic stroke</title>
<author>
<name sortKey="Ramos Murguialday, Ander" sort="Ramos Murguialday, Ander" uniqKey="Ramos Murguialday A" first="Ander" last="Ramos-Murguialday">Ander Ramos-Murguialday</name>
<affiliation wicri:level="3">
<nlm:aff id="au1">
<institution>Institute of Medical Psychology and Behavioral Neurobiology and MEG Center, University of Tübingen</institution>
<addr-line>Silcherstraße 5, 72076, Tübingen, Germany</addr-line>
</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Silcherstraße 5, 72076, Tübingen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Tübingen</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="au2">
<institution>TECNALIA</institution>
<addr-line>Mikeletegi Pasalekua 1, 20009, San Sebastian, Spain</addr-line>
</nlm:aff>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Mikeletegi Pasalekua 1, 20009, San Sebastian</wicri:regionArea>
<wicri:noRegion>San Sebastian</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Garcia Cossio, Eliana" sort="Garcia Cossio, Eliana" uniqKey="Garcia Cossio E" first="Eliana" last="García-Cossio">Eliana García-Cossio</name>
<affiliation wicri:level="3">
<nlm:aff id="au1">
<institution>Institute of Medical Psychology and Behavioral Neurobiology and MEG Center, University of Tübingen</institution>
<addr-line>Silcherstraße 5, 72076, Tübingen, Germany</addr-line>
</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Silcherstraße 5, 72076, Tübingen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Tübingen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Walter, Armin" sort="Walter, Armin" uniqKey="Walter A" first="Armin" last="Walter">Armin Walter</name>
<affiliation wicri:level="3">
<nlm:aff id="au3">
<institution>Department of Computer Engineering, Wilhelm-Schickard-Institute, University of Tübingen</institution>
<addr-line>Sand 14, 72076, Tübingen, Germany</addr-line>
</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Sand 14, 72076, Tübingen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Tübingen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cho, Woosang" sort="Cho, Woosang" uniqKey="Cho W" first="Woosang" last="Cho">Woosang Cho</name>
<affiliation wicri:level="3">
<nlm:aff id="au1">
<institution>Institute of Medical Psychology and Behavioral Neurobiology and MEG Center, University of Tübingen</institution>
<addr-line>Silcherstraße 5, 72076, Tübingen, Germany</addr-line>
</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Silcherstraße 5, 72076, Tübingen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Tübingen</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="au4">
<institution>Daegu Gyeongbuk Institute of Science and Technology (DGIST)</institution>
<addr-line>333, Techno jungang-daero, Hyeonpung-myeon, Dalseong-gun, 711-873, Daegu, Korea</addr-line>
</nlm:aff>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>333, Techno jungang-daero, Hyeonpung-myeon, Dalseong-gun, 711-873, Daegu</wicri:regionArea>
<wicri:noRegion>Daegu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Broetz, Doris" sort="Broetz, Doris" uniqKey="Broetz D" first="Doris" last="Broetz">Doris Broetz</name>
<affiliation wicri:level="3">
<nlm:aff id="au1">
<institution>Institute of Medical Psychology and Behavioral Neurobiology and MEG Center, University of Tübingen</institution>
<addr-line>Silcherstraße 5, 72076, Tübingen, Germany</addr-line>
</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Silcherstraße 5, 72076, Tübingen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Tübingen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bogdan, Martin" sort="Bogdan, Martin" uniqKey="Bogdan M" first="Martin" last="Bogdan">Martin Bogdan</name>
<affiliation wicri:level="3">
<nlm:aff id="au3">
<institution>Department of Computer Engineering, Wilhelm-Schickard-Institute, University of Tübingen</institution>
<addr-line>Sand 14, 72076, Tübingen, Germany</addr-line>
</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Sand 14, 72076, Tübingen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Tübingen</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:aff id="au5">
<institution>Department of Computer Engineering, University of Leipzig</institution>
<addr-line>Augustusplatz 10, 04109, Leipzig, Germany</addr-line>
</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Augustusplatz 10, 04109, Leipzig</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Saxe (Land)</region>
<region type="district" nuts="2">District de Leipzig</region>
<settlement type="city">Leipzig</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cohen, Leonardo G" sort="Cohen, Leonardo G" uniqKey="Cohen L" first="Leonardo G" last="Cohen">Leonardo G. Cohen</name>
<affiliation wicri:level="2">
<nlm:aff id="au6">
<institution>Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institute of Health</institution>
<addr-line>10 Center Drive, 20892, Bethesda, Maryland</addr-line>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>10 Center Drive, 20892, Bethesda</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Birbaumer, Niels" sort="Birbaumer, Niels" uniqKey="Birbaumer N" first="Niels" last="Birbaumer">Niels Birbaumer</name>
<affiliation wicri:level="3">
<nlm:aff id="au1">
<institution>Institute of Medical Psychology and Behavioral Neurobiology and MEG Center, University of Tübingen</institution>
<addr-line>Silcherstraße 5, 72076, Tübingen, Germany</addr-line>
</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Silcherstraße 5, 72076, Tübingen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Tübingen</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="au7">
<institution>Ospedale San Camillo, Istituto di Ricovero e Cura a Carattere Scientifico</institution>
<addr-line>Via Alberoni, 70, 30126, Venezia, Italy</addr-line>
</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Via Alberoni, 70, 30126, Venezia</wicri:regionArea>
<wicri:noRegion>Venezia</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="au8">
<institution>German Center for Diabetes Research (DZD)</institution>
<addr-line>Tubingen, Germany</addr-line>
</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Tubingen</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Annals of Clinical and Translational Neurology</title>
<idno type="ISSN">2328-9503</idno>
<idno type="eISSN">2328-9503</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Objective</title>
<p>Stroke is a leading cause of long-term motor disability. Stroke patients with severe hand weakness do not profit from rehabilitative treatments. Recently, brain-controlled robotics and sequential functional electrical stimulation allowed some improvement. However, for such therapies to succeed, it is required to decode patients' intentions for different arm movements. Here, we evaluated whether residual muscle activity could be used to predict movements from paralyzed joints in severely impaired chronic stroke patients.</p>
</sec>
<sec sec-type="methods">
<title>Methods</title>
<p>Muscle activity was recorded with surface-electromyography (EMG) in 41 patients, with severe hand weakness (Fugl-Meyer Assessment [FMA] hand subscores of 2.93 ± 2.7), in order to decode their intention to perform six different motions of the affected arm, required for voluntary muscle activity and to control neuroprostheses. Decoding of paretic and nonparetic muscle activity was performed using a feed-forward neural network classifier. The contribution of each muscle to the intended movement was determined.</p>
</sec>
<sec>
<title>Results</title>
<p>Decoding of up to six arm movements was accurate (>65%) in more than 97% of nonparetic and 46% of paretic muscles.</p>
</sec>
<sec>
<title>Interpretation</title>
<p>These results demonstrate that some level of neuronal innervation to the paretic muscle remains preserved and can be used to implement neurorehabilitative treatments in 46% of patients with severe paralysis and extensive cortical and/or subcortical lesions. Such decoding may allow these patients for the first time after stroke to control different motions of arm prostheses through muscle-triggered rehabilitative treatments.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Cirstea, M" uniqKey="Cirstea M">M Cirstea</name>
</author>
<author>
<name sortKey="Ptito, A" uniqKey="Ptito A">A Ptito</name>
</author>
<author>
<name sortKey="Levin, M" uniqKey="Levin M">M Levin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hendricks, H" uniqKey="Hendricks H">H Hendricks</name>
</author>
<author>
<name sortKey="Van Limbeek, J" uniqKey="Van Limbeek J">J van Limbeek</name>
</author>
<author>
<name sortKey="Geurts, A" uniqKey="Geurts A">A Geurts</name>
</author>
<author>
<name sortKey="Zwarts, M" uniqKey="Zwarts M">M Zwarts</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miller, E" uniqKey="Miller E">E Miller</name>
</author>
<author>
<name sortKey="Murray, L" uniqKey="Murray L">L Murray</name>
</author>
<author>
<name sortKey="Richards, L" uniqKey="Richards L">L Richards</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sunderland, A" uniqKey="Sunderland A">A Sunderland</name>
</author>
<author>
<name sortKey="Tinson, D" uniqKey="Tinson D">D Tinson</name>
</author>
<author>
<name sortKey="Bradley, E" uniqKey="Bradley E">E Bradley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wolf, S" uniqKey="Wolf S">S Wolf</name>
</author>
<author>
<name sortKey="Winstein, C" uniqKey="Winstein C">C Winstein</name>
</author>
<author>
<name sortKey="Miller, J" uniqKey="Miller J">J Miller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Merians, A" uniqKey="Merians A">A Merians</name>
</author>
<author>
<name sortKey="Poizner, H" uniqKey="Poizner H">H Poizner</name>
</author>
<author>
<name sortKey="Boian, R" uniqKey="Boian R">R Boian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wolf, S" uniqKey="Wolf S">S Wolf</name>
</author>
<author>
<name sortKey="Binder Macleod, S" uniqKey="Binder Macleod S">S Binder-Macleod</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ramos Murguialday, A" uniqKey="Ramos Murguialday A">A Ramos-Murguialday</name>
</author>
<author>
<name sortKey="Broetz, D" uniqKey="Broetz D">D Broetz</name>
</author>
<author>
<name sortKey="Rea, M" uniqKey="Rea M">M Rea</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Darling, W" uniqKey="Darling W">W Darling</name>
</author>
<author>
<name sortKey="Cole, K" uniqKey="Cole K">K Cole</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pfurtscheller, G" uniqKey="Pfurtscheller G">G Pfurtscheller</name>
</author>
<author>
<name sortKey="Muller, G" uniqKey="Muller G">G Müller</name>
</author>
<author>
<name sortKey="Pfurtscheller, J" uniqKey="Pfurtscheller J">J Pfurtscheller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Murguialday, Ar" uniqKey="Murguialday A">AR Murguialday</name>
</author>
<author>
<name sortKey="Aggarwal, V" uniqKey="Aggarwal V">V Aggarwal</name>
</author>
<author>
<name sortKey="Chatterjee, A" uniqKey="Chatterjee A">A Chatterjee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hochberg, Lr" uniqKey="Hochberg L">LR Hochberg</name>
</author>
<author>
<name sortKey="Bacher, D" uniqKey="Bacher D">D Bacher</name>
</author>
<author>
<name sortKey="Jarosiewicz, B" uniqKey="Jarosiewicz B">B Jarosiewicz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Collinger, J" uniqKey="Collinger J">J Collinger</name>
</author>
<author>
<name sortKey="Wodlinger, B" uniqKey="Wodlinger B">B Wodlinger</name>
</author>
<author>
<name sortKey="Downey, J" uniqKey="Downey J">J Downey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Buch, E" uniqKey="Buch E">E Buch</name>
</author>
<author>
<name sortKey="Weber, C" uniqKey="Weber C">C Weber</name>
</author>
<author>
<name sortKey="Cohen, Lg" uniqKey="Cohen L">LG Cohen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gu, Y" uniqKey="Gu Y">Y Gu</name>
</author>
<author>
<name sortKey="Farina, D" uniqKey="Farina D">D Farina</name>
</author>
<author>
<name sortKey="Murguialday, Ar" uniqKey="Murguialday A">AR Murguialday</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ramos Murguialday, A" uniqKey="Ramos Murguialday A">A Ramos-Murguialday</name>
</author>
<author>
<name sortKey="Schurholz, M" uniqKey="Schurholz M">M Schürholz</name>
</author>
<author>
<name sortKey="Caggiano, V" uniqKey="Caggiano V">V Caggiano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ang, K" uniqKey="Ang K">K Ang</name>
</author>
<author>
<name sortKey="Guan, C" uniqKey="Guan C">C Guan</name>
</author>
<author>
<name sortKey="Chua, K" uniqKey="Chua K">K Chua</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gomez Rodriguez, M" uniqKey="Gomez Rodriguez M">M Gomez-Rodriguez</name>
</author>
<author>
<name sortKey="Peters, J" uniqKey="Peters J">J Peters</name>
</author>
<author>
<name sortKey="Hill, J" uniqKey="Hill J">J Hill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Daly, J" uniqKey="Daly J">J Daly</name>
</author>
<author>
<name sortKey="Cheng, R" uniqKey="Cheng R">R Cheng</name>
</author>
<author>
<name sortKey="Rogers, J" uniqKey="Rogers J">J Rogers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Buch, E" uniqKey="Buch E">E Buch</name>
</author>
<author>
<name sortKey="Modir, A" uniqKey="Modir A">A Modir</name>
</author>
<author>
<name sortKey="Fourkas, A" uniqKey="Fourkas A">A Fourkas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bradberry, Tj" uniqKey="Bradberry T">TJ Bradberry</name>
</author>
<author>
<name sortKey="Gentili, Rj" uniqKey="Gentili R">RJ Gentili</name>
</author>
<author>
<name sortKey="Contreras Vidal, Jl" uniqKey="Contreras Vidal J">JL Contreras-Vidal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Antelis, M" uniqKey="Antelis M">M Antelis</name>
</author>
<author>
<name sortKey="Montesano, L" uniqKey="Montesano L">L Montesano</name>
</author>
<author>
<name sortKey="Ramos Murguialday, A" uniqKey="Ramos Murguialday A">A Ramos-Murguialday</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Waldert, S" uniqKey="Waldert S">S Waldert</name>
</author>
<author>
<name sortKey="Preissl, H" uniqKey="Preissl H">H Preissl</name>
</author>
<author>
<name sortKey="Demandt, E" uniqKey="Demandt E">E Demandt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sitaram, R" uniqKey="Sitaram R">R Sitaram</name>
</author>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H Zhang</name>
</author>
<author>
<name sortKey="Guan, C" uniqKey="Guan C">C Guan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tenore, F" uniqKey="Tenore F">F Tenore</name>
</author>
<author>
<name sortKey="Ramos, A" uniqKey="Ramos A">A Ramos</name>
</author>
<author>
<name sortKey="Fahmy, A" uniqKey="Fahmy A">A Fahmy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tenore, F" uniqKey="Tenore F">F Tenore</name>
</author>
<author>
<name sortKey="Ramos, Murguialday" uniqKey="Ramos M">Murguialday Ramos</name>
</author>
<author>
<name sortKey="A, Fahmya" uniqKey="A F">FahmyA A</name>
</author>
<author>
<name sortKey="Acharya, S" uniqKey="Acharya S">S Acharya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parker, P" uniqKey="Parker P">P Parker</name>
</author>
<author>
<name sortKey="Englehart, K" uniqKey="Englehart K">K Englehart</name>
</author>
<author>
<name sortKey="Hudgins, B" uniqKey="Hudgins B">B Hudgins</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cipriani, C" uniqKey="Cipriani C">C Cipriani</name>
</author>
<author>
<name sortKey="Zaccone, F" uniqKey="Zaccone F">F Zaccone</name>
</author>
<author>
<name sortKey="Micera, S" uniqKey="Micera S">S Micera</name>
</author>
<author>
<name sortKey="Carrozza, M" uniqKey="Carrozza M">M Carrozza</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Englehart, K" uniqKey="Englehart K">K Englehart</name>
</author>
<author>
<name sortKey="Hudgins, B" uniqKey="Hudgins B">B Hudgins</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Crow, J" uniqKey="Crow J">J Crow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baskett, J" uniqKey="Baskett J">J Baskett</name>
</author>
<author>
<name sortKey="Marshall, H" uniqKey="Marshall H">H Marshall</name>
</author>
<author>
<name sortKey="Broad, J" uniqKey="Broad J">J Broad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Farry, Ka" uniqKey="Farry K">KA Farry</name>
</author>
<author>
<name sortKey="Walker, Id" uniqKey="Walker I">ID Walker</name>
</author>
<author>
<name sortKey="Baraniuk, Rg" uniqKey="Baraniuk R">RG Baraniuk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, S" uniqKey="Lee S">S Lee</name>
</author>
<author>
<name sortKey="Wilson, K" uniqKey="Wilson K">K Wilson</name>
</author>
<author>
<name sortKey="Lock, B" uniqKey="Lock B">B Lock</name>
</author>
<author>
<name sortKey="Kamper, D" uniqKey="Kamper D">D Kamper</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, Z" uniqKey="Xu Z">Z Xu</name>
</author>
<author>
<name sortKey="Zhou, P" uniqKey="Zhou P">P Zhou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Basmajian, Jv" uniqKey="Basmajian J">JV Basmajian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Merletti, R" uniqKey="Merletti R">R Merletti</name>
</author>
<author>
<name sortKey="Holobar, A" uniqKey="Holobar A">A Holobar</name>
</author>
<author>
<name sortKey="Farina, D" uniqKey="Farina D">D Farina</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Landau, W" uniqKey="Landau W">W Landau</name>
</author>
<author>
<name sortKey="Sahrmann, S" uniqKey="Sahrmann S">S Sahrmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krakauer, Jw" uniqKey="Krakauer J">JW Krakauer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zaami, B" uniqKey="Zaami B">B Zaami</name>
</author>
<author>
<name sortKey="Edgley, S" uniqKey="Edgley S">S Edgley</name>
</author>
<author>
<name sortKey="Soteropoulos, D" uniqKey="Soteropoulos D">D Soteropoulos</name>
</author>
<author>
<name sortKey="Baker, S" uniqKey="Baker S">S Baker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Belhaj Saif, A" uniqKey="Belhaj Saif A">A Belhaj-Saif</name>
</author>
<author>
<name sortKey="Cheney, P" uniqKey="Cheney P">P Cheney</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yao, J" uniqKey="Yao J">J Yao</name>
</author>
<author>
<name sortKey="Chen, A" uniqKey="Chen A">A Chen</name>
</author>
<author>
<name sortKey="Carmona, C" uniqKey="Carmona C">C Carmona</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smith, R" uniqKey="Smith R">R Smith</name>
</author>
<author>
<name sortKey="Tenore, F" uniqKey="Tenore F">F Tenore</name>
</author>
<author>
<name sortKey="Huberdeau, D" uniqKey="Huberdeau D">D Huberdeau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fougner, A" uniqKey="Fougner A">A Fougner</name>
</author>
<author>
<name sortKey="Scheme, E" uniqKey="Scheme E">E Scheme</name>
</author>
<author>
<name sortKey="Chan, A" uniqKey="Chan A">A Chan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cesqui, B" uniqKey="Cesqui B">B Cesqui</name>
</author>
<author>
<name sortKey="Tropea, P" uniqKey="Tropea P">P Tropea</name>
</author>
<author>
<name sortKey="Micera, S" uniqKey="Micera S">S Micera</name>
</author>
<author>
<name sortKey="Krebs, H" uniqKey="Krebs H">H Krebs</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Borton, D" uniqKey="Borton D">D Borton</name>
</author>
<author>
<name sortKey="Micera, S" uniqKey="Micera S">S Micera</name>
</author>
<author>
<name sortKey="Millan, Jr" uniqKey="Millan J">JR Millán</name>
</author>
<author>
<name sortKey="Courtine, G" uniqKey="Courtine G">G Courtine</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Raspopovic, S" uniqKey="Raspopovic S">S Raspopovic</name>
</author>
<author>
<name sortKey="Capogrosso, M" uniqKey="Capogrosso M">M Capogrosso</name>
</author>
<author>
<name sortKey="Petrini, Fm" uniqKey="Petrini F">FM Petrini</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Ann Clin Transl Neurol</journal-id>
<journal-id journal-id-type="iso-abbrev">Ann Clin Transl Neurol</journal-id>
<journal-id journal-id-type="publisher-id">acn3</journal-id>
<journal-title-group>
<journal-title>Annals of Clinical and Translational Neurology</journal-title>
</journal-title-group>
<issn pub-type="ppub">2328-9503</issn>
<issn pub-type="epub">2328-9503</issn>
<publisher>
<publisher-name>BlackWell Publishing Ltd</publisher-name>
<publisher-loc>Oxford, UK</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25642429</article-id>
<article-id pub-id-type="pmc">4301668</article-id>
<article-id pub-id-type="doi">10.1002/acn3.122</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Articles</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Decoding upper limb residual muscle activity in severe chronic stroke</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Ramos-Murguialday</surname>
<given-names>Ander</given-names>
</name>
<xref ref-type="aff" rid="au1">1</xref>
<xref ref-type="aff" rid="au2">2</xref>
<xref ref-type="author-notes" rid="fn1">a</xref>
<xref ref-type="corresp" rid="cor1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>García-Cossio</surname>
<given-names>Eliana</given-names>
</name>
<xref ref-type="aff" rid="au1">1</xref>
<xref ref-type="author-notes" rid="fn1">a</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Walter</surname>
<given-names>Armin</given-names>
</name>
<xref ref-type="aff" rid="au3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Cho</surname>
<given-names>Woosang</given-names>
</name>
<xref ref-type="aff" rid="au1">1</xref>
<xref ref-type="aff" rid="au4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Broetz</surname>
<given-names>Doris</given-names>
</name>
<xref ref-type="aff" rid="au1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Bogdan</surname>
<given-names>Martin</given-names>
</name>
<xref ref-type="aff" rid="au3">3</xref>
<xref ref-type="aff" rid="au5">5</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Cohen</surname>
<given-names>Leonardo G</given-names>
</name>
<xref ref-type="aff" rid="au6">6</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Birbaumer</surname>
<given-names>Niels</given-names>
</name>
<xref ref-type="aff" rid="au1">1</xref>
<xref ref-type="aff" rid="au7">7</xref>
<xref ref-type="aff" rid="au8">8</xref>
</contrib>
<aff id="au1">
<label>1</label>
<institution>Institute of Medical Psychology and Behavioral Neurobiology and MEG Center, University of Tübingen</institution>
<addr-line>Silcherstraße 5, 72076, Tübingen, Germany</addr-line>
</aff>
<aff id="au2">
<label>2</label>
<institution>TECNALIA</institution>
<addr-line>Mikeletegi Pasalekua 1, 20009, San Sebastian, Spain</addr-line>
</aff>
<aff id="au3">
<label>3</label>
<institution>Department of Computer Engineering, Wilhelm-Schickard-Institute, University of Tübingen</institution>
<addr-line>Sand 14, 72076, Tübingen, Germany</addr-line>
</aff>
<aff id="au4">
<label>4</label>
<institution>Daegu Gyeongbuk Institute of Science and Technology (DGIST)</institution>
<addr-line>333, Techno jungang-daero, Hyeonpung-myeon, Dalseong-gun, 711-873, Daegu, Korea</addr-line>
</aff>
<aff id="au5">
<label>5</label>
<institution>Department of Computer Engineering, University of Leipzig</institution>
<addr-line>Augustusplatz 10, 04109, Leipzig, Germany</addr-line>
</aff>
<aff id="au6">
<label>6</label>
<institution>Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institute of Health</institution>
<addr-line>10 Center Drive, 20892, Bethesda, Maryland</addr-line>
</aff>
<aff id="au7">
<label>7</label>
<institution>Ospedale San Camillo, Istituto di Ricovero e Cura a Carattere Scientifico</institution>
<addr-line>Via Alberoni, 70, 30126, Venezia, Italy</addr-line>
</aff>
<aff id="au8">
<label>8</label>
<institution>German Center for Diabetes Research (DZD)</institution>
<addr-line>Tubingen, Germany</addr-line>
</aff>
</contrib-group>
<author-notes>
<corresp id="cor1">
<bold>Correspondence</bold>
Ander Ramos-Murguialday, Silcherstraße 5, 72076, Tübingen, Germany., Tel: +49-7071-29-78354;, Fax: +49-7071-29-5956;, E-mail:
<email>ander.ramos@med.uni-tuebingen.de</email>
</corresp>
<fn id="fn1">
<label>a</label>
<p>Authors contributed equally to this work.</p>
</fn>
<fn>
<p>
<bold>Funding Information</bold>
This work was funded by the European Research Council (ERC) Grant ERC 227632 BCCI, the Werner Reichardt Centre of Integrative Neuroscience (CIN), the German Federal Ministry of Education and Research (BMBF, Förderzeichen 01GQ0831) as well as the Deutsche Forschungsgemeinschaft (DFG), and European Union Information and Communication Technologies Framework Programme 7 (ICT-FP7) (HUMOUR 231724), the Intramural Research Program (IRP) of the National Institute of Neurological Disorders and Stroke (NINDS), (Bethesda, Maryland, USA) the Center for Neuroscience and Regenerative Medicine (CNRM), Uniformed Services University of Health Sciences (Bethesda, Maryland, USA) University of Tuebingen, TECNALIA, DAAD (Deutscher Akademischer Austauschdienst), Baden-Wuerttemberg Stiftung (ROB-1), the Ministry of Education, Science and Technology of Republic of Korea and the German Center for Diabetes Research (DZD:01G10925).</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<month>1</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="epub">
<day>09</day>
<month>12</month>
<year>2014</year>
</pub-date>
<volume>2</volume>
<issue>1</issue>
<fpage>1</fpage>
<lpage>11</lpage>
<history>
<date date-type="received">
<day>01</day>
<month>5</month>
<year>2014</year>
</date>
<date date-type="rev-recd">
<day>26</day>
<month>8</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>27</day>
<month>8</month>
<year>2014</year>
</date>
</history>
<permissions>
<copyright-statement>© 2014 The Authors.
<italic>Annals of Clinical and Translational Neurology</italic>
published by Wiley Periodicals, Inc on behalf of American Neurological Association.</copyright-statement>
<copyright-year>2014</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by-nc-nd/3.0/">
<license-p>This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.</license-p>
</license>
</permissions>
<abstract>
<sec>
<title>Objective</title>
<p>Stroke is a leading cause of long-term motor disability. Stroke patients with severe hand weakness do not profit from rehabilitative treatments. Recently, brain-controlled robotics and sequential functional electrical stimulation allowed some improvement. However, for such therapies to succeed, it is required to decode patients' intentions for different arm movements. Here, we evaluated whether residual muscle activity could be used to predict movements from paralyzed joints in severely impaired chronic stroke patients.</p>
</sec>
<sec sec-type="methods">
<title>Methods</title>
<p>Muscle activity was recorded with surface-electromyography (EMG) in 41 patients, with severe hand weakness (Fugl-Meyer Assessment [FMA] hand subscores of 2.93 ± 2.7), in order to decode their intention to perform six different motions of the affected arm, required for voluntary muscle activity and to control neuroprostheses. Decoding of paretic and nonparetic muscle activity was performed using a feed-forward neural network classifier. The contribution of each muscle to the intended movement was determined.</p>
</sec>
<sec>
<title>Results</title>
<p>Decoding of up to six arm movements was accurate (>65%) in more than 97% of nonparetic and 46% of paretic muscles.</p>
</sec>
<sec>
<title>Interpretation</title>
<p>These results demonstrate that some level of neuronal innervation to the paretic muscle remains preserved and can be used to implement neurorehabilitative treatments in 46% of patients with severe paralysis and extensive cortical and/or subcortical lesions. Such decoding may allow these patients for the first time after stroke to control different motions of arm prostheses through muscle-triggered rehabilitative treatments.</p>
</sec>
</abstract>
</article-meta>
</front>
<body>
<sec sec-type="Intro">
<title>Introduction</title>
<p>Stroke is one of the main causes of long-term motor disability worldwide and in more than 85% result in functional deficits in motor control.
<xref rid="b1" ref-type="bibr">1</xref>
Currently, about 75% of patients affected by a stroke survive 1 year or more and this proportion will increase in the coming years due to improving quality of care. Furthermore, of stroke survivors showing no active upper limb motion at hospital admission, ∼14% recover completely, 30% partially and 56% show little or no recovery.
<xref rid="b2" ref-type="bibr">2</xref>
The holistic, comprehensive, interactive approach of an interdisciplinary team is the hallmark of stroke rehabilitation.
<xref rid="b3" ref-type="bibr">3</xref>
For motor recovery in the chronic phase of stroke rehabilitation intensive motor therapy interventions are necessary. To promote the effects of physical therapy researchers and clinicians suggest intensive exercise and augmented feedback,
<xref rid="b4" ref-type="bibr">4</xref>
Constraint Induced Movement Therapy (CIMT),
<xref rid="b5" ref-type="bibr">5</xref>
exercise in virtual environments with feedback to assist skill learning.
<xref rid="b6" ref-type="bibr">6</xref>
However, it has been estimated that only 20% to 25% of stroke patients have wrist or finger movements needed for CIMT.
<xref rid="b7" ref-type="bibr">7</xref>
Chronic stroke survivors with severe hand weakness show limited residual muscle activity in the upper arm extensor muscles and no residual finger extension. Currently, there is no accepted and efficient rehabilitation strategy available, with the exception of brain machine interfaces.
<xref rid="b8" ref-type="bibr">8</xref>
</p>
<p>Dysfunction in a muscle involved in a movement results in an abnormal synergistic muscle pattern.
<xref rid="b9" ref-type="bibr">9</xref>
Sadly, such dysfunction leads to a reduction in muscle use (learned nonuse) and muscle atrophy. These factors add to spasticity and weakness resulting in impaired affected upper and lower extremity use. In order to overcome the absence of appropriate control of paretic muscles in stroke patients new rehabilitation therapies based on the combination of robotics and brain control of upper limb assistive technology
<xref rid="b10" ref-type="bibr">10</xref>
<xref rid="b13" ref-type="bibr">13</xref>
have been proposed showing to improve neurorehabilitation.
<xref rid="b8" ref-type="bibr">8</xref>
,
<xref rid="b14" ref-type="bibr">14</xref>
<xref rid="b20" ref-type="bibr">20</xref>
One problem of this approach is that the accuracy to detect intention or movement by noninvasive brain signals is limited.
<xref rid="b21" ref-type="bibr">21</xref>
<xref rid="b24" ref-type="bibr">24</xref>
On the other hand, surface electromyography (sEMG) activity has been successfully used for the accurate decoding of many dexterous movements
<xref rid="b25" ref-type="bibr">25</xref>
<xref rid="b29" ref-type="bibr">29</xref>
for prosthesis' control, making it an attractive tool as a source of control for motor restoration robotics or orthotics.</p>
<p>In this study, we aim at characterizing the feasibility to decode residual EMG activity recorded by sEMG when 41 chronic stroke patients defined as severely paretic attempt seven different forearm and upper arm movements, a required first step to allow successful use of these signals as controllers of multimotion mechanical orthosis for rehabilitation.</p>
</sec>
<sec sec-type="methods">
<title>Patients and Methods</title>
<sec>
<title>Subject recruitment</title>
<p>Forty-eight right-handed and six left-handed chronic stroke patients with no active finger extension, Fugl–Meyer Assessment (FMA) hand scores of 2.5 ± 1.5 (max score 24 points) and age 55.01 ± 11.3 years, were recruited
<xref rid="b8" ref-type="bibr">8</xref>
(see Table
<xref ref-type="table" rid="tbl1">1</xref>
). From the 48 patients, seven patients had to be excluded from the final analysis for technical reasons (poor signal to noise ratio;
<italic>N</italic>
 = 2) and insufficient trials left after artifact removal (
<italic>N</italic>
 = 5) (see Data S1 for an extensive explanation of the exclusion criteria). A modified version of the upper limb FMA was performed 1 day before the EMG recording
<xref rid="b30" ref-type="bibr">30</xref>
(for extended explanation see Data S1). A summary of patient groups demographic and functional data are presented in Table
<xref ref-type="table" rid="tbl1">1</xref>
.</p>
<table-wrap id="tbl1" position="float">
<label>Table 1</label>
<caption>
<p>Group demographic and functional data</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">No.</th>
<th align="left" rowspan="1" colspan="1">Age</th>
<th align="left" rowspan="1" colspan="1">Handiness</th>
<th align="left" rowspan="1" colspan="1">Affected limb</th>
<th align="left" rowspan="1" colspan="1">Lesion location</th>
<th align="left" rowspan="1" colspan="1">Months since stroke</th>
<th align="left" rowspan="1" colspan="1">FMA hand/24</th>
<th align="left" rowspan="1" colspan="1">FMA arm/30</th>
<th align="left" rowspan="1" colspan="1">cFMA/54</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">48</td>
<td align="left" rowspan="1" colspan="1">55.01 ± 11.3</td>
<td align="left" rowspan="1" colspan="1">42R/6L</td>
<td align="left" rowspan="1" colspan="1">15R/33L</td>
<td align="left" rowspan="1" colspan="1">21 cort-sub 27 sub</td>
<td align="left" rowspan="1" colspan="1">72.3 ± 56.2</td>
<td align="left" rowspan="1" colspan="1">2.5 ± 1.5</td>
<td align="left" rowspan="1" colspan="1">8.53 ± 5.9</td>
<td align="left" rowspan="1" colspan="1">11.04 ± 6.6</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="tf1-1">
<p>FMA, Fugl–Meyer Assessment; cFMA, combination FMA.</p>
</fn>
<fn id="tf1-2">
<p>Number of participants, mean and standard deviation of age, handedness, affected arm, lesion location, mean and standard deviation of months since stroke and hand, arm and a combination hand and arm of the Fugl–Meyer upper limb motor scores. R and L stand for right and left, respectively. Cort stands for cortical and sub stands for subcortical stroke. cFMA stands for the motor part of the modified upper limb Fugl Meyer Assessment (cFMA) (Hand and arm parts combined having a maximum score of 54 points). Coordination speed and reflexes were not included because of the severity of the paralysis.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>Written informed consent was obtained from all patients. The study was approved by the ethics committee of the Faculty of Medicine of the University of Tübingen (Germany).</p>
</sec>
<sec>
<title>Experimental design</title>
<p>The patients were placed on a comfortable chair while different auditory and visual cues were presented corresponding to six different forearm and upper arm movements: (1) shoulder flexion, (2) external rotation of the shoulder, (3) upper limb supination, (4) extension of the elbow, (5) wrist extension and (6) finger extension (Fig.
<xref ref-type="fig" rid="fig01">1C</xref>
). These movements were selected because of their relation with the upper limb motor skilled movements used in the FMA scale.</p>
<fig id="fig01" position="float">
<label>Figure 1</label>
<caption>
<p>Experimental design. (A) Surface electromyography (EMG) electrodes placed on muscles involved in the six movements used during Fugl–Meyer Assessment test. (B) Experimental timing. After a randomized resting period (2 to 3.5 sec) a 4 sec instruction interval occurred in which patient was presented with three figures (items 1, 2 and 3) representing the movement to perform. A feed-forward multilayer perceptrons (MLPs) neural network with varying numbers of hidden layer neurons was used to decode the muscle activity. To overcome the intertrial difference in trajectory, classification was performed on 19 time windows from −1.5 to 7 sec relative to the “GO”. (C) From left to right: shoulder flexion, external rotation of the shoulder, supination, extension of the elbow, wrist extension and finger extension. Immediately after the instructions period, two ready cues with 1 sec interval were presented to the patient before the “GO” cue appeared and the patient started to perform the movement at a comfortable pace. Patients were instructed to maintain the final posture until a “Stop” cue appeared.</p>
</caption>
<graphic xlink:href="acn30002-0001-f1"></graphic>
</fig>
<p>An instruction of 3 sec was shown with three pictures of the movement to perform (beginning, half and end of movement) (Fig.
<xref ref-type="fig" rid="fig01">1C</xref>
). Subsequently, two “Ready” and one final “GO” cue were presented for 1 sec each. After the “GO” cue, the patients had 6 sec to perform the movement, reach the final position and maintain posture before a “Relax” cue was presented. During each movement, the patients were presented with a classical music piece (different for each movement) increasing in volume throughout the entire 12 sec of each trial (instructions + ready + movement) (see Fig.
<xref ref-type="fig" rid="fig01">1B</xref>
). This was used as a rhythmic-melodic motivational tool. A silent intertrial period between 4 and 7 sec allowed the patients to return to the starting position (hands resting on their lap) (Fig.
<xref ref-type="fig" rid="fig01">1C</xref>
item 1). Patients were instructed to perform each movement with both arms simultaneously maintaining their gaze on the screen, in order to avoid neglecting the nonaffected hand (or less affected
<xref rid="b31" ref-type="bibr">31</xref>
) due to a concentration shift toward the affected arm. Compensatory movements were discouraged. The experiment was divided into blocks. One block implies 60 trials, 10 for each of the six different movements. On average patients underwent between 4–6 blocks with a total amount of 40–60 trials per movement condition. An interblock rest break interval of 5–10 min was used in order to avoid muscle fatigue.</p>
</sec>
<sec>
<title>Data collection</title>
<p>Surface EMG (sEMG) data were acquired using a BrainAmp 32-channel amplifier from Brain Products GmbH, Munich Germany (10 patients) and a BrainAmp 16 bipolar EMG fMRI compatible amplifier from the same company (38 patients). Bipolar Ag/AgCl electrodes were used for surface EMG data acquisition and placed on the muscles involved in the six movements to be performed: (1) extensor carpi ulnaris (2) extensor digitorum (3) on the flexor carpi radialis, palmaris longus, flexor carpi ulnaris (flexion) (4) long head of the biceps (flexion) (5) the external head of the triceps (6) anterior portion of deltoid muscle (7) lateral portion of deltoid muscle and (8) posterior portion of deltoid over the teres minor and infraspinatus muscles (see Fig.
<xref ref-type="fig" rid="fig01">1A</xref>
). When using the 32 channels unipolar amplifier, reference was placed at the olecranon. Ground was placed over the paretic side clavicle. The EMG electrodes impedance was always kept under 20 KΩ. The sampling rate was 2500 Hz. Auditory and visual cues were presented using E-prime software (Sharpsburg, PA, USA).</p>
</sec>
<sec>
<title>EMG-decoding</title>
<sec>
<title>Compensatory movements</title>
<p>Although the patients were asked to avoid compensatory movements, different compensation strategies to reach the end point of each movement were observed. Therefore, trials where the trajectories showed an absence of muscle activity (due to patients' loss of attention to the task) or extreme variations were rejected (Data S1).</p>
</sec>
<sec>
<title>Decoding design</title>
<p>After the EMG was preprocessed (Fig.
<xref ref-type="fig" rid="fig02">2A</xref>
and
<xref ref-type="fig" rid="fig02">B</xref>
upper panel) the waveform length (WL),
<xref rid="b32" ref-type="bibr">32</xref>
a time domain feature of the EMG signal providing a measure for signal amplitude and frequency, was calculated (Data S1) (Fig.
<xref ref-type="fig" rid="fig02">2A</xref>
and
<xref ref-type="fig" rid="fig02">B</xref>
middle panel) and used to train the classifier.</p>
<fig id="fig02" position="float">
<label>Figure 2</label>
<caption>
<p>Electromyography (EMG) trajectories, feature extraction and classification from the extensor digitorum. The left and right columns represent data on the affected and unaffected side, respectively. Eleven seconds of EMG data from 2 sec before and 9 sec after the “GO” cue belonging to three finger extension tasks were concatenated. Vertical dashed lines represent the first ready cue and the red vertical line represents the “GO” cue. We can observe in the right column how the EMG starts increasing a few milliseconds after the “GO” cue. Three main figures are presented: preprocessed EMG, the waveform length and the output of the classifier. The output of the neural network indicates the class with the highest probability to be occurring (in our case 0-rest, 1-finger extension, 2-wrist extension). When using data from the unaffected hand the classifier assigned the highest probability correctly to rest and finger extension. (A) However, in the affected hand the classifier cannot decode finger extension and detects rest as the class with the highest probability to be occurring in a patient without residual muscle activity. (B) On the contrary, the output of the classifier was correctly assigned to rest and finger extension in the paretic limb of a patient with residual muscle activity.</p>
</caption>
<graphic xlink:href="acn30002-0001-f2"></graphic>
</fig>
<p>A feed-forward multilayer perceptrons (MLPs) neural network with varying numbers of hidden layer neurons was used. To overcome the intertrial difference in trajectory, classification was performed on 19 time windows from −1.5 to 7 sec relative to the “GO” (Fig.
<xref ref-type="fig" rid="fig01">1B</xref>
) and the highest decoding accuracy across windows was considered as the decoding accuracy for that movement (for more details see Data S1).</p>
<p>The decoding was performed for each upper limb separately for three categories of movements depending on the main muscles involved: (1) forearm muscles (hand and finger movements), (2) upper arm muscles (elbow and shoulder movements) and (3) all upper limb muscles (hand, fingers, elbow and shoulder movements). Furthermore, for each of these three movement categories we performed a classification using electrodes on: (1) forearm only (hand and wrist muscles), (2) upper arm only (biceps, triceps and shoulder muscles) and (3) entire arm (see an example of forearm movement decoding using forearm muscles in Fig.
<xref ref-type="fig" rid="fig02">2A</xref>
and
<xref ref-type="fig" rid="fig02">B</xref>
lower panel). This was used to isolate the effect of different movement strategies and to perform a separate analysis for the paretic muscles. The same number of trials per movement category was selected for classification. In order to guarantee that primarily the EMG activity of the main muscles involved in each movement drove the classification, an analytic sensitivity analysis of the neuronal network was performed (see Data S1).</p>
</sec>
</sec>
<sec>
<title>Motor function and EMG- decoding</title>
<p>Since it has been proposed before that severity of motor impairment influences decoding of muscle activity in stroke patients,
<xref rid="b33" ref-type="bibr">33</xref>
we separated the group of patients according to the functional scores for hand (hFMA ≥5 severe group; hFMA <5 extremely severe group), arm (aFMA ≥11 severe group; aFMA <11 extremely severe group) and their combination (cFMA ≥16 severe group; cFMA <16 extremely severe group) and calculated the difference in EMG decoding. EMG decoding results using the electrodes placed on the main muscles involved in each movement type (e.g. finger and wrist extension using forearm electrodes) were used.</p>
</sec>
<sec>
<title>Data analysis and statistics</title>
<p>The acquired data were exported and processed offline in MATLAB (The MathWorks) (Natick, MA, USA). All data were reported as mean values ± SD when indicated. Decoding accuracies of the classifier were evaluated by the percentage of correct answers of the classifier attempting to decode each requested task (e.g.: Decoding of forearm movements (pulling together the data for finger extension, wrist extension and rest) was done using forearm electrodes (extensor carpi ulnaris, extensor digitorum, and flexors). According to Figure
<xref ref-type="fig" rid="fig01">1B</xref>
, each testing trial (of the pulled data set) was divided into 19 windows. For each window independently, classification accuracy was evaluated across trials. The maximum accuracy found across windows was used as the decoding accuracy for that particular patient). Statistical evaluations were performed using Mann–Whitney
<italic>U</italic>
-test (a nonparametric test) with 95% CI.</p>
</sec>
</sec>
<sec sec-type="results">
<title>Results</title>
<sec>
<title>Contribution of each group of electrodes to specific movement decoding</title>
<p>Decoding unaffected wrist and fingers extension yielded superior results with electrodes placed on the forearm only compared to electrodes placed on the upper arm in 87.80% of the patients, as expected (Table
<xref ref-type="table" rid="tbl2">2</xref>
). In the affected limb, 48.78% of the patients presented superior results decoding wrist and finger extension movements using forearm electrodes only, compared to when using upper arm electrodes only. This implies that the most paretic muscles (hand and wrist extensors) presented either minimal to no residual EMG activity or no detectable EMG activity in 51.22% of the patients. On the other hand, when using EMG data recorded from fore- and upper arm muscles combined (all muscles), finger and wrist extension motions were better decoded in 97.56% and 100% of all patients for nonparetic and paretic arm, respectively compared to using only forearm electrodes (Table
<xref ref-type="table" rid="tbl2">2</xref>
).</p>
<table-wrap id="tbl2" position="float">
<label>Table 2</label>
<caption>
<p>Percentage (%) of patients where decoding accuracies using the main group of muscles involved in each group of movements were above decoding accuracies using unrelated muscles</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th rowspan="1" colspan="1"></th>
<th align="left" colspan="2" rowspan="1">Decoding forearm movements using forearm muscles >
<hr></hr>
</th>
<th align="left" colspan="2" rowspan="1">Decoding upper arm movements using upper arm muscles >
<hr></hr>
</th>
<th align="left" colspan="2" rowspan="1">Decoding all movements using all muscles >
<hr></hr>
</th>
</tr>
<tr>
<th rowspan="1" colspan="1"></th>
<th align="left" rowspan="1" colspan="1">Using upper arm muscles</th>
<th align="left" rowspan="1" colspan="1">Using all muscles</th>
<th align="left" rowspan="1" colspan="1">Using forearm muscles</th>
<th align="left" rowspan="1" colspan="1">Using all muscles</th>
<th align="left" rowspan="1" colspan="1">Using forearm muscles</th>
<th align="left" rowspan="1" colspan="1">Using upper arm muscles</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Affected side</td>
<td align="char" char="." rowspan="1" colspan="1">48.78</td>
<td align="char" char="." rowspan="1" colspan="1">9.76</td>
<td align="char" char="." rowspan="1" colspan="1">100.00</td>
<td align="char" char="." rowspan="1" colspan="1">7.32</td>
<td align="char" char="." rowspan="1" colspan="1">97.56</td>
<td align="char" char="." rowspan="1" colspan="1">92.68</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Unaffected side</td>
<td align="char" char="." rowspan="1" colspan="1">87.80</td>
<td align="char" char="." rowspan="1" colspan="1">29.27</td>
<td align="char" char="." rowspan="1" colspan="1">97.56</td>
<td align="char" char="." rowspan="1" colspan="1">7.32</td>
<td align="char" char="." rowspan="1" colspan="1">100.00</td>
<td align="char" char="." rowspan="1" colspan="1">100.00</td>
</tr>
</tbody>
</table>
</table-wrap>
<p>A similar effect was observed during elbow and shoulder movements. Although in this case, the EMG activity on the unaffected arm was better decoded using electrodes placed on forearm and upper arm muscles (all muscles), than using electrodes placed in upper arm only in all patients, indicating a positive effect of forearm muscle activity in the decoding of elbow and shoulder movements. On the affected arm, the effect was similar and for 92.68% of the patients, the muscle activity during elbow and shoulder movements, was decoded better using EMG signals recorded from all electrodes, compared to upper arm electrodes only. Decoding of elbow and shoulder movements led to better results in 100% (unaffected arm) and 97.56% (affected arm) of the patients, when using EMG activity from only upper arm muscles and from all electrodes, compared to when using forearm muscle activity only.</p>
</sec>
<sec>
<title>Forearm movements</title>
<p>We classified the EMG activity to be related to either: (1) finger extension, (2) wrist extension or (3) rest (decoding chance level 33%). Patients presented no residual hand extension. However, wrist and finger extension in the affected limb could be classified with an accuracy of 55.79 ± 14.78%, 56.57 ± 14.15% and 64.56 ± 15.44% when using EMG activity recorded from forearm muscles only, upper arm muscles only and all fore- and upper arm muscles, respectively. On the unaffected side, the decoding resulted in higher accuracy values as expected (see Table
<xref ref-type="table" rid="tbl3">3</xref>
). We considered a performance of 65% as the lowest required for a reliable control of an orthotic device using discrete decoding online for a minimum of 3–7 classes (since it is around two times the chance level of our classifier with the lowest number of classes or movements to decode [33%]). Decoding accuracies above 65% were observed in 21.95% and in 51.22% of all patients when classifying forearm movements using EMG data acquired at affected and unaffected forearms, respectively.</p>
<table-wrap id="tbl3" position="float">
<label>Table 3</label>
<caption>
<p>Decoding accuracies (in %)</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th rowspan="1" colspan="1"></th>
<th rowspan="1" colspan="1"></th>
<th align="left" colspan="3" rowspan="1">Electrodes
<hr></hr>
</th>
<th rowspan="1" colspan="1"></th>
</tr>
<tr>
<th rowspan="1" colspan="1"></th>
<th align="left" rowspan="1" colspan="1">Movements</th>
<th align="left" rowspan="1" colspan="1">Forearm</th>
<th align="left" rowspan="1" colspan="1">Upper arm</th>
<th align="left" rowspan="1" colspan="1">All</th>
<th align="left" rowspan="1" colspan="1">Chance level</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="3" colspan="1">Affected side</td>
<td align="left" rowspan="1" colspan="1">Forearm</td>
<td align="left" rowspan="1" colspan="1">55.79 ± 14.78</td>
<td align="left" rowspan="1" colspan="1">56.57 ± 14.15</td>
<td align="left" rowspan="1" colspan="1">64.56 ± 15.44</td>
<td align="left" rowspan="1" colspan="1">33</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Upper arm</td>
<td align="left" rowspan="1" colspan="1">37.20 ± 15.25</td>
<td align="left" rowspan="1" colspan="1">55.70 ± 15.49</td>
<td align="left" rowspan="1" colspan="1">62.52 ± 16.61</td>
<td align="left" rowspan="1" colspan="1">20</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">All</td>
<td align="left" rowspan="1" colspan="1">31.93 ± 12.86</td>
<td align="left" rowspan="1" colspan="1">39.57 ± 14.21</td>
<td align="left" rowspan="1" colspan="1">47.09 ± 15.10</td>
<td align="left" rowspan="1" colspan="1">14.3</td>
</tr>
<tr>
<td align="left" rowspan="3" colspan="1">Unaffected side</td>
<td align="left" rowspan="1" colspan="1">Forearm</td>
<td align="left" rowspan="1" colspan="1">70.41 ± 14.35</td>
<td align="left" rowspan="1" colspan="1">62.36 ± 15.18</td>
<td align="left" rowspan="1" colspan="1">83.44 ± 8.35</td>
<td align="left" rowspan="1" colspan="1">33</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Upper arm</td>
<td align="left" rowspan="1" colspan="1">41.45 ± 18.09</td>
<td align="left" rowspan="1" colspan="1">65.35 ± 14.17</td>
<td align="left" rowspan="1" colspan="1">74.89 ± 10.83</td>
<td align="left" rowspan="1" colspan="1">20</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">All</td>
<td align="left" rowspan="1" colspan="1">42.85 ± 15.73</td>
<td align="left" rowspan="1" colspan="1">47.32 ± 16</td>
<td align="left" rowspan="1" colspan="1">65.82 ± 14.81</td>
<td align="left" rowspan="1" colspan="1">14.3</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="tf1-3">
<p>Mean and standard deviations (SD) of decoding accuracies when decoding forearm, upper arm and complete arm movements. Results are divided depending on the placement of the electrodes used for the decoding: forearm (extensor carpi ulnaris and digitorum and flexor carpi radialis, palmaris longus and flexor carpi ulnaris), upper arm (long head of the biceps, external head of the triceps and anterior, lateral and posterior portion of deltoid muscle) and all combined.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</sec>
<sec>
<title>Upper arm movements</title>
<p>We classified the EMG activity to be related to either: (1) shoulder flexion, (2) external rotation of the shoulder, (3) supination, (4) elbow extension, or (5) rest (decoding chance level 20%). Upper arm movements in the affected limb could be decoded with an accuracy of 37.20 ± 15.25%, 55.70 ± 15.49% and 62.52 ± 16.61% when using EMG activity recorded from forearm muscles only, upper arm muscles only and all muscles, respectively. On the unaffected side, the decoding resulted in higher accuracy values as expected (see Table
<xref ref-type="table" rid="tbl3">3</xref>
). Decoding accuracies above 65% were observed when classifying five arm movements using EMG data acquired at paretic and nonparetic upper arm muscles in 26.83% and in 43.90% of all patients measured, respectively.</p>
</sec>
<sec>
<title>Forearm and upper arm movements</title>
<p>We classified the EMG activity to be related to either: (1) shoulder flexion, (2) external rotation of the shoulder, (3) elbow extension, (4) supination, (5) wrist extension, (6) finger extension or (7) rest, (decoding chance level 14.29%). These movements in the affected limb could be decoded with an accuracy of 31.93 ± 12.86%, 39.57 ± 14.21% and 47.09 ± 15.10% when using EMG activity recorded from forearm muscles only, upper arm muscles only and all muscles, respectively. On the unaffected side, again, the decoding resulted in higher accuracy values as expected (see Table
<xref ref-type="table" rid="tbl3">3</xref>
). Decoding accuracies above 65% were observed when classifying 7 upper limb movements using EMG data acquired at paretic and nonparetic upper arm muscles in 14.63% and in 46.34% of all patients measured, respectively.</p>
</sec>
<sec>
<title>Significant muscle activity</title>
<p>In this section, we were expecting to observe the highest contribution (weights) of the different EMG electrodes in the decoding of muscle activity in the electrodes placed over the main muscles involved in each movement (i.e. electrodes over forearm extensors during wrist and finger extension, over biceps during pronation/supination, over triceps during elbow extension and over deltoid during shoulder flexion and external rotation of the shoulder) in order to guarantee that remaining contraction control of the paretic muscle was still present.</p>
<p>We observed in 78.05% of all patients that during hand and fingers extension the electrodes placed on the paretic forearm extensors muscles presented higher contribution in the decoding compared to the paretic flexors ruling out the possibility of flexor activity being the main or only decodable EMG activity. This was observed on the unaffected arm in 73.2% of the patients. However, only 40% of these patients who showed higher contribution of electrodes placed over extensors compared to electrodes placed over flexors during finger and wrist extension in the affected hand, showed the same in the unaffected hand. These results could be due to the use of 19 windows for the decoding and choosing automatically the one with the best decoding accuracy which could happen when patients started to close their hands if the timing was not respected and patients returned to start/resting position before the end of the trial.</p>
<p>When we grouped patients based on their hand impairment severity (severe hFMA ≥5 or extremely severe hFMA <5), almost all severely motor impaired patients (
<italic>N</italic>
 = 6) presented higher weights on extensor than on flexor forearm muscles, both on unaffected (83.3%) and affected side (83.3%). In the extremely severely motor impaired patients (
<italic>N</italic>
 = 35), we observed higher weights on extensor than on flexor forearm muscles in 71.4% of the patients in the unaffected arm and 77.1% of the patients in the affected arm.</p>
<p>As expected during the decoding of all movements using all electrodes, the electrodes placed on the upper arm presented a larger overall contribution, likely due to less impairment and the stronger more reliable EMG in upper arm muscles. The electrodes on top of the main muscles involved in each movement (e.g. triceps during elbow extension) generated always the higher contribution in all patients' unaffected arm. This was also the case for all patients' affected arm during upper arm movements. However, during finger and wrist extension decoding using all electrodes, 70.7% of the patients presented higher EMG electrode contribution on forearm muscles.</p>
</sec>
<sec>
<title>Functional scores and EMG decoding</title>
<p>Since it has been proposed before that severity of motor impairment influences decoding of muscle activity in stroke patients,
<xref rid="b33" ref-type="bibr">33</xref>
we divided the patients into severe and extreme severe groups based of their hFMA, aFMA and cFMA. We found significantly better EMG decoding in severe compared to extremely-severe patients during upper arm (
<italic>z</italic>
 = 2.3394;
<italic>P</italic>
 = 0.019) and all (
<italic>z</italic>
 = 2.1261;
<italic>P</italic>
 = 0.0335) movements when patients were divided in groups depending on their aFMA and cFMA scores confirming some preliminary results on moderately and severely affected stroke patients.
<xref rid="b33" ref-type="bibr">33</xref>
,
<xref rid="b34" ref-type="bibr">34</xref>
The difference in decoding between severe and extremely severe cases was not significant for hand and finger movements using forearm electrodes only (
<italic>z</italic>
 = 0.7931;
<italic>P</italic>
 = 0.4277) as expected due to our inclusion criteria of no residual finger extension, which resulted in a low number of patients in the severe group.</p>
</sec>
</sec>
<sec sec-type="discussion">
<title>Discussion</title>
<p>The results of the present study indicate that severely impaired chronic stroke patients retain residual muscle activity in the paretic muscles and that this activity can be decoded during six different movements and rest demonstrating that some level of neuronal innervation remains preserved despite severe upper limb impairment. These findings may not only provide a basis for biofeedback training of the paretic muscles or similar procedures pioneered by Basmajian,
<xref rid="b35" ref-type="bibr">35</xref>
but also for the use of these signals to control rehabilitation devices or assistive robotics and functional electrical stimulation (meaning that training of natural muscle pattern activity is possible).</p>
<p>We report that decoding of forearm movements involving the severely paretic muscles was accurate (above 65%) in 46% of the patients (out of 41 patients). Furthermore, we excluded EMG activity from muscles not involved in the movement in most of the patients. However, in 29.3% of the patients, we found that decoding of forearm movements was biased to upper arm muscle activity and not forearm extensors, which indicates that in these patients either there was no residual EMG activity on the forearm extensor muscles or not enough sensitivity in our method to detect it. Consequently, research into other techniques such as high-density EMG arrays might be necessary to resolve this issue.
<xref rid="b36" ref-type="bibr">36</xref>
</p>
<p>We observed significantly better EMG decoding in severe compared to extremely severe patients during elbow and shoulder and upper limb movements, when patients were divided into two groups depending on their FMA, confirming previous results on mild to moderately affected stroke patients.
<xref rid="b33" ref-type="bibr">33</xref>
,
<xref rid="b34" ref-type="bibr">34</xref>
</p>
<p>The decoding results of forearm and upper arm movements demonstrate that EMG could be used as a control signal for rehabilitation (biofeedback, robotic, electrical stimulation) of the affected limbs in half of the patients with severe paralysis and extended cortical and/or subcortical lesions strengthening residual functioning of neuronal innervation.</p>
<p>Since it has been shown that electrical stimulation of muscles can produce near-normal lower limb forces after chronic stroke,
<xref rid="b37" ref-type="bibr">37</xref>
we assume that muscle paralysis is not the main cause of weakness but deterioration of the cortical descending and ascending fibers and its respective learned nonuse effect.
<xref rid="b38" ref-type="bibr">38</xref>
Our results suggest that most of our patients retained some corticomuscular connections despite severely paretic muscles, which can be inferred by the correct decoding of the residual muscle activity. Descending pathways link the brain to the spinal cord, allowing flexible transmission of commands for voluntary movement to spinal motoneurons. However, not only the influence of the mono-synaptically (i.e. corticospinal tract) but also the influence of multisynaptically connected spinal systems like reticulospinal
<xref rid="b39" ref-type="bibr">39</xref>
and rubrospinal
<xref rid="b40" ref-type="bibr">40</xref>
tracts are important to evaluate the degree of remaining voluntary muscle activity. Furthermore, medial reticulospinal tracts and some corticospinal fibers (10% to 15% of the fibers) do not cross to the other side and may control the ipsilateral limb from the intact hemisphere. Accordingly, this evidence together with our results suggest that some residual connections such as corticospinal, reticulospinal and/or rubrospinal are intact and contribute to the decoded residual EMG activity observed in flexor and extensor muscles in severely impaired stroke patients despite their inability to use those muscles for skilled movements.</p>
<sec>
<title>Limitations</title>
<p>One fundamental limitation to the use of this EMG-based approach has been that only a few research groups have explored the existence and control of residual muscle activity of stroke patients′ paretic limbs.
<xref rid="b33" ref-type="bibr">33</xref>
,
<xref rid="b34" ref-type="bibr">34</xref>
However, these two studies did not control for muscle activity physiologically unrelated to the intended movement but to compensatory movements (e.g. contracting biceps when trying to extend fingers), thus biasing the decoding with involuntary pathological muscle activity. Furthermore, they involved a low number of patients (
<xref rid="b33" ref-type="bibr">33</xref>
with
<italic>n</italic>
 = 20; with
<italic>n</italic>
 = 12) from chronic
<xref rid="b33" ref-type="bibr">33</xref>
and acute
<xref rid="b34" ref-type="bibr">34</xref>
groups, consisting mainly of mild to moderately impaired patients (i.e.
<xref rid="b34" ref-type="bibr">34</xref>
with residual movement) reducing their findings statistical power. In these studies, high-density EMG electrodes were used (large number of electrodes in a very reduced area normally covering one muscle group only, e.g. forearm extensors) reducing the number of muscles recorded. Another important limitation in the use of EMG signals is that they are sensitive to electrode placement, interference from neighboring muscle signals, skin properties (e.g. sweat on the skin, pulse) and are also dependent on a person's neurological condition. Furthermore, patients with severe motor impairment after stroke exhibit an abnormal, uncoordinated muscle activation pattern,
<xref rid="b41" ref-type="bibr">41</xref>
thus if the EMG activity is not properly isolated from interference from neighboring muscle signals and compensatory activity, an EMG controlled robot could move in an undesired way. Therefore, following our decoding results (i.e. EMG activity from the upper arm usually not related to wrist and hand extension influenced the decoding results), activity from the specific main muscles responsible for each particular movement only should be used in the decoding of EMG activity in rehabilitation.</p>
<p>Additionally, in accordance with the experimental protocol, the addition of the classical music piece during the time interval to perform the movement (6 sec) might have resulted in a positive cofound increasing patients' performance. Furthermore, the 6-sec time to perform the task was chosen following empirical and subjective questioning of four test stroke patients. However, it might be desirable to extend this time interval for patients requiring longer time periods to properly perform impaired movements. Nevertheless, this time was kept constant to simplify signal processing and statistical analysis and to avoid muscle fatigue.</p>
</sec>
<sec>
<title>Future directions</title>
<p>Although our EMG decoding results are based on offline processing of the muscle signals, an online version of our decoder could be easily implemented as demonstrated previously in healthy humans and amputees.
<xref rid="b42" ref-type="bibr">42</xref>
,
<xref rid="b26" ref-type="bibr">26</xref>
After a calibration session and the subsequent offline processing, technical artifacts can be easily detected and eliminated (e.g. improving impedance by changing the pregelled bipolar electrodes and using frequency filters) and the motion artifacts can be detected automatically during the rehabilitation task. It has been demonstrated that intra and intersession variability using bipolar surface EMG sensors range from 3.8% to 18%,
<xref rid="b43" ref-type="bibr">43</xref>
,
<xref rid="b44" ref-type="bibr">44</xref>
which should not cause a critical decrease in decoding results. However, in a rehabilitation scenario we would expect an increase of EMG activity in time and therefore calibration between training sessions is needed. Further work on this line should be accomplished to provide severely paralyzed stroke patients with reliable and stable EMG controlled assistive and rehabilitation technologies
<xref rid="b45" ref-type="bibr">45</xref>
(like it has been shown in amputees).
<xref rid="b46" ref-type="bibr">46</xref>
</p>
</sec>
</sec>
<sec sec-type="conclusion">
<title>Conclusion</title>
<p>Here, we show that it is possible to decode residual EMG activity when severely affected chronic stroke patients attempt seven different upper arm and forearm movements, a first step to allow successful use of these signals as controllers of multimotion mechanical prosthesis and a demonstration of residual innervations to muscles that cannot produce movements but whose pattern of contraction can be controlled by the patient.</p>
</sec>
</body>
<back>
<ack>
<p>The authors thank Ernesto Soares and Ozge Yilmaz for assisting with the EMG data collection.</p>
</ack>
<sec>
<title>Author Contributions</title>
<p>A. R., D. B., L. C. and N. B. designed the study; A. R., E. G., D. B. and W. C. performed the experiments, A. R., E. G. and A. W. analyzed the data, A. R., E. G., A. W., M. B., L. C. and N. B. wrote the paper. All the authors read and approved the manuscript.</p>
</sec>
<sec>
<title>Conflict of Interest</title>
<p>Dr. Walter reports grants from European Research Council, during the conduct of the study.</p>
</sec>
<ref-list>
<title>References</title>
<ref id="b1">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cirstea</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ptito</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Levin</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Arm reaching improvements with short-term practice depend on the severity of the motor deficit in stroke</article-title>
<source>Exp Brain Res</source>
<year>2003</year>
<volume>152</volume>
<fpage>476</fpage>
<lpage>488</lpage>
<pub-id pub-id-type="pmid">12928760</pub-id>
</element-citation>
</ref>
<ref id="b2">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hendricks</surname>
<given-names>H</given-names>
</name>
<name>
<surname>van Limbeek</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Geurts</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Zwarts</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Motor recovery after stroke: a systematicreview of the literature</article-title>
<source>Arch Phys Med Rehabil</source>
<year>2002</year>
<volume>83</volume>
<fpage>1629</fpage>
<lpage>1637</lpage>
<pub-id pub-id-type="pmid">12422337</pub-id>
</element-citation>
</ref>
<ref id="b3">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Miller</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Murray</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Richards</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Comprehensive overview of nursing and interdisciplinary rehabilitation care of the stroke patient: a scientific statement from the American Heart Association</article-title>
<source>Stroke</source>
<year>2010</year>
<volume>41</volume>
<fpage>2402</fpage>
<lpage>2448</lpage>
<pub-id pub-id-type="pmid">20813995</pub-id>
</element-citation>
</ref>
<ref id="b4">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sunderland</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Tinson</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Bradley</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Enhanced physical therapy improves recovery of arm function after stroke. A randomized controlled trial</article-title>
<source>J Neurol Neurosurg Psychiatry</source>
<year>1992</year>
<volume>55</volume>
<fpage>530</fpage>
<lpage>535</lpage>
<pub-id pub-id-type="pmid">1640226</pub-id>
</element-citation>
</ref>
<ref id="b5">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wolf</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Winstein</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial</article-title>
<source>JAMA</source>
<year>2006</year>
<volume>296</volume>
<fpage>2095</fpage>
<lpage>2104</lpage>
<pub-id pub-id-type="pmid">17077374</pub-id>
</element-citation>
</ref>
<ref id="b6">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Merians</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Poizner</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Boian</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Sensorimotor training in a virtual reality environment: does it improve functional recovery poststroke?</article-title>
<source>Neurorehabil Neural Repair</source>
<year>2006</year>
<volume>20</volume>
<issue>2</issue>
<fpage>252</fpage>
<lpage>267</lpage>
<pub-id pub-id-type="pmid">16679503</pub-id>
</element-citation>
</ref>
<ref id="b7">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wolf</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Binder-Macleod</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Electromyographic biofeedback applications to the hemiplegic patient: changes in upper extremity neuromuscular and functional status</article-title>
<source>Phys Ther</source>
<year>1983</year>
<volume>63</volume>
<fpage>1393</fpage>
<lpage>1403</lpage>
<pub-id pub-id-type="pmid">6611660</pub-id>
</element-citation>
</ref>
<ref id="b8">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ramos-Murguialday</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Broetz</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Rea</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Brain-machine-interface in chronic stroke rehabilitation: A controlled study</article-title>
<source>Ann Neurol</source>
<year>2013</year>
<volume>74</volume>
<fpage>100</fpage>
<lpage>108</lpage>
<pub-id pub-id-type="pmid">23494615</pub-id>
</element-citation>
</ref>
<ref id="b9">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Darling</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Cole</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Muscle activation patterns and kinetics of human index finger movements</article-title>
<source>J Neurophysiol</source>
<year>1990</year>
<volume>63</volume>
<fpage>1098</fpage>
<lpage>1108</lpage>
<pub-id pub-id-type="pmid">2358864</pub-id>
</element-citation>
</ref>
<ref id="b10">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pfurtscheller</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Müller</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Pfurtscheller</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>“Thought”–control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia</article-title>
<source>Neurosci Lett</source>
<year>2003</year>
<volume>351</volume>
<fpage>33</fpage>
<lpage>36</lpage>
<pub-id pub-id-type="pmid">14550907</pub-id>
</element-citation>
</ref>
<ref id="b11">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Murguialday</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Aggarwal</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Chatterjee</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Brain machine interface for a prosthetic hand using local machine control and haptic feedback</article-title>
<source>Conf Proc Int Conf Rehabil Robot</source>
<year>2007</year>
<volume>2007</volume>
<fpage>609</fpage>
<lpage>613</lpage>
</element-citation>
</ref>
<ref id="b12">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hochberg</surname>
<given-names>LR</given-names>
</name>
<name>
<surname>Bacher</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Jarosiewicz</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Reach and grasp by people with tetraplegia using a neurally controlled robotic arm</article-title>
<source>Nature</source>
<year>2012</year>
<volume>485</volume>
<fpage>372</fpage>
<lpage>375</lpage>
<pub-id pub-id-type="pmid">22596161</pub-id>
</element-citation>
</ref>
<ref id="b13">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Collinger</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wodlinger</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Downey</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>High-performance neuroprosthetic control by an individual with tetraplegia</article-title>
<source>Lancet</source>
<year>2012</year>
<volume>381</volume>
<fpage>347</fpage>
<lpage>422</lpage>
</element-citation>
</ref>
<ref id="b14">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Buch</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Weber</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Cohen</surname>
<given-names>LG</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke</article-title>
<source>Stroke</source>
<year>2008</year>
<volume>39</volume>
<fpage>910</fpage>
<lpage>917</lpage>
<pub-id pub-id-type="pmid">18258825</pub-id>
</element-citation>
</ref>
<ref id="b15">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Farina</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Murguialday</surname>
<given-names>AR</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Offline Identification of Imagined Speed of Wrist Movements in Paralyzed ALS Patients from Single-Trial EEG</article-title>
<source>Front Neurosci</source>
<year>2009</year>
<volume>3</volume>
<fpage>62</fpage>
<pub-id pub-id-type="pmid">20582286</pub-id>
</element-citation>
</ref>
<ref id="b16">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ramos-Murguialday</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Schürholz</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Caggiano</surname>
<given-names>V</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Proprioceptive feedback and brain computer interface (BCI) based neuroprostheses</article-title>
<source>PLoS One</source>
<year>2012</year>
<volume>7</volume>
<fpage>e47048</fpage>
<pub-id pub-id-type="pmid">23071707</pub-id>
</element-citation>
</ref>
<ref id="b17">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ang</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Guan</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Chua</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Clinical study of neurorehabilitation in stroke using EEG-based motor imagery brain-computer interface with robotic feedback</article-title>
<source>Conf Proc IEEE Eng Med Biol Soc</source>
<year>2010</year>
<volume>2010</volume>
<fpage>5549</fpage>
<lpage>5552</lpage>
<pub-id pub-id-type="pmid">21096475</pub-id>
</element-citation>
</ref>
<ref id="b18">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gomez-Rodriguez</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Peters</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hill</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Closing the sensorimotor loop: haptic feedback facilitates decoding of motor imagery</article-title>
<source>J Neural Eng</source>
<year>2011</year>
<volume>8</volume>
<fpage>036005</fpage>
<pub-id pub-id-type="pmid">21474878</pub-id>
</element-citation>
</ref>
<ref id="b19">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Daly</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Rogers</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Feasibility of a new application of noninvasive Brain Computer Interface (BCI): a case study of training for recovery of volitional motor control after stroke</article-title>
<source>J Neurol Phys Ther</source>
<year>2009</year>
<volume>33</volume>
<fpage>203</fpage>
<lpage>211</lpage>
<pub-id pub-id-type="pmid">20208465</pub-id>
</element-citation>
</ref>
<ref id="b20">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Buch</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Modir</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Fourkas</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Parietofrontal integrity determines neural modulation associated with grasping imagery after stroke</article-title>
<source>Brain</source>
<year>2012</year>
<volume>135</volume>
<fpage>596</fpage>
<lpage>614</lpage>
<pub-id pub-id-type="pmid">22232595</pub-id>
</element-citation>
</ref>
<ref id="b21">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bradberry</surname>
<given-names>TJ</given-names>
</name>
<name>
<surname>Gentili</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Contreras-Vidal</surname>
<given-names>JL</given-names>
</name>
</person-group>
<article-title>Reconstructing three-dimensional hand movements from noninvasive electroencephalographic signals</article-title>
<source>J Neurosci</source>
<year>2010</year>
<volume>30</volume>
<fpage>3432</fpage>
<lpage>3437</lpage>
<pub-id pub-id-type="pmid">20203202</pub-id>
</element-citation>
</ref>
<ref id="b22">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Antelis</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Montesano</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Ramos-Murguialday</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>On the usage of linear regression models to reconstruct limb kinematics from low frequency EEG signals</article-title>
<source>PLoS One</source>
<year>2013</year>
<volume>8</volume>
<fpage>e61976</fpage>
<pub-id pub-id-type="pmid">23613992</pub-id>
</element-citation>
</ref>
<ref id="b23">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Waldert</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Preissl</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Demandt</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Hand movement direction decoded from MEG and EEG</article-title>
<source>J Neurosci</source>
<year>2008</year>
<volume>28</volume>
<fpage>1000</fpage>
<lpage>1008</lpage>
<pub-id pub-id-type="pmid">18216207</pub-id>
</element-citation>
</ref>
<ref id="b24">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sitaram</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Guan</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain-computer interface</article-title>
<source>Neuroimage</source>
<year>2007</year>
<volume>34</volume>
<fpage>1416</fpage>
<lpage>1427</lpage>
<pub-id pub-id-type="pmid">17196832</pub-id>
</element-citation>
</ref>
<ref id="b25">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tenore</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Ramos</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Fahmy</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Towards the control of individual fingers of a prosthetic hand using surface EMG signals</article-title>
<source>Conf Proc IEEE Eng Med Biol Soc 2007</source>
<year>2007</year>
<fpage>6146</fpage>
<lpage>6149</lpage>
</element-citation>
</ref>
<ref id="b26">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tenore</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Ramos</surname>
<given-names>Murguialday</given-names>
</name>
<name>
<surname>A</surname>
<given-names>FahmyA</given-names>
</name>
<name>
<surname>Acharya</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Decoding of individuated finger movements using surface electromyography</article-title>
<source>IEEE Trans Biomed Eng</source>
<year>2009</year>
<volume>56</volume>
<fpage>1427</fpage>
<lpage>1434</lpage>
<pub-id pub-id-type="pmid">19473933</pub-id>
</element-citation>
</ref>
<ref id="b27">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Parker</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Englehart</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Hudgins</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Myoelectric signal processing for control of powered limb prostheses</article-title>
<source>J Electromyogr Kinesiol</source>
<year>2006</year>
<volume>16</volume>
<fpage>541</fpage>
<lpage>548</lpage>
<pub-id pub-id-type="pmid">17045489</pub-id>
</element-citation>
</ref>
<ref id="b28">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cipriani</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Zaccone</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Micera</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Carrozza</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>On the shared control of an EMG-controlled prosthetic hand: Analysis of user-prosthesis interaction</article-title>
<source>IEEE Trans Robot</source>
<year>2008</year>
<volume>24</volume>
<fpage>170</fpage>
<lpage>184</lpage>
</element-citation>
</ref>
<ref id="b29">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Englehart</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Hudgins</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>A robust, real-time control scheme for multifunction myoelectric control</article-title>
<source>IEEE Trans Biomed Eng</source>
<year>2003</year>
<volume>50</volume>
<fpage>848</fpage>
<lpage>854</lpage>
<pub-id pub-id-type="pmid">12848352</pub-id>
</element-citation>
</ref>
<ref id="b30">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Crow</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Harmeling-van der Wel B. Hierarchical properties of the motor function sections of the FuglMeyer assessment scale for people after stroke: a retrospective study</article-title>
<source>Phys Ther</source>
<year>2008</year>
<volume>88</volume>
<fpage>1554</fpage>
<lpage>1567</lpage>
<pub-id pub-id-type="pmid">18927197</pub-id>
</element-citation>
</ref>
<ref id="b31">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baskett</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Marshall</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Broad</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The good side after stroke: ipsilateral sensory-motor function needs careful assessment</article-title>
<source>Age Ageing</source>
<year>1996</year>
<volume>25</volume>
<fpage>239</fpage>
<lpage>244</lpage>
<pub-id pub-id-type="pmid">8670561</pub-id>
</element-citation>
</ref>
<ref id="b32">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Farry</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Walker</surname>
<given-names>ID</given-names>
</name>
<name>
<surname>Baraniuk</surname>
<given-names>RG</given-names>
</name>
</person-group>
<article-title>Myoelecric Teleoperarion of a complex robotic hand</article-title>
<source>IEEE Trans Robot Autom</source>
<year>1996</year>
<volume>12</volume>
<fpage>775</fpage>
<lpage>787</lpage>
</element-citation>
</ref>
<ref id="b33">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Lock</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Kamper</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Subject-specific myoelectric pattern classification of functional hand movements for stroke survivors</article-title>
<source>IEEE Trans Neural Syst Rehabil Eng</source>
<year>2011</year>
<volume>19</volume>
<fpage>558</fpage>
<lpage>566</lpage>
<pub-id pub-id-type="pmid">20876030</pub-id>
</element-citation>
</ref>
<ref id="b34">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>High-density myoelectric pattern recognition toward improved stroke rehabilitation</article-title>
<source>IEEE Trans Biomed Eng</source>
<year>2012</year>
<volume>59</volume>
<fpage>1649</fpage>
<lpage>1657</lpage>
<pub-id pub-id-type="pmid">22453603</pub-id>
</element-citation>
</ref>
<ref id="b35">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Basmajian</surname>
<given-names>JV</given-names>
</name>
</person-group>
<article-title>Research foundations of EMG biofeedback in rehabilitation</article-title>
<source>Biofeedback Self Regul</source>
<year>1988</year>
<volume>13</volume>
<fpage>275</fpage>
<lpage>298</lpage>
<pub-id pub-id-type="pmid">3073812</pub-id>
</element-citation>
</ref>
<ref id="b36">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Merletti</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Holobar</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Farina</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Analysis of motor units with high-density surface electromyography</article-title>
<source>J Electromyogr Kinesiol</source>
<year>2008</year>
<volume>18</volume>
<fpage>879</fpage>
<lpage>890</lpage>
<pub-id pub-id-type="pmid">19004645</pub-id>
</element-citation>
</ref>
<ref id="b37">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Landau</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Sahrmann</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Preservation of directly stimulated muscle strength in hemiplegia due to stroke</article-title>
<source>Arch Neurol</source>
<year>2002</year>
<volume>59</volume>
<fpage>1453</fpage>
<lpage>1457</lpage>
<pub-id pub-id-type="pmid">12223033</pub-id>
</element-citation>
</ref>
<ref id="b38">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Krakauer</surname>
<given-names>JW</given-names>
</name>
</person-group>
<article-title>Motor learning: its relevance to stroke recovery and neurorehabilitation</article-title>
<source>Curr Opin Neurol</source>
<year>2006</year>
<volume>19</volume>
<fpage>84</fpage>
<lpage>90</lpage>
<pub-id pub-id-type="pmid">16415682</pub-id>
</element-citation>
</ref>
<ref id="b39">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zaami</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Edgley</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Soteropoulos</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Baker</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Changes in descending motor pathway connectivity after corticospinal tract lesion in macaque monkey</article-title>
<source>Brain</source>
<year>2012</year>
<volume>135</volume>
<fpage>2277</fpage>
<lpage>2278</lpage>
<pub-id pub-id-type="pmid">22581799</pub-id>
</element-citation>
</ref>
<ref id="b40">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Belhaj-Saif</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Cheney</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Plasticity in the distribution of the red nucleus output to forearm muscles after unilateral lesions of the pyramidal tract</article-title>
<source>J Neurophysiol</source>
<year>2000</year>
<volume>83</volume>
<fpage>3147</fpage>
<lpage>3153</lpage>
<pub-id pub-id-type="pmid">10805709</pub-id>
</element-citation>
</ref>
<ref id="b41">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yao</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Carmona</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Dewald JP a. Cortical overlap of joint representations contributes to the loss of independent joint control following stroke</article-title>
<source>Neuroimage</source>
<year>2009</year>
<volume>45</volume>
<fpage>490</fpage>
<lpage>499</lpage>
<pub-id pub-id-type="pmid">19135153</pub-id>
</element-citation>
</ref>
<ref id="b42">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Smith</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Tenore</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Huberdeau</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Continuous decoding of finger position from surface EMG signals for the control of powered prostheses</article-title>
<source>Conf Proc IEEE Eng Med Biol Soc</source>
<year>2008</year>
<volume>2008</volume>
<fpage>197</fpage>
<lpage>200</lpage>
<pub-id pub-id-type="pmid">19162627</pub-id>
</element-citation>
</ref>
<ref id="b43">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fougner</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Scheme</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Resolving the limb position effect in myoelectric pattern recognition</article-title>
<source>IEEE Trans Neural Syst Rehabil Eng</source>
<year>2011</year>
<volume>19</volume>
<fpage>644</fpage>
<lpage>651</lpage>
<pub-id pub-id-type="pmid">21846608</pub-id>
</element-citation>
</ref>
<ref id="b44">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cesqui</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Tropea</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Micera</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Krebs</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>EMG-based pattern recognition approach in post stroke robot-aided rehabilitation: a feasibility study</article-title>
<source>J Neuroeng Rehabil</source>
<year>2013</year>
<volume>10</volume>
<fpage>75</fpage>
<pub-id pub-id-type="pmid">23855907</pub-id>
</element-citation>
</ref>
<ref id="b45">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Borton</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Micera</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Millán</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Courtine</surname>
<given-names>G</given-names>
</name>
</person-group>
<source>Personalized neuroprosthetics. Sci Transl Med</source>
<year>2013</year>
<volume>5</volume>
<fpage>210rv2</fpage>
</element-citation>
</ref>
<ref id="b46">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Raspopovic</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Capogrosso</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Petrini</surname>
<given-names>FM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Restoring natural sensory feedback in real-time bidirectional hand prostheses</article-title>
<source>Sci Transl Med</source>
<year>2014</year>
<volume>6</volume>
<fpage>222ra19</fpage>
</element-citation>
</ref>
</ref-list>
<sec sec-type="supplementary-material">
<title>Supporting Information</title>
<p>Additional Supporting Information may be found in the online version of this article:</p>
<supplementary-material content-type="local-data" id="sd1">
<label>Data S1</label>
<caption>
<p>Supplementary material and methods.</p>
</caption>
<media mimetype="pdf" mime-subtype="pdf" xlink:href="acn30002-0001-sd1.pdf" xlink:type="simple" id="d35e2257" position="anchor"></media>
</supplementary-material>
</sec>
</back>
</pmc>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>Corée du Sud</li>
<li>Espagne</li>
<li>Italie</li>
<li>États-Unis</li>
</country>
<region>
<li>Bade-Wurtemberg</li>
<li>District de Leipzig</li>
<li>District de Tübingen</li>
<li>Maryland</li>
<li>Saxe (Land)</li>
</region>
<settlement>
<li>Leipzig</li>
<li>Tübingen</li>
</settlement>
</list>
<tree>
<country name="Allemagne">
<region name="Bade-Wurtemberg">
<name sortKey="Ramos Murguialday, Ander" sort="Ramos Murguialday, Ander" uniqKey="Ramos Murguialday A" first="Ander" last="Ramos-Murguialday">Ander Ramos-Murguialday</name>
</region>
<name sortKey="Birbaumer, Niels" sort="Birbaumer, Niels" uniqKey="Birbaumer N" first="Niels" last="Birbaumer">Niels Birbaumer</name>
<name sortKey="Birbaumer, Niels" sort="Birbaumer, Niels" uniqKey="Birbaumer N" first="Niels" last="Birbaumer">Niels Birbaumer</name>
<name sortKey="Bogdan, Martin" sort="Bogdan, Martin" uniqKey="Bogdan M" first="Martin" last="Bogdan">Martin Bogdan</name>
<name sortKey="Bogdan, Martin" sort="Bogdan, Martin" uniqKey="Bogdan M" first="Martin" last="Bogdan">Martin Bogdan</name>
<name sortKey="Broetz, Doris" sort="Broetz, Doris" uniqKey="Broetz D" first="Doris" last="Broetz">Doris Broetz</name>
<name sortKey="Cho, Woosang" sort="Cho, Woosang" uniqKey="Cho W" first="Woosang" last="Cho">Woosang Cho</name>
<name sortKey="Garcia Cossio, Eliana" sort="Garcia Cossio, Eliana" uniqKey="Garcia Cossio E" first="Eliana" last="García-Cossio">Eliana García-Cossio</name>
<name sortKey="Walter, Armin" sort="Walter, Armin" uniqKey="Walter A" first="Armin" last="Walter">Armin Walter</name>
</country>
<country name="Espagne">
<noRegion>
<name sortKey="Ramos Murguialday, Ander" sort="Ramos Murguialday, Ander" uniqKey="Ramos Murguialday A" first="Ander" last="Ramos-Murguialday">Ander Ramos-Murguialday</name>
</noRegion>
</country>
<country name="Corée du Sud">
<noRegion>
<name sortKey="Cho, Woosang" sort="Cho, Woosang" uniqKey="Cho W" first="Woosang" last="Cho">Woosang Cho</name>
</noRegion>
</country>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="Cohen, Leonardo G" sort="Cohen, Leonardo G" uniqKey="Cohen L" first="Leonardo G" last="Cohen">Leonardo G. Cohen</name>
</region>
</country>
<country name="Italie">
<noRegion>
<name sortKey="Birbaumer, Niels" sort="Birbaumer, Niels" uniqKey="Birbaumer N" first="Niels" last="Birbaumer">Niels Birbaumer</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003663 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 003663 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     PMC:4301668
   |texte=   Decoding upper limb residual muscle activity in severe chronic stroke
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:25642429" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024