Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Exploring teleimpedance and tactile feedback for intuitive control of the Pisa/IIT SoftHand.

Identifieur interne : 003100 ( Ncbi/Merge ); précédent : 003099; suivant : 003101

Exploring teleimpedance and tactile feedback for intuitive control of the Pisa/IIT SoftHand.

Auteurs : Arash Ajoudani ; Sasha B. Godfrey ; Matteo Bianchi ; Manuel G. Catalano ; Giorgio Grioli ; Nikos Tsagarakis ; Antonio Bicchi

Source :

RBID : pubmed:24968383

English descriptors

Abstract

This paper proposes a teleimpedance controller with tactile feedback for more intuitive control of the Pisa/IIT SoftHand. With the aim to realize a robust, efficient and low-cost hand prosthesis design, the SoftHand is developed based on the motor control principle of synergies, through which the immense complexity of the hand is simplified into distinct motor patterns. Due to the built-in flexibility of the hand joints, as the SoftHand grasps, it follows a synergistic path while allowing grasping of objects of various shapes using only a single motor. The DC motor of the hand incorporates a novel teleimpedance control in which the user's postural and stiffness synergy references are tracked in real-time. In addition, for intuitive control of the hand, two tactile interfaces are developed. The first interface (mechanotactile) exploits a disturbance observer which estimates the interaction forces in contact with the grasped object. Estimated interaction forces are then converted and applied to the upper arm of the user via a custom made pressure cuff. The second interface employs vibrotactile feedback based on surface irregularities and acceleration signals and is used to provide the user with information about the surface properties of the object as well as detection of object slippage while grasping. Grasp robustness and intuitiveness of hand control were evaluated in two sets of experiments. Results suggest that incorporating the aforementioned haptic feedback strategies, together with user-driven compliance of the hand, facilitate execution of safe and stable grasps, while suggesting that a low-cost, robust hand employing hardware-based synergies might be a good alternative to traditional myoelectric prostheses.

DOI: 10.1109/TOH.2014.2309142
PubMed: 24968383

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:24968383

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Exploring teleimpedance and tactile feedback for intuitive control of the Pisa/IIT SoftHand.</title>
<author>
<name sortKey="Ajoudani, Arash" sort="Ajoudani, Arash" uniqKey="Ajoudani A" first="Arash" last="Ajoudani">Arash Ajoudani</name>
</author>
<author>
<name sortKey="Godfrey, Sasha B" sort="Godfrey, Sasha B" uniqKey="Godfrey S" first="Sasha B" last="Godfrey">Sasha B. Godfrey</name>
</author>
<author>
<name sortKey="Bianchi, Matteo" sort="Bianchi, Matteo" uniqKey="Bianchi M" first="Matteo" last="Bianchi">Matteo Bianchi</name>
</author>
<author>
<name sortKey="Catalano, Manuel G" sort="Catalano, Manuel G" uniqKey="Catalano M" first="Manuel G" last="Catalano">Manuel G. Catalano</name>
</author>
<author>
<name sortKey="Grioli, Giorgio" sort="Grioli, Giorgio" uniqKey="Grioli G" first="Giorgio" last="Grioli">Giorgio Grioli</name>
</author>
<author>
<name sortKey="Tsagarakis, Nikos" sort="Tsagarakis, Nikos" uniqKey="Tsagarakis N" first="Nikos" last="Tsagarakis">Nikos Tsagarakis</name>
</author>
<author>
<name sortKey="Bicchi, Antonio" sort="Bicchi, Antonio" uniqKey="Bicchi A" first="Antonio" last="Bicchi">Antonio Bicchi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="????">
<PubDate>
<MedlineDate>2014 Apr-Jun</MedlineDate>
</PubDate>
</date>
<idno type="doi">10.1109/TOH.2014.2309142</idno>
<idno type="RBID">pubmed:24968383</idno>
<idno type="pmid">24968383</idno>
<idno type="wicri:Area/PubMed/Corpus">000609</idno>
<idno type="wicri:Area/PubMed/Curation">000609</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002387</idno>
<idno type="wicri:Area/Ncbi/Merge">003100</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Exploring teleimpedance and tactile feedback for intuitive control of the Pisa/IIT SoftHand.</title>
<author>
<name sortKey="Ajoudani, Arash" sort="Ajoudani, Arash" uniqKey="Ajoudani A" first="Arash" last="Ajoudani">Arash Ajoudani</name>
</author>
<author>
<name sortKey="Godfrey, Sasha B" sort="Godfrey, Sasha B" uniqKey="Godfrey S" first="Sasha B" last="Godfrey">Sasha B. Godfrey</name>
</author>
<author>
<name sortKey="Bianchi, Matteo" sort="Bianchi, Matteo" uniqKey="Bianchi M" first="Matteo" last="Bianchi">Matteo Bianchi</name>
</author>
<author>
<name sortKey="Catalano, Manuel G" sort="Catalano, Manuel G" uniqKey="Catalano M" first="Manuel G" last="Catalano">Manuel G. Catalano</name>
</author>
<author>
<name sortKey="Grioli, Giorgio" sort="Grioli, Giorgio" uniqKey="Grioli G" first="Giorgio" last="Grioli">Giorgio Grioli</name>
</author>
<author>
<name sortKey="Tsagarakis, Nikos" sort="Tsagarakis, Nikos" uniqKey="Tsagarakis N" first="Nikos" last="Tsagarakis">Nikos Tsagarakis</name>
</author>
<author>
<name sortKey="Bicchi, Antonio" sort="Bicchi, Antonio" uniqKey="Bicchi A" first="Antonio" last="Bicchi">Antonio Bicchi</name>
</author>
</analytic>
<series>
<title level="j">IEEE transactions on haptics</title>
<idno type="eISSN">2329-4051</idno>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult</term>
<term>Artificial Limbs (standards)</term>
<term>Electric Impedance</term>
<term>Feedback, Sensory (physiology)</term>
<term>Humans</term>
<term>Prosthesis Design (standards)</term>
<term>Touch Perception (physiology)</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Feedback, Sensory</term>
<term>Touch Perception</term>
</keywords>
<keywords scheme="MESH" qualifier="standards" xml:lang="en">
<term>Artificial Limbs</term>
<term>Prosthesis Design</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Electric Impedance</term>
<term>Humans</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper proposes a teleimpedance controller with tactile feedback for more intuitive control of the Pisa/IIT SoftHand. With the aim to realize a robust, efficient and low-cost hand prosthesis design, the SoftHand is developed based on the motor control principle of synergies, through which the immense complexity of the hand is simplified into distinct motor patterns. Due to the built-in flexibility of the hand joints, as the SoftHand grasps, it follows a synergistic path while allowing grasping of objects of various shapes using only a single motor. The DC motor of the hand incorporates a novel teleimpedance control in which the user's postural and stiffness synergy references are tracked in real-time. In addition, for intuitive control of the hand, two tactile interfaces are developed. The first interface (mechanotactile) exploits a disturbance observer which estimates the interaction forces in contact with the grasped object. Estimated interaction forces are then converted and applied to the upper arm of the user via a custom made pressure cuff. The second interface employs vibrotactile feedback based on surface irregularities and acceleration signals and is used to provide the user with information about the surface properties of the object as well as detection of object slippage while grasping. Grasp robustness and intuitiveness of hand control were evaluated in two sets of experiments. Results suggest that incorporating the aforementioned haptic feedback strategies, together with user-driven compliance of the hand, facilitate execution of safe and stable grasps, while suggesting that a low-cost, robust hand employing hardware-based synergies might be a good alternative to traditional myoelectric prostheses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">24968383</PMID>
<DateCreated>
<Year>2014</Year>
<Month>06</Month>
<Day>27</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>12</Month>
<Day>03</Day>
</DateCompleted>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">2329-4051</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>2</Issue>
<PubDate>
<MedlineDate>2014 Apr-Jun</MedlineDate>
</PubDate>
</JournalIssue>
<Title>IEEE transactions on haptics</Title>
<ISOAbbreviation>IEEE Trans Haptics</ISOAbbreviation>
</Journal>
<ArticleTitle>Exploring teleimpedance and tactile feedback for intuitive control of the Pisa/IIT SoftHand.</ArticleTitle>
<Pagination>
<MedlinePgn>203-15</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1109/TOH.2014.2309142</ELocationID>
<Abstract>
<AbstractText>This paper proposes a teleimpedance controller with tactile feedback for more intuitive control of the Pisa/IIT SoftHand. With the aim to realize a robust, efficient and low-cost hand prosthesis design, the SoftHand is developed based on the motor control principle of synergies, through which the immense complexity of the hand is simplified into distinct motor patterns. Due to the built-in flexibility of the hand joints, as the SoftHand grasps, it follows a synergistic path while allowing grasping of objects of various shapes using only a single motor. The DC motor of the hand incorporates a novel teleimpedance control in which the user's postural and stiffness synergy references are tracked in real-time. In addition, for intuitive control of the hand, two tactile interfaces are developed. The first interface (mechanotactile) exploits a disturbance observer which estimates the interaction forces in contact with the grasped object. Estimated interaction forces are then converted and applied to the upper arm of the user via a custom made pressure cuff. The second interface employs vibrotactile feedback based on surface irregularities and acceleration signals and is used to provide the user with information about the surface properties of the object as well as detection of object slippage while grasping. Grasp robustness and intuitiveness of hand control were evaluated in two sets of experiments. Results suggest that incorporating the aforementioned haptic feedback strategies, together with user-driven compliance of the hand, facilitate execution of safe and stable grasps, while suggesting that a low-cost, robust hand employing hardware-based synergies might be a good alternative to traditional myoelectric prostheses.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ajoudani</LastName>
<ForeName>Arash</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Godfrey</LastName>
<ForeName>Sasha B</ForeName>
<Initials>SB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bianchi</LastName>
<ForeName>Matteo</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Catalano</LastName>
<ForeName>Manuel G</ForeName>
<Initials>MG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Grioli</LastName>
<ForeName>Giorgio</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tsagarakis</LastName>
<ForeName>Nikos</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bicchi</LastName>
<ForeName>Antonio</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>IEEE Trans Haptics</MedlineTA>
<NlmUniqueID>101491191</NlmUniqueID>
<ISSNLinking>1939-1412</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000328">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001186">Artificial Limbs</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000592">standards</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D017097">Electric Impedance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D056228">Feedback, Sensory</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D011474">Prosthesis Design</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000592">standards</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D055698">Touch Perception</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>6</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>6</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1109/TOH.2014.2309142</ArticleId>
<ArticleId IdType="pubmed">24968383</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Ajoudani, Arash" sort="Ajoudani, Arash" uniqKey="Ajoudani A" first="Arash" last="Ajoudani">Arash Ajoudani</name>
<name sortKey="Bianchi, Matteo" sort="Bianchi, Matteo" uniqKey="Bianchi M" first="Matteo" last="Bianchi">Matteo Bianchi</name>
<name sortKey="Bicchi, Antonio" sort="Bicchi, Antonio" uniqKey="Bicchi A" first="Antonio" last="Bicchi">Antonio Bicchi</name>
<name sortKey="Catalano, Manuel G" sort="Catalano, Manuel G" uniqKey="Catalano M" first="Manuel G" last="Catalano">Manuel G. Catalano</name>
<name sortKey="Godfrey, Sasha B" sort="Godfrey, Sasha B" uniqKey="Godfrey S" first="Sasha B" last="Godfrey">Sasha B. Godfrey</name>
<name sortKey="Grioli, Giorgio" sort="Grioli, Giorgio" uniqKey="Grioli G" first="Giorgio" last="Grioli">Giorgio Grioli</name>
<name sortKey="Tsagarakis, Nikos" sort="Tsagarakis, Nikos" uniqKey="Tsagarakis N" first="Nikos" last="Tsagarakis">Nikos Tsagarakis</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003100 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 003100 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:24968383
   |texte=   Exploring teleimpedance and tactile feedback for intuitive control of the Pisa/IIT SoftHand.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:24968383" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024