Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Real-Time Estimation of Glenohumeral Joint Rotation Center With Cable-Driven Arm Exoskeleton (CAREX)—A Cable-Based Arm Exoskeleton

Identifieur interne : 003043 ( Ncbi/Merge ); précédent : 003042; suivant : 003044

Real-Time Estimation of Glenohumeral Joint Rotation Center With Cable-Driven Arm Exoskeleton (CAREX)—A Cable-Based Arm Exoskeleton

Auteurs : Ying Mao ; Xin Jin ; Sunil K. Agrawal

Source :

RBID : PMC:4023848

Abstract

In the past few years, the authors have proposed several prototypes of a Cable-driven upper ARm EXoskeleton (CAREX) for arm rehabilitation. One of the assumptions of CAREX was that the glenohumeral joint rotation center (GH-c) remains stationary in the inertial frame during motion, which leads to inaccuracy in the kinematic model and may hamper training performance. In this paper, we propose a novel approach to estimate GH-c using measurements of shoulder joint angles and cable lengths. This helps in locating the GH-c center appropriately within the kinematic model. As a result, more accurate kinematic model can be used to improve the training of human users. An estimation algorithm is presented to compute the GH-c in real-time. The algorithm was implemented on the latest prototype of CAREX. Simulations and preliminary experimental results are presented to validate the proposed GH-c estimation method.


Url:
DOI: 10.1115/1.4025926
PubMed: 24895530
PubMed Central: 4023848

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:4023848

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Real-Time Estimation of Glenohumeral Joint Rotation Center With Cable-Driven Arm Exoskeleton (CAREX)—A Cable-Based Arm Exoskeleton</title>
<author>
<name sortKey="Mao, Ying" sort="Mao, Ying" uniqKey="Mao Y" first="Ying" last="Mao">Ying Mao</name>
</author>
<author>
<name sortKey="Jin, Xin" sort="Jin, Xin" uniqKey="Jin X" first="Xin" last="Jin">Xin Jin</name>
</author>
<author>
<name sortKey="Agrawal, Sunil K" sort="Agrawal, Sunil K" uniqKey="Agrawal S" first="Sunil K." last="Agrawal">Sunil K. Agrawal</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24895530</idno>
<idno type="pmc">4023848</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4023848</idno>
<idno type="RBID">PMC:4023848</idno>
<idno type="doi">10.1115/1.4025926</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">000C39</idno>
<idno type="wicri:Area/Pmc/Curation">000C39</idno>
<idno type="wicri:Area/Pmc/Checkpoint">001058</idno>
<idno type="wicri:Area/Ncbi/Merge">003043</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Real-Time Estimation of Glenohumeral Joint Rotation Center With Cable-Driven Arm Exoskeleton (CAREX)—A Cable-Based Arm Exoskeleton</title>
<author>
<name sortKey="Mao, Ying" sort="Mao, Ying" uniqKey="Mao Y" first="Ying" last="Mao">Ying Mao</name>
</author>
<author>
<name sortKey="Jin, Xin" sort="Jin, Xin" uniqKey="Jin X" first="Xin" last="Jin">Xin Jin</name>
</author>
<author>
<name sortKey="Agrawal, Sunil K" sort="Agrawal, Sunil K" uniqKey="Agrawal S" first="Sunil K." last="Agrawal">Sunil K. Agrawal</name>
</author>
</analytic>
<series>
<title level="j">Journal of Mechanisms and Robotics</title>
<idno type="ISSN">1942-4302</idno>
<idno type="eISSN">1942-4310</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>In the past few years, the authors have proposed several prototypes of a
<italic>C</italic>
able-driven upper
<italic>AR</italic>
m
<italic>EX</italic>
oskeleton (
<italic>CAREX</italic>
) for arm rehabilitation. One of the assumptions of CAREX was that the glenohumeral joint rotation center (GH-c) remains stationary in the inertial frame during motion, which leads to inaccuracy in the kinematic model and may hamper training performance. In this paper, we propose a novel approach to estimate GH-c using measurements of shoulder joint angles and cable lengths. This helps in locating the GH-c center appropriately within the kinematic model. As a result, more accurate kinematic model can be used to improve the training of human users. An estimation algorithm is presented to compute the GH-c in real-time. The algorithm was implemented on the latest prototype of CAREX. Simulations and preliminary experimental results are presented to validate the proposed GH-c estimation method.</p>
</div>
</front>
</TEI>
<pmc article-type="brief-report">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Mech Robot</journal-id>
<journal-id journal-id-type="iso-abbrev">J Mech Robot</journal-id>
<journal-id journal-id-type="pmc">JMR</journal-id>
<journal-title-group>
<journal-title>Journal of Mechanisms and Robotics</journal-title>
</journal-title-group>
<issn pub-type="ppub">1942-4302</issn>
<issn pub-type="epub">1942-4310</issn>
<publisher>
<publisher-name>American Society of Mechanical Engineers</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24895530</article-id>
<article-id pub-id-type="pmc">4023848</article-id>
<article-id pub-id-type="doi">10.1115/1.4025926</article-id>
<article-id pub-id-type="coden">JMROA6</article-id>
<article-id pub-id-type="publisher-id">JMR-12-1017</article-id>
<article-id pub-id-type="publisher-manuscript">JMR-12-1017</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Technical Brief</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Real-Time Estimation of Glenohumeral Joint Rotation Center With Cable-Driven Arm Exoskeleton (CAREX)—A Cable-Based Arm Exoskeleton</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Mao</surname>
<given-names>Ying</given-names>
</name>
<xref ref-type="corresp" rid="cor2">
<sup>2</sup>
</xref>
<aff>
<institution>GE Global Research</institution>
,
<break></break>
<addr-line>1 Research Circle</addr-line>
,
<break></break>
<addr-line>Niskayuna, NY 12309</addr-line>
<break></break>
e-mail: 
<email>yingmao@ge.com</email>
</aff>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Jin</surname>
<given-names>Xin</given-names>
</name>
<aff>Department of Mechanical Engineering,
<break></break>
<institution>Columbia University</institution>
,
<break></break>
New York, NY 10027
<break></break>
e-mail: 
<email>xj2146@columbia.edu</email>
</aff>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Agrawal</surname>
<given-names>Sunil K.</given-names>
</name>
<xref ref-type="corresp" rid="cor1">
<sup>1</sup>
</xref>
<aff>Professor
<break></break>
Department of Mechanical Engineering,
<break></break>
<institution>Columbia University</institution>
,
<break></break>
<addr-line>New York, NY 10027</addr-line>
<break></break>
e-mail: 
<email>Sunil.Agrawal@columbia.edu</email>
</aff>
</contrib>
</contrib-group>
<author-notes>
<corresp id="cor1">
<label>1</label>
Corresponding author.</corresp>
<corresp id="cor2">
<label>2</label>
Ying Mao is currently affiliated with GE Global Research. All work presented in this paper was completed prior to joining GE at University of Delaware.</corresp>
<fn fn-type="other">
<p>Contributed by the Mechanisms and Robotics Committee of ASME for publication in the J
<sc>OURNAL OF</sc>
M
<sc>ECHANISMS AND</sc>
R
<sc>OBOTICS</sc>
. Manuscript received February 21, 2012; final manuscript received September 26, 2013; published online December 27, 2013. Assoc. Editor: Kazem Kazerounian.</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<month>2</month>
<year>2014</year>
</pub-date>
<pub-date pub-type="epub">
<day>27</day>
<month>12</month>
<year>2013</year>
</pub-date>
<volume>6</volume>
<issue>1</issue>
<fpage>0145021</fpage>
<lpage>0145025</lpage>
<history>
<date date-type="received">
<day>21</day>
<month>2</month>
<year>2012</year>
</date>
<date date-type="rev-recd">
<day>26</day>
<month>9</month>
<year>2013</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2014 by ASME</copyright-statement>
<copyright-year>2014</copyright-year>
<license license-type="ccc">
<license-p>1942-4302/2014/6(01)/014502/5/
<price>$0.00</price>
</license-p>
</license>
</permissions>
<self-uri xlink:title="pdf" xlink:type="simple" xlink:href="jmr_12_1017_014502.pdf"></self-uri>
<abstract abstract-type="short">
<p>In the past few years, the authors have proposed several prototypes of a
<italic>C</italic>
able-driven upper
<italic>AR</italic>
m
<italic>EX</italic>
oskeleton (
<italic>CAREX</italic>
) for arm rehabilitation. One of the assumptions of CAREX was that the glenohumeral joint rotation center (GH-c) remains stationary in the inertial frame during motion, which leads to inaccuracy in the kinematic model and may hamper training performance. In this paper, we propose a novel approach to estimate GH-c using measurements of shoulder joint angles and cable lengths. This helps in locating the GH-c center appropriately within the kinematic model. As a result, more accurate kinematic model can be used to improve the training of human users. An estimation algorithm is presented to compute the GH-c in real-time. The algorithm was implemented on the latest prototype of CAREX. Simulations and preliminary experimental results are presented to validate the proposed GH-c estimation method.</p>
</abstract>
<counts>
<page-count count="5"></page-count>
</counts>
</article-meta>
</front>
</pmc>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Agrawal, Sunil K" sort="Agrawal, Sunil K" uniqKey="Agrawal S" first="Sunil K." last="Agrawal">Sunil K. Agrawal</name>
<name sortKey="Jin, Xin" sort="Jin, Xin" uniqKey="Jin X" first="Xin" last="Jin">Xin Jin</name>
<name sortKey="Mao, Ying" sort="Mao, Ying" uniqKey="Mao Y" first="Ying" last="Mao">Ying Mao</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003043 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 003043 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     PMC:4023848
   |texte=   Real-Time Estimation of Glenohumeral Joint Rotation Center With Cable-Driven Arm Exoskeleton (CAREX)—A Cable-Based Arm Exoskeleton
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:24895530" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024