Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Haptic feedback enhances rhythmic motor control by reducing variability, not improving convergence rate.

Identifieur interne : 002B89 ( Ncbi/Merge ); précédent : 002B88; suivant : 002B90

Haptic feedback enhances rhythmic motor control by reducing variability, not improving convergence rate.

Auteurs : M Mert Ankarali [États-Unis] ; H. Tutkun Sen ; Avik De ; Allison M. Okamura ; Noah J. Cowan

Source :

RBID : pubmed:24371296

English descriptors

Abstract

Stability and performance during rhythmic motor behaviors such as locomotion are critical for survival across taxa: falling down would bode well for neither cheetah nor gazelle. Little is known about how haptic feedback, particularly during discrete events such as the heel-strike event during walking, enhances rhythmic behavior. To determine the effect of haptic cues on rhythmic motor performance, we investigated a virtual paddle juggling behavior, analogous to bouncing a table tennis ball on a paddle. Here, we show that a force impulse to the hand at the moment of ball-paddle collision categorically improves performance over visual feedback alone, not by regulating the rate of convergence to steady state (e.g., via higher gain feedback or modifying the steady-state hand motion), but rather by reducing cycle-to-cycle variability. This suggests that the timing and state cues afforded by haptic feedback decrease the nervous system's uncertainty of the state of the ball to enable more accurate control but that the feedback gain itself is unaltered. This decrease in variability leads to a substantial increase in the mean first passage time, a measure of the long-term metastability of a stochastic dynamical system. Rhythmic tasks such as locomotion and juggling involve intermittent contact with the environment (i.e., hybrid transitions), and the timing of such transitions is generally easy to sense via haptic feedback. This timing information may improve metastability, equating to less frequent falls or other failures depending on the task.

DOI: 10.1152/jn.00140.2013
PubMed: 24371296

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:24371296

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Haptic feedback enhances rhythmic motor control by reducing variability, not improving convergence rate.</title>
<author>
<name sortKey="Ankarali, M Mert" sort="Ankarali, M Mert" uniqKey="Ankarali M" first="M Mert" last="Ankarali">M Mert Ankarali</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland;</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Department of Mechanical Engineering, Johns Hopkins University, Baltimore</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Tutkun Sen, H" sort="Tutkun Sen, H" uniqKey="Tutkun Sen H" first="H" last="Tutkun Sen">H. Tutkun Sen</name>
</author>
<author>
<name sortKey="De, Avik" sort="De, Avik" uniqKey="De A" first="Avik" last="De">Avik De</name>
</author>
<author>
<name sortKey="Okamura, Allison M" sort="Okamura, Allison M" uniqKey="Okamura A" first="Allison M" last="Okamura">Allison M. Okamura</name>
</author>
<author>
<name sortKey="Cowan, Noah J" sort="Cowan, Noah J" uniqKey="Cowan N" first="Noah J" last="Cowan">Noah J. Cowan</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24371296</idno>
<idno type="pmid">24371296</idno>
<idno type="doi">10.1152/jn.00140.2013</idno>
<idno type="wicri:Area/PubMed/Corpus">000784</idno>
<idno type="wicri:Area/PubMed/Curation">000784</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000630</idno>
<idno type="wicri:Area/Ncbi/Merge">002B89</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Haptic feedback enhances rhythmic motor control by reducing variability, not improving convergence rate.</title>
<author>
<name sortKey="Ankarali, M Mert" sort="Ankarali, M Mert" uniqKey="Ankarali M" first="M Mert" last="Ankarali">M Mert Ankarali</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland;</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Department of Mechanical Engineering, Johns Hopkins University, Baltimore</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Tutkun Sen, H" sort="Tutkun Sen, H" uniqKey="Tutkun Sen H" first="H" last="Tutkun Sen">H. Tutkun Sen</name>
</author>
<author>
<name sortKey="De, Avik" sort="De, Avik" uniqKey="De A" first="Avik" last="De">Avik De</name>
</author>
<author>
<name sortKey="Okamura, Allison M" sort="Okamura, Allison M" uniqKey="Okamura A" first="Allison M" last="Okamura">Allison M. Okamura</name>
</author>
<author>
<name sortKey="Cowan, Noah J" sort="Cowan, Noah J" uniqKey="Cowan N" first="Noah J" last="Cowan">Noah J. Cowan</name>
</author>
</analytic>
<series>
<title level="j">Journal of neurophysiology</title>
<idno type="eISSN">1522-1598</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cues</term>
<term>Feedback, Physiological</term>
<term>Female</term>
<term>Hand (innervation)</term>
<term>Hand (physiology)</term>
<term>Humans</term>
<term>Male</term>
<term>Models, Neurological</term>
<term>Motor Skills</term>
<term>Periodicity</term>
<term>Stochastic Processes</term>
<term>Touch</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="MESH" qualifier="innervation" xml:lang="en">
<term>Hand</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Hand</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cues</term>
<term>Feedback, Physiological</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Models, Neurological</term>
<term>Motor Skills</term>
<term>Periodicity</term>
<term>Stochastic Processes</term>
<term>Touch</term>
<term>Young Adult</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Stability and performance during rhythmic motor behaviors such as locomotion are critical for survival across taxa: falling down would bode well for neither cheetah nor gazelle. Little is known about how haptic feedback, particularly during discrete events such as the heel-strike event during walking, enhances rhythmic behavior. To determine the effect of haptic cues on rhythmic motor performance, we investigated a virtual paddle juggling behavior, analogous to bouncing a table tennis ball on a paddle. Here, we show that a force impulse to the hand at the moment of ball-paddle collision categorically improves performance over visual feedback alone, not by regulating the rate of convergence to steady state (e.g., via higher gain feedback or modifying the steady-state hand motion), but rather by reducing cycle-to-cycle variability. This suggests that the timing and state cues afforded by haptic feedback decrease the nervous system's uncertainty of the state of the ball to enable more accurate control but that the feedback gain itself is unaltered. This decrease in variability leads to a substantial increase in the mean first passage time, a measure of the long-term metastability of a stochastic dynamical system. Rhythmic tasks such as locomotion and juggling involve intermittent contact with the environment (i.e., hybrid transitions), and the timing of such transitions is generally easy to sense via haptic feedback. This timing information may improve metastability, equating to less frequent falls or other failures depending on the task.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">24371296</PMID>
<DateCreated>
<Year>2014</Year>
<Month>03</Month>
<Day>17</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>11</Month>
<Day>07</Day>
</DateCompleted>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1522-1598</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>111</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2014</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Journal of neurophysiology</Title>
<ISOAbbreviation>J. Neurophysiol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Haptic feedback enhances rhythmic motor control by reducing variability, not improving convergence rate.</ArticleTitle>
<Pagination>
<MedlinePgn>1286-99</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1152/jn.00140.2013</ELocationID>
<Abstract>
<AbstractText>Stability and performance during rhythmic motor behaviors such as locomotion are critical for survival across taxa: falling down would bode well for neither cheetah nor gazelle. Little is known about how haptic feedback, particularly during discrete events such as the heel-strike event during walking, enhances rhythmic behavior. To determine the effect of haptic cues on rhythmic motor performance, we investigated a virtual paddle juggling behavior, analogous to bouncing a table tennis ball on a paddle. Here, we show that a force impulse to the hand at the moment of ball-paddle collision categorically improves performance over visual feedback alone, not by regulating the rate of convergence to steady state (e.g., via higher gain feedback or modifying the steady-state hand motion), but rather by reducing cycle-to-cycle variability. This suggests that the timing and state cues afforded by haptic feedback decrease the nervous system's uncertainty of the state of the ball to enable more accurate control but that the feedback gain itself is unaltered. This decrease in variability leads to a substantial increase in the mean first passage time, a measure of the long-term metastability of a stochastic dynamical system. Rhythmic tasks such as locomotion and juggling involve intermittent contact with the environment (i.e., hybrid transitions), and the timing of such transitions is generally easy to sense via haptic feedback. This timing information may improve metastability, equating to less frequent falls or other failures depending on the task.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ankarali</LastName>
<ForeName>M Mert</ForeName>
<Initials>MM</Initials>
<AffiliationInfo>
<Affiliation>Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland;</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tutkun Sen</LastName>
<ForeName>H</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>De</LastName>
<ForeName>Avik</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Okamura</LastName>
<ForeName>Allison M</ForeName>
<Initials>AM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cowan</LastName>
<ForeName>Noah J</ForeName>
<Initials>NJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>12</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Neurophysiol</MedlineTA>
<NlmUniqueID>0375404</NlmUniqueID>
<ISSNLinking>0022-3077</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003463">Cues</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D025461">Feedback, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005260">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006225">Hand</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000294">innervation</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D008959">Models, Neurological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D009048">Motor Skills</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D010507">Periodicity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013269">Stochastic Processes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D014110">Touch</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D055815">Young Adult</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">haptics</Keyword>
<Keyword MajorTopicYN="N">juggling</Keyword>
<Keyword MajorTopicYN="N">limit cycle</Keyword>
<Keyword MajorTopicYN="N">metastability</Keyword>
<Keyword MajorTopicYN="N">multisensory integration</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2013</Year>
<Month>12</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>12</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>12</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>11</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24371296</ArticleId>
<ArticleId IdType="pii">jn.00140.2013</ArticleId>
<ArticleId IdType="doi">10.1152/jn.00140.2013</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Cowan, Noah J" sort="Cowan, Noah J" uniqKey="Cowan N" first="Noah J" last="Cowan">Noah J. Cowan</name>
<name sortKey="De, Avik" sort="De, Avik" uniqKey="De A" first="Avik" last="De">Avik De</name>
<name sortKey="Okamura, Allison M" sort="Okamura, Allison M" uniqKey="Okamura A" first="Allison M" last="Okamura">Allison M. Okamura</name>
<name sortKey="Tutkun Sen, H" sort="Tutkun Sen, H" uniqKey="Tutkun Sen H" first="H" last="Tutkun Sen">H. Tutkun Sen</name>
</noCountry>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="Ankarali, M Mert" sort="Ankarali, M Mert" uniqKey="Ankarali M" first="M Mert" last="Ankarali">M Mert Ankarali</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002B89 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 002B89 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:24371296
   |texte=   Haptic feedback enhances rhythmic motor control by reducing variability, not improving convergence rate.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:24371296" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024