Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.

Identifieur interne : 002A37 ( Ncbi/Merge ); précédent : 002A36; suivant : 002A38

Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.

Auteurs : Shervin Ehrampoosh [États-Unis] ; Mohit Dave ; Michael A. Kia ; Corneliu Rablau ; Mehrdad H. Zadeh

Source :

RBID : pubmed:24156342

English descriptors

Abstract

This paper presents an enhanced haptic-enabled master-slave teleoperation system which can be used to provide force feedback to surgeons in minimally invasive surgery (MIS). One of the research goals was to develop a combined-control architecture framework that included both direct force reflection (DFR) and position-error-based (PEB) control strategies. To achieve this goal, it was essential to measure accurately the direct contact forces between deformable bodies and a robotic tool tip. To measure the forces at a surgical tool tip and enhance the performance of the teleoperation system, an optical force sensor was designed, prototyped, and added to a robot manipulator. The enhanced teleoperation architecture was formulated by developing mathematical models for the optical force sensor, the extended slave robot manipulator, and the combined-control strategy. Human factor studies were also conducted to (a) examine experimentally the performance of the enhanced teleoperation system with the optical force sensor, and (b) study human haptic perception during the identification of remote object deformability. The first experiment was carried out to discriminate deformability of objects when human subjects were in direct contact with deformable objects by means of a laparoscopic tool. The control parameters were then tuned based on the results of this experiment using a gain-scheduling method. The second experiment was conducted to study the effectiveness of the force feedback provided through the enhanced teleoperation system. The results show that the force feedback increased the ability of subjects to correctly identify materials of different deformable types. In addition, the virtual force feedback provided by the teleoperation system comes close to the real force feedback experienced in direct MIS. The experimental results provide design guidelines for choosing and validating the control architecture and the optical force sensor.

DOI: 10.3109/10929088.2013.839744
PubMed: 24156342

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:24156342

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.</title>
<author>
<name sortKey="Ehrampoosh, Shervin" sort="Ehrampoosh, Shervin" uniqKey="Ehrampoosh S" first="Shervin" last="Ehrampoosh">Shervin Ehrampoosh</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Electrical and Computer Engineering, Kettering University , Flint , Michigan .</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Michigan</region>
</placeName>
<wicri:cityArea>Department of Electrical and Computer Engineering, Kettering University , Flint </wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Dave, Mohit" sort="Dave, Mohit" uniqKey="Dave M" first="Mohit" last="Dave">Mohit Dave</name>
</author>
<author>
<name sortKey="Kia, Michael A" sort="Kia, Michael A" uniqKey="Kia M" first="Michael A" last="Kia">Michael A. Kia</name>
</author>
<author>
<name sortKey="Rablau, Corneliu" sort="Rablau, Corneliu" uniqKey="Rablau C" first="Corneliu" last="Rablau">Corneliu Rablau</name>
</author>
<author>
<name sortKey="Zadeh, Mehrdad H" sort="Zadeh, Mehrdad H" uniqKey="Zadeh M" first="Mehrdad H" last="Zadeh">Mehrdad H. Zadeh</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="doi">10.3109/10929088.2013.839744</idno>
<idno type="RBID">pubmed:24156342</idno>
<idno type="pmid">24156342</idno>
<idno type="wicri:Area/PubMed/Corpus">000833</idno>
<idno type="wicri:Area/PubMed/Curation">000833</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000824</idno>
<idno type="wicri:Area/Ncbi/Merge">002A37</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.</title>
<author>
<name sortKey="Ehrampoosh, Shervin" sort="Ehrampoosh, Shervin" uniqKey="Ehrampoosh S" first="Shervin" last="Ehrampoosh">Shervin Ehrampoosh</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Electrical and Computer Engineering, Kettering University , Flint , Michigan .</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Michigan</region>
</placeName>
<wicri:cityArea>Department of Electrical and Computer Engineering, Kettering University , Flint </wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Dave, Mohit" sort="Dave, Mohit" uniqKey="Dave M" first="Mohit" last="Dave">Mohit Dave</name>
</author>
<author>
<name sortKey="Kia, Michael A" sort="Kia, Michael A" uniqKey="Kia M" first="Michael A" last="Kia">Michael A. Kia</name>
</author>
<author>
<name sortKey="Rablau, Corneliu" sort="Rablau, Corneliu" uniqKey="Rablau C" first="Corneliu" last="Rablau">Corneliu Rablau</name>
</author>
<author>
<name sortKey="Zadeh, Mehrdad H" sort="Zadeh, Mehrdad H" uniqKey="Zadeh M" first="Mehrdad H" last="Zadeh">Mehrdad H. Zadeh</name>
</author>
</analytic>
<series>
<title level="j">Computer aided surgery : official journal of the International Society for Computer Aided Surgery</title>
<idno type="eISSN">1097-0150</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms</term>
<term>Elasticity</term>
<term>Equipment Design</term>
<term>Feedback</term>
<term>Female</term>
<term>Humans</term>
<term>Laparoscopy</term>
<term>Male</term>
<term>Models, Theoretical</term>
<term>Optical Devices</term>
<term>Robotics</term>
<term>Surgery, Computer-Assisted</term>
<term>Telemedicine</term>
<term>Touch Perception</term>
<term>User-Computer Interface</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Elasticity</term>
<term>Equipment Design</term>
<term>Feedback</term>
<term>Female</term>
<term>Humans</term>
<term>Laparoscopy</term>
<term>Male</term>
<term>Models, Theoretical</term>
<term>Optical Devices</term>
<term>Robotics</term>
<term>Surgery, Computer-Assisted</term>
<term>Telemedicine</term>
<term>Touch Perception</term>
<term>User-Computer Interface</term>
<term>Young Adult</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper presents an enhanced haptic-enabled master-slave teleoperation system which can be used to provide force feedback to surgeons in minimally invasive surgery (MIS). One of the research goals was to develop a combined-control architecture framework that included both direct force reflection (DFR) and position-error-based (PEB) control strategies. To achieve this goal, it was essential to measure accurately the direct contact forces between deformable bodies and a robotic tool tip. To measure the forces at a surgical tool tip and enhance the performance of the teleoperation system, an optical force sensor was designed, prototyped, and added to a robot manipulator. The enhanced teleoperation architecture was formulated by developing mathematical models for the optical force sensor, the extended slave robot manipulator, and the combined-control strategy. Human factor studies were also conducted to (a) examine experimentally the performance of the enhanced teleoperation system with the optical force sensor, and (b) study human haptic perception during the identification of remote object deformability. The first experiment was carried out to discriminate deformability of objects when human subjects were in direct contact with deformable objects by means of a laparoscopic tool. The control parameters were then tuned based on the results of this experiment using a gain-scheduling method. The second experiment was conducted to study the effectiveness of the force feedback provided through the enhanced teleoperation system. The results show that the force feedback increased the ability of subjects to correctly identify materials of different deformable types. In addition, the virtual force feedback provided by the teleoperation system comes close to the real force feedback experienced in direct MIS. The experimental results provide design guidelines for choosing and validating the control architecture and the optical force sensor.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">24156342</PMID>
<DateCreated>
<Year>2013</Year>
<Month>10</Month>
<Day>25</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>06</Month>
<Day>25</Day>
</DateCompleted>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1097-0150</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>18</Volume>
<Issue>5-6</Issue>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>Computer aided surgery : official journal of the International Society for Computer Aided Surgery</Title>
<ISOAbbreviation>Comput. Aided Surg.</ISOAbbreviation>
</Journal>
<ArticleTitle>Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.</ArticleTitle>
<Pagination>
<MedlinePgn>129-41</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3109/10929088.2013.839744</ELocationID>
<Abstract>
<AbstractText>This paper presents an enhanced haptic-enabled master-slave teleoperation system which can be used to provide force feedback to surgeons in minimally invasive surgery (MIS). One of the research goals was to develop a combined-control architecture framework that included both direct force reflection (DFR) and position-error-based (PEB) control strategies. To achieve this goal, it was essential to measure accurately the direct contact forces between deformable bodies and a robotic tool tip. To measure the forces at a surgical tool tip and enhance the performance of the teleoperation system, an optical force sensor was designed, prototyped, and added to a robot manipulator. The enhanced teleoperation architecture was formulated by developing mathematical models for the optical force sensor, the extended slave robot manipulator, and the combined-control strategy. Human factor studies were also conducted to (a) examine experimentally the performance of the enhanced teleoperation system with the optical force sensor, and (b) study human haptic perception during the identification of remote object deformability. The first experiment was carried out to discriminate deformability of objects when human subjects were in direct contact with deformable objects by means of a laparoscopic tool. The control parameters were then tuned based on the results of this experiment using a gain-scheduling method. The second experiment was conducted to study the effectiveness of the force feedback provided through the enhanced teleoperation system. The results show that the force feedback increased the ability of subjects to correctly identify materials of different deformable types. In addition, the virtual force feedback provided by the teleoperation system comes close to the real force feedback experienced in direct MIS. The experimental results provide design guidelines for choosing and validating the control architecture and the optical force sensor.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ehrampoosh</LastName>
<ForeName>Shervin</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Electrical and Computer Engineering, Kettering University , Flint , Michigan .</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dave</LastName>
<ForeName>Mohit</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kia</LastName>
<ForeName>Michael A</ForeName>
<Initials>MA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rablau</LastName>
<ForeName>Corneliu</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zadeh</LastName>
<ForeName>Mehrdad H</ForeName>
<Initials>MH</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Comput Aided Surg</MedlineTA>
<NlmUniqueID>9708375</NlmUniqueID>
<ISSNLinking>1092-9088</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000465">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004548">Elasticity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004867">Equipment Design</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D005246">Feedback</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005260">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D010535">Laparoscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008962">Models, Theoretical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D055096">Optical Devices</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D012371">Robotics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D025321">Surgery, Computer-Assisted</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D017216">Telemedicine</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D055698">Touch Perception</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014584">User-Computer Interface</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D055815">Young Adult</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>10</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>10</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>6</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.3109/10929088.2013.839744</ArticleId>
<ArticleId IdType="pubmed">24156342</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Michigan</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Dave, Mohit" sort="Dave, Mohit" uniqKey="Dave M" first="Mohit" last="Dave">Mohit Dave</name>
<name sortKey="Kia, Michael A" sort="Kia, Michael A" uniqKey="Kia M" first="Michael A" last="Kia">Michael A. Kia</name>
<name sortKey="Rablau, Corneliu" sort="Rablau, Corneliu" uniqKey="Rablau C" first="Corneliu" last="Rablau">Corneliu Rablau</name>
<name sortKey="Zadeh, Mehrdad H" sort="Zadeh, Mehrdad H" uniqKey="Zadeh M" first="Mehrdad H" last="Zadeh">Mehrdad H. Zadeh</name>
</noCountry>
<country name="États-Unis">
<region name="Michigan">
<name sortKey="Ehrampoosh, Shervin" sort="Ehrampoosh, Shervin" uniqKey="Ehrampoosh S" first="Shervin" last="Ehrampoosh">Shervin Ehrampoosh</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002A37 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 002A37 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:24156342
   |texte=   Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:24156342" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024