Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Self-generated sounds of locomotion and ventilation and the evolution of human rhythmic abilities

Identifieur interne : 002905 ( Ncbi/Merge ); précédent : 002904; suivant : 002906

Self-generated sounds of locomotion and ventilation and the evolution of human rhythmic abilities

Auteurs : Matz Larsson [Suède]

Source :

RBID : PMC:3889703

Abstract

It has been suggested that the basic building blocks of music mimic sounds of moving humans, and because the brain was primed to exploit such sounds, they eventually became incorporated in human culture. However, that raises further questions. Why do genetically close, culturally well-developed apes lack musical abilities? Did our switch to bipedalism influence the origins of music? Four hypotheses are raised: (1) Human locomotion and ventilation can mask critical sounds in the environment. (2) Synchronization of locomotion reduces that problem. (3) Predictable sounds of locomotion may stimulate the evolution of synchronized behavior. (4) Bipedal gait and the associated sounds of locomotion influenced the evolution of human rhythmic abilities. Theoretical models and research data suggest that noise of locomotion and ventilation may mask critical auditory information. People often synchronize steps subconsciously. Human locomotion is likely to produce more predictable sounds than those of non-human primates. Predictable locomotion sounds may have improved our capacity of entrainment to external rhythms and to feel the beat in music. A sense of rhythm could aid the brain in distinguishing among sounds arising from discrete sources and also help individuals to synchronize their movements with one another. Synchronization of group movement may improve perception by providing periods of relative silence and by facilitating auditory processing. The adaptive value of such skills to early ancestors may have been keener detection of prey or stalkers and enhanced communication. Bipedal walking may have influenced the development of entrainment in humans and thereby the evolution of rhythmic abilities.


Url:
DOI: 10.1007/s10071-013-0678-z
PubMed: 23990063
PubMed Central: 3889703

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:3889703

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Self-generated sounds of locomotion and ventilation and the evolution of human rhythmic abilities</title>
<author>
<name sortKey="Larsson, Matz" sort="Larsson, Matz" uniqKey="Larsson M" first="Matz" last="Larsson">Matz Larsson</name>
<affiliation wicri:level="1">
<nlm:aff id="Aff1">The Cardiology Clinic, Örebro University Hospital, 701 85 Örebro, Sweden</nlm:aff>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>The Cardiology Clinic, Örebro University Hospital, 701 85 Örebro</wicri:regionArea>
<wicri:noRegion>701 85 Örebro</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="Aff2">The Respiratory Clinic, Örebro University Hospital, 701 85 Örebro, Sweden</nlm:aff>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>The Respiratory Clinic, Örebro University Hospital, 701 85 Örebro</wicri:regionArea>
<wicri:noRegion>701 85 Örebro</wicri:noRegion>
</affiliation>
<affiliation wicri:level="3">
<nlm:aff id="Aff3">Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden</nlm:aff>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Institute of Environmental Medicine, Karolinska Institutet, Stockholm</wicri:regionArea>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="2">Svealand</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">23990063</idno>
<idno type="pmc">3889703</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3889703</idno>
<idno type="RBID">PMC:3889703</idno>
<idno type="doi">10.1007/s10071-013-0678-z</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">000908</idno>
<idno type="wicri:Area/Pmc/Curation">000908</idno>
<idno type="wicri:Area/Pmc/Checkpoint">001020</idno>
<idno type="wicri:Area/Ncbi/Merge">002905</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Self-generated sounds of locomotion and ventilation and the evolution of human rhythmic abilities</title>
<author>
<name sortKey="Larsson, Matz" sort="Larsson, Matz" uniqKey="Larsson M" first="Matz" last="Larsson">Matz Larsson</name>
<affiliation wicri:level="1">
<nlm:aff id="Aff1">The Cardiology Clinic, Örebro University Hospital, 701 85 Örebro, Sweden</nlm:aff>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>The Cardiology Clinic, Örebro University Hospital, 701 85 Örebro</wicri:regionArea>
<wicri:noRegion>701 85 Örebro</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="Aff2">The Respiratory Clinic, Örebro University Hospital, 701 85 Örebro, Sweden</nlm:aff>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>The Respiratory Clinic, Örebro University Hospital, 701 85 Örebro</wicri:regionArea>
<wicri:noRegion>701 85 Örebro</wicri:noRegion>
</affiliation>
<affiliation wicri:level="3">
<nlm:aff id="Aff3">Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden</nlm:aff>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Institute of Environmental Medicine, Karolinska Institutet, Stockholm</wicri:regionArea>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="2">Svealand</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Animal Cognition</title>
<idno type="ISSN">1435-9448</idno>
<idno type="eISSN">1435-9456</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>It has been suggested that the basic building blocks of music mimic sounds of moving humans, and because the brain was primed to exploit such sounds, they eventually became incorporated in human culture. However, that raises further questions. Why do genetically close, culturally well-developed apes lack musical abilities? Did our switch to bipedalism influence the origins of music? Four hypotheses are raised: (1) Human locomotion and ventilation can mask critical sounds in the environment. (2) Synchronization of locomotion reduces that problem. (3) Predictable sounds of locomotion may stimulate the evolution of synchronized behavior. (4) Bipedal gait and the associated sounds of locomotion influenced the evolution of human rhythmic abilities. Theoretical models and research data suggest that noise of locomotion and ventilation may mask critical auditory information. People often synchronize steps subconsciously. Human locomotion is likely to produce more predictable sounds than those of non-human primates. Predictable locomotion sounds may have improved our capacity of entrainment to external rhythms and to feel the beat in music. A sense of rhythm could aid the brain in distinguishing among sounds arising from discrete sources and also help individuals to synchronize their movements with one another. Synchronization of group movement may improve perception by providing periods of relative silence and by facilitating auditory processing. The adaptive value of such skills to early ancestors may have been keener detection of prey or stalkers and enhanced communication. Bipedal walking may have influenced the development of entrainment in humans and thereby the evolution of rhythmic abilities. </p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Aliu, So" uniqKey="Aliu S">SO Aliu</name>
</author>
<author>
<name sortKey="Houde, Jf" uniqKey="Houde J">JF Houde</name>
</author>
<author>
<name sortKey="Nagarajan, Ss" uniqKey="Nagarajan S">SS Nagarajan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arnott, Sr" uniqKey="Arnott S">SR Arnott</name>
</author>
<author>
<name sortKey="Singhal, A" uniqKey="Singhal A">A Singhal</name>
</author>
<author>
<name sortKey="Goodale, Ma" uniqKey="Goodale M">MA Goodale</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arriaga, G" uniqKey="Arriaga G">G Arriaga</name>
</author>
<author>
<name sortKey="Zhou, Ep" uniqKey="Zhou E">EP Zhou</name>
</author>
<author>
<name sortKey="Jarvis, Ed" uniqKey="Jarvis E">ED Jarvis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baess, P" uniqKey="Baess P">P Baess</name>
</author>
<author>
<name sortKey="Widmann, A" uniqKey="Widmann A">A Widmann</name>
</author>
<author>
<name sortKey="Roye, A" uniqKey="Roye A">A Roye</name>
</author>
<author>
<name sortKey="Schroger, E" uniqKey="Schroger E">E Schroger</name>
</author>
<author>
<name sortKey="Jacobsen, T" uniqKey="Jacobsen T">T Jacobsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bailey, Wj" uniqKey="Bailey W">WJ Bailey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bailey, Wj" uniqKey="Bailey W">WJ Bailey</name>
</author>
<author>
<name sortKey="Thomson, P" uniqKey="Thomson P">P Thomson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Banzett, Rb" uniqKey="Banzett R">RB Banzett</name>
</author>
<author>
<name sortKey="Mead, J" uniqKey="Mead J">J Mead</name>
</author>
<author>
<name sortKey="Reid, Mb" uniqKey="Reid M">MB Reid</name>
</author>
<author>
<name sortKey="Topulos, Gp" uniqKey="Topulos G">GP Topulos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bass, Ah" uniqKey="Bass A">AH Bass</name>
</author>
<author>
<name sortKey="Chagnaud, Bp" uniqKey="Chagnaud B">BP Chagnaud</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bechbache, Rr" uniqKey="Bechbache R">RR Bechbache</name>
</author>
<author>
<name sortKey="Duffin, J" uniqKey="Duffin J">J Duffin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bennet Clark, Hc" uniqKey="Bennet Clark H">HC Bennet-Clark</name>
</author>
<author>
<name sortKey="Leroy, Y" uniqKey="Leroy Y">Y Leroy</name>
</author>
<author>
<name sortKey="Tsacas, L" uniqKey="Tsacas L">L Tsacas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bernardi, L" uniqKey="Bernardi L">L Bernardi</name>
</author>
<author>
<name sortKey="Porta, C" uniqKey="Porta C">C Porta</name>
</author>
<author>
<name sortKey="Sleight, P" uniqKey="Sleight P">P Sleight</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bernasconi, P" uniqKey="Bernasconi P">P Bernasconi</name>
</author>
<author>
<name sortKey="Kohl, J" uniqKey="Kohl J">J Kohl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bilney, B" uniqKey="Bilney B">B Bilney</name>
</author>
<author>
<name sortKey="Morris, Me" uniqKey="Morris M">ME Morris</name>
</author>
<author>
<name sortKey="Churchyard, A" uniqKey="Churchyard A">A Churchyard</name>
</author>
<author>
<name sortKey="Chiu, E" uniqKey="Chiu E">E Chiu</name>
</author>
<author>
<name sortKey="Georgiou Karistianis, N" uniqKey="Georgiou Karistianis N">N Georgiou-Karistianis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Blakemore, Sj" uniqKey="Blakemore S">SJ Blakemore</name>
</author>
<author>
<name sortKey="Frith, Cd" uniqKey="Frith C">CD Frith</name>
</author>
<author>
<name sortKey="Wolpert, Dm" uniqKey="Wolpert D">DM Wolpert</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bohannon, Rw" uniqKey="Bohannon R">RW Bohannon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bowles, S" uniqKey="Bowles S">S Bowles</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bramble, Dm" uniqKey="Bramble D">DM Bramble</name>
</author>
<author>
<name sortKey="Carrier, Dr" uniqKey="Carrier D">DR Carrier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bregman, As" uniqKey="Bregman A">AS Bregman</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Changizi, M" uniqKey="Changizi M">M Changizi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Channon, Aj" uniqKey="Channon A">AJ Channon</name>
</author>
<author>
<name sortKey="Gunther, Mm" uniqKey="Gunther M">MM Gunther</name>
</author>
<author>
<name sortKey="Crompton, Rh" uniqKey="Crompton R">RH Crompton</name>
</author>
<author>
<name sortKey="D Out, K" uniqKey="D Out K">K D’Aout</name>
</author>
<author>
<name sortKey="Preuschoft, H" uniqKey="Preuschoft H">H Preuschoft</name>
</author>
<author>
<name sortKey="Vereecke, Ee" uniqKey="Vereecke E">EE Vereecke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chater, N" uniqKey="Chater N">N Chater</name>
</author>
<author>
<name sortKey="Reali, F" uniqKey="Reali F">F Reali</name>
</author>
<author>
<name sortKey="Christiansen, Mh" uniqKey="Christiansen M">MH Christiansen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Jl" uniqKey="Chen J">JL Chen</name>
</author>
<author>
<name sortKey="Zatorre, Rj" uniqKey="Zatorre R">RJ Zatorre</name>
</author>
<author>
<name sortKey="Penhune, Vb" uniqKey="Penhune V">VB Penhune</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Clarke, E" uniqKey="Clarke E">E Clarke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Coleman, Sw" uniqKey="Coleman S">SW Coleman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cook, P" uniqKey="Cook P">P Cook</name>
</author>
<author>
<name sortKey="Rouse, A" uniqKey="Rouse A">A Rouse</name>
</author>
<author>
<name sortKey="Wilson, M" uniqKey="Wilson M">M Wilson</name>
</author>
<author>
<name sortKey="Reichmuth, C" uniqKey="Reichmuth C">C Reichmuth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Crapse, Tb" uniqKey="Crapse T">TB Crapse</name>
</author>
<author>
<name sortKey="Sommer, Ma" uniqKey="Sommer M">MA Sommer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Crapse, Tb" uniqKey="Crapse T">TB Crapse</name>
</author>
<author>
<name sortKey="Sommer, Ma" uniqKey="Sommer M">MA Sommer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cullen, Ke" uniqKey="Cullen K">KE Cullen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dallard, P" uniqKey="Dallard P">P Dallard</name>
</author>
<author>
<name sortKey="Fitzpatrick, T" uniqKey="Fitzpatrick T">T Fitzpatrick</name>
</author>
<author>
<name sortKey="Flint, A" uniqKey="Flint A">A Flint</name>
</author>
<author>
<name sortKey="Low, A" uniqKey="Low A">A Low</name>
</author>
<author>
<name sortKey="Ridsdill Smith, R" uniqKey="Ridsdill Smith R">R Ridsdill Smith</name>
</author>
<author>
<name sortKey="Willford, M" uniqKey="Willford M">M Willford</name>
</author>
<author>
<name sortKey="Roche, M" uniqKey="Roche M">M Roche</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Darwin, Cj" uniqKey="Darwin C">CJ Darwin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Demes, B" uniqKey="Demes B">B Demes</name>
</author>
<author>
<name sortKey="O Eill, Mc" uniqKey="O Eill M">MC O’Neill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Desantis, A" uniqKey="Desantis A">A Desantis</name>
</author>
<author>
<name sortKey="Weiss, C" uniqKey="Weiss C">C Weiss</name>
</author>
<author>
<name sortKey="Schutz Bosbach, S" uniqKey="Schutz Bosbach S">S Schutz-Bosbach</name>
</author>
<author>
<name sortKey="Waszak, F" uniqKey="Waszak F">F Waszak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dietz, V" uniqKey="Dietz V">V Dietz</name>
</author>
<author>
<name sortKey="Fouad, K" uniqKey="Fouad K">K Fouad</name>
</author>
<author>
<name sortKey="Bastiaanse, Cm" uniqKey="Bastiaanse C">CM Bastiaanse</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dingwell, Jb" uniqKey="Dingwell J">JB Dingwell</name>
</author>
<author>
<name sortKey="Cusumano, Jp" uniqKey="Cusumano J">JP Cusumano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Drake, C" uniqKey="Drake C">C Drake</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Duarte, M" uniqKey="Duarte M">M Duarte</name>
</author>
<author>
<name sortKey="Hanna, J" uniqKey="Hanna J">J Hanna</name>
</author>
<author>
<name sortKey="Sanches, E" uniqKey="Sanches E">E Sanches</name>
</author>
<author>
<name sortKey="Liu, Q" uniqKey="Liu Q">Q Liu</name>
</author>
<author>
<name sortKey="Fragaszy, D" uniqKey="Fragaszy D">D Fragaszy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Durstewitz, D" uniqKey="Durstewitz D">D Durstewitz</name>
</author>
<author>
<name sortKey="Kelc, M" uniqKey="Kelc M">M Kelc</name>
</author>
<author>
<name sortKey="Gunturkun, O" uniqKey="Gunturkun O">O Güntürkün</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ekimov, A" uniqKey="Ekimov A">A Ekimov</name>
</author>
<author>
<name sortKey="Sabatier, Jm" uniqKey="Sabatier J">JM Sabatier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ekstrom, Sr" uniqKey="Ekstrom S">SR Ekström</name>
</author>
<author>
<name sortKey="Borg, E" uniqKey="Borg E">E Borg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feitl, Ke" uniqKey="Feitl K">KE Feitl</name>
</author>
<author>
<name sortKey="Ngo, V" uniqKey="Ngo V">V Ngo</name>
</author>
<author>
<name sortKey="Mchenry, Mj" uniqKey="Mchenry M">MJ McHenry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fitch, Wt" uniqKey="Fitch W">WT Fitch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Forgacs, P" uniqKey="Forgacs P">P Forgacs</name>
</author>
<author>
<name sortKey="Nathoo, Ar" uniqKey="Nathoo A">AR Nathoo</name>
</author>
<author>
<name sortKey="Richards, Hd" uniqKey="Richards H">Hd Richards</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fujino, Y" uniqKey="Fujino Y">Y Fujino</name>
</author>
<author>
<name sortKey="Pacheco, Bm" uniqKey="Pacheco B">BM Pacheco</name>
</author>
<author>
<name sortKey="Nakamura, S" uniqKey="Nakamura S">S Nakamura</name>
</author>
<author>
<name sortKey="Warnitchai, P" uniqKey="Warnitchai P">P Warnitchai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Funk, Gd" uniqKey="Funk G">GD Funk</name>
</author>
<author>
<name sortKey="Milsom, Wk" uniqKey="Milsom W">WK Milsom</name>
</author>
<author>
<name sortKey="Steeves, Jd" uniqKey="Steeves J">JD Steeves</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Funk, Gd" uniqKey="Funk G">GD Funk</name>
</author>
<author>
<name sortKey="Valenzuela, Ij" uniqKey="Valenzuela I">IJ Valenzuela</name>
</author>
<author>
<name sortKey="Milsom, Wk" uniqKey="Milsom W">WK Milsom</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Galbrait, Fw" uniqKey="Galbrait F">FW Galbrait</name>
</author>
<author>
<name sortKey="Barton, Mv" uniqKey="Barton M">MV Barton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gelfand, Sa" uniqKey="Gelfand S">SA Gelfand</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gibson, G" uniqKey="Gibson G">G Gibson</name>
</author>
<author>
<name sortKey="Russell, I" uniqKey="Russell I">I Russell</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Giordano, Bl" uniqKey="Giordano B">BL Giordano</name>
</author>
<author>
<name sortKey="Visell, Y" uniqKey="Visell Y">Y Visell</name>
</author>
<author>
<name sortKey="Yao, Hy" uniqKey="Yao H">HY Yao</name>
</author>
<author>
<name sortKey="Hayward, V" uniqKey="Hayward V">V Hayward</name>
</author>
<author>
<name sortKey="Cooperstock, Jr" uniqKey="Cooperstock J">JR Cooperstock</name>
</author>
<author>
<name sortKey="Mcadams, S" uniqKey="Mcadams S">S McAdams</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goldberger, Al" uniqKey="Goldberger A">AL Goldberger</name>
</author>
<author>
<name sortKey="Amaral, Lan" uniqKey="Amaral L">LAN Amaral</name>
</author>
<author>
<name sortKey="Glass, L" uniqKey="Glass L">L Glass</name>
</author>
<author>
<name sortKey="Hausdorff, Jm" uniqKey="Hausdorff J">JM Hausdorff</name>
</author>
<author>
<name sortKey="Ivanov, Pc" uniqKey="Ivanov P">PC Ivanov</name>
</author>
<author>
<name sortKey="Mark, Rg" uniqKey="Mark R">RG Mark</name>
</author>
<author>
<name sortKey="Mietus, Je" uniqKey="Mietus J">JE Mietus</name>
</author>
<author>
<name sortKey="Moody, Gb" uniqKey="Moody G">GB Moody</name>
</author>
<author>
<name sortKey="Peng, Ck" uniqKey="Peng C">CK Peng</name>
</author>
<author>
<name sortKey="Stanley, He" uniqKey="Stanley H">HE Stanley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grahn, Ja" uniqKey="Grahn J">JA Grahn</name>
</author>
<author>
<name sortKey="Brett, M" uniqKey="Brett M">M Brett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Greenlee, Jdw" uniqKey="Greenlee J">JDW Greenlee</name>
</author>
<author>
<name sortKey="Jackson, Aw" uniqKey="Jackson A">AW Jackson</name>
</author>
<author>
<name sortKey="Chen, Fx" uniqKey="Chen F">FX Chen</name>
</author>
<author>
<name sortKey="Larson, Cr" uniqKey="Larson C">CR Larson</name>
</author>
<author>
<name sortKey="Oya, H" uniqKey="Oya H">H Oya</name>
</author>
<author>
<name sortKey="Kawasaki, H" uniqKey="Kawasaki H">H Kawasaki</name>
</author>
<author>
<name sortKey="Chen, Hm" uniqKey="Chen H">HM Chen</name>
</author>
<author>
<name sortKey="Howard, Ma" uniqKey="Howard M">MA Howard</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haas, F" uniqKey="Haas F">F Haas</name>
</author>
<author>
<name sortKey="Distenfeld, S" uniqKey="Distenfeld S">S Distenfeld</name>
</author>
<author>
<name sortKey="Axen, K" uniqKey="Axen K">K Axen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hagen, Eh" uniqKey="Hagen E">EH Hagen</name>
</author>
<author>
<name sortKey="Bryant, Ga" uniqKey="Bryant G">GA Bryant</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hausdorff, Jm" uniqKey="Hausdorff J">JM Hausdorff</name>
</author>
<author>
<name sortKey="Purdon, Pl" uniqKey="Purdon P">PL Purdon</name>
</author>
<author>
<name sortKey="Peng, Ck" uniqKey="Peng C">CK Peng</name>
</author>
<author>
<name sortKey="Ladin, Z" uniqKey="Ladin Z">Z Ladin</name>
</author>
<author>
<name sortKey="Wei, Jy" uniqKey="Wei J">JY Wei</name>
</author>
<author>
<name sortKey="Goldberger, Al" uniqKey="Goldberger A">AL Goldberger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hauser, Md" uniqKey="Hauser M">MD Hauser</name>
</author>
<author>
<name sortKey="Mcdermott, J" uniqKey="Mcdermott J">J McDermott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hawco, Cs" uniqKey="Hawco C">CS Hawco</name>
</author>
<author>
<name sortKey="Jones, Ja" uniqKey="Jones J">JA Jones</name>
</author>
<author>
<name sortKey="Ferretti, Tr" uniqKey="Ferretti T">TR Ferretti</name>
</author>
<author>
<name sortKey="Keough, D" uniqKey="Keough D">D Keough</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hingee, M" uniqKey="Hingee M">M Hingee</name>
</author>
<author>
<name sortKey="Magrath, Rd" uniqKey="Magrath R">RD Magrath</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Honing, H" uniqKey="Honing H">H Honing</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Honing, H" uniqKey="Honing H">H Honing</name>
</author>
<author>
<name sortKey="Merchant, H" uniqKey="Merchant H">H Merchant</name>
</author>
<author>
<name sortKey="Haden, Gp" uniqKey="Haden G">GP Haden</name>
</author>
<author>
<name sortKey="Prado, L" uniqKey="Prado L">L Prado</name>
</author>
<author>
<name sortKey="Bartolo, R" uniqKey="Bartolo R">R Bartolo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hugardt, A" uniqKey="Hugardt A">A Hugardt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hunter, T" uniqKey="Hunter T">T Hunter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huron, D" uniqKey="Huron D">D Huron</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Issartel, J" uniqKey="Issartel J">J Issartel</name>
</author>
<author>
<name sortKey="Marin, L" uniqKey="Marin L">L Marin</name>
</author>
<author>
<name sortKey="Cadopi, M" uniqKey="Cadopi M">M Cadopi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Janata, P" uniqKey="Janata P">P Janata</name>
</author>
<author>
<name sortKey="Grafton, St" uniqKey="Grafton S">ST Grafton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jarvis, Ed" uniqKey="Jarvis E">ED Jarvis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jarvis, Jd" uniqKey="Jarvis J">JD Jarvis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kidd, G" uniqKey="Kidd G">G Kidd</name>
</author>
<author>
<name sortKey="Feth, Ll" uniqKey="Feth L">LL Feth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Konoike, N" uniqKey="Konoike N">N Konoike</name>
</author>
<author>
<name sortKey="Kotozaki, Y" uniqKey="Kotozaki Y">Y Kotozaki</name>
</author>
<author>
<name sortKey="Miyachi, S" uniqKey="Miyachi S">S Miyachi</name>
</author>
<author>
<name sortKey="Miyauchi, Cm" uniqKey="Miyauchi C">CM Miyauchi</name>
</author>
<author>
<name sortKey="Yomogida, Y" uniqKey="Yomogida Y">Y Yomogida</name>
</author>
<author>
<name sortKey="Akimoto, Y" uniqKey="Akimoto Y">Y Akimoto</name>
</author>
<author>
<name sortKey="Kuraoka, K" uniqKey="Kuraoka K">K Kuraoka</name>
</author>
<author>
<name sortKey="Sugiura, M" uniqKey="Sugiura M">M Sugiura</name>
</author>
<author>
<name sortKey="Kawashima, R" uniqKey="Kawashima R">R Kawashima</name>
</author>
<author>
<name sortKey="Nakamura, K" uniqKey="Nakamura K">K Nakamura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krafft, B" uniqKey="Krafft B">B Krafft</name>
</author>
<author>
<name sortKey="Pasquet, A" uniqKey="Pasquet A">A Pasquet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kramer, Dl" uniqKey="Kramer D">DL Kramer</name>
</author>
<author>
<name sortKey="Mclaughlin, Rl" uniqKey="Mclaughlin R">RL McLaughlin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Larsson, M" uniqKey="Larsson M">M Larsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Larsson, M" uniqKey="Larsson M">M Larsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Larsson, M" uniqKey="Larsson M">M Larsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leman, M" uniqKey="Leman M">M Leman</name>
</author>
<author>
<name sortKey="Moelants, D" uniqKey="Moelants D">D Moelants</name>
</author>
<author>
<name sortKey="Varewyck, M" uniqKey="Varewyck M">M Varewyck</name>
</author>
<author>
<name sortKey="Styns, F" uniqKey="Styns F">F Styns</name>
</author>
<author>
<name sortKey="Van Noorden, L" uniqKey="Van Noorden L">L van Noorden</name>
</author>
<author>
<name sortKey="Martens, Jp" uniqKey="Martens J">JP Martens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Xf" uniqKey="Li X">XF Li</name>
</author>
<author>
<name sortKey="Logan, Rj" uniqKey="Logan R">RJ Logan</name>
</author>
<author>
<name sortKey="Pastore, Re" uniqKey="Pastore R">RE Pastore</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lieberman, De" uniqKey="Lieberman D">DE Lieberman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lieberman, De" uniqKey="Lieberman D">DE Lieberman</name>
</author>
<author>
<name sortKey="Venkadesan, M" uniqKey="Venkadesan M">M Venkadesan</name>
</author>
<author>
<name sortKey="Werbel, Wa" uniqKey="Werbel W">WA Werbel</name>
</author>
<author>
<name sortKey="Daoud, Ai" uniqKey="Daoud A">AI Daoud</name>
</author>
<author>
<name sortKey="D Ndrea, S" uniqKey="D Ndrea S">S D’Andrea</name>
</author>
<author>
<name sortKey="Davis, Is" uniqKey="Davis I">IS Davis</name>
</author>
<author>
<name sortKey="Mang Ni, Ro" uniqKey="Mang Ni R">RO Mang’Eni</name>
</author>
<author>
<name sortKey="Pitsiladis, Y" uniqKey="Pitsiladis Y">Y Pitsiladis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Light, Lh" uniqKey="Light L">LH Light</name>
</author>
<author>
<name sortKey="Mclellan, Ge" uniqKey="Mclellan G">GE McLellan</name>
</author>
<author>
<name sortKey="Klenerman, L" uniqKey="Klenerman L">L Klenerman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Macdougall, Hg" uniqKey="Macdougall H">HG MacDougall</name>
</author>
<author>
<name sortKey="Moore, St" uniqKey="Moore S">ST Moore</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Madsen, Ea" uniqKey="Madsen E">EA Madsen</name>
</author>
<author>
<name sortKey="Persson, T" uniqKey="Persson T">T Persson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marler, Ja" uniqKey="Marler J">JA Marler</name>
</author>
<author>
<name sortKey="Champlin, Ca" uniqKey="Champlin C">CA Champlin</name>
</author>
<author>
<name sortKey="Gillam, Rb" uniqKey="Gillam R">RB Gillam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martikainen, Mh" uniqKey="Martikainen M">MH Martikainen</name>
</author>
<author>
<name sortKey="Kaneko, K" uniqKey="Kaneko K">K Kaneko</name>
</author>
<author>
<name sortKey="Hari, R" uniqKey="Hari R">R Hari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Massen, Jj" uniqKey="Massen J">JJ Massen</name>
</author>
<author>
<name sortKey="Vermunt, Da" uniqKey="Vermunt D">DA Vermunt</name>
</author>
<author>
<name sortKey="Sterck, Eh" uniqKey="Sterck E">EH Sterck</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcauley, Jd" uniqKey="Mcauley J">JD McAuley</name>
</author>
<author>
<name sortKey="Henry, Mj" uniqKey="Henry M">MJ Henry</name>
</author>
<author>
<name sortKey="Tkach, J" uniqKey="Tkach J">J Tkach</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcneill, Wh" uniqKey="Mcneill W">WH McNeill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Merker, B" uniqKey="Merker B">B Merker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Merker, B" uniqKey="Merker B">B Merker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meyer, J" uniqKey="Meyer J">J Meyer</name>
</author>
<author>
<name sortKey="Elsner, N" uniqKey="Elsner N">N Elsner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meyer, J" uniqKey="Meyer J">J Meyer</name>
</author>
<author>
<name sortKey="Hedwig, B" uniqKey="Hedwig B">B Hedwig</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meyer Bisch, C" uniqKey="Meyer Bisch C">C Meyer-Bisch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miller, Gf" uniqKey="Miller G">GF Miller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Montgomery, Jc" uniqKey="Montgomery J">JC Montgomery</name>
</author>
<author>
<name sortKey="Bodznick, D" uniqKey="Bodznick D">D Bodznick</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moore, Bjc" uniqKey="Moore B">BJC Moore</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morgan, Cl" uniqKey="Morgan C">CL Morgan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Murphey, Rk" uniqKey="Murphey R">RK Murphey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nagasaka, Y" uniqKey="Nagasaka Y">Y Nagasaka</name>
</author>
<author>
<name sortKey="Chao, Zc" uniqKey="Chao Z">ZC Chao</name>
</author>
<author>
<name sortKey="Hasegawa, N" uniqKey="Hasegawa N">N Hasegawa</name>
</author>
<author>
<name sortKey="Notoya, T" uniqKey="Notoya T">T Notoya</name>
</author>
<author>
<name sortKey="Fujii, N" uniqKey="Fujii N">N Fujii</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nessler, Ja" uniqKey="Nessler J">JA Nessler</name>
</author>
<author>
<name sortKey="Gilliland, Sj" uniqKey="Gilliland S">SJ Gilliland</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nessler, Ja" uniqKey="Nessler J">JA Nessler</name>
</author>
<author>
<name sortKey="Gilliland, Sj" uniqKey="Gilliland S">SJ Gilliland</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nessler, Ja" uniqKey="Nessler J">JA Nessler</name>
</author>
<author>
<name sortKey="De Leone, Cj" uniqKey="De Leone C">CJ De Leone</name>
</author>
<author>
<name sortKey="Gilliland, S" uniqKey="Gilliland S">S Gilliland</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nessler, Ja" uniqKey="Nessler J">JA Nessler</name>
</author>
<author>
<name sortKey="Gonzales, T" uniqKey="Gonzales T">T Gonzales</name>
</author>
<author>
<name sortKey="Rhoden, E" uniqKey="Rhoden E">E Rhoden</name>
</author>
<author>
<name sortKey="Steinbrick, M" uniqKey="Steinbrick M">M Steinbrick</name>
</author>
<author>
<name sortKey="De Leone, Cj" uniqKey="De Leone C">CJ De Leone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nessler, Ja" uniqKey="Nessler J">JA Nessler</name>
</author>
<author>
<name sortKey="Kephart, G" uniqKey="Kephart G">G Kephart</name>
</author>
<author>
<name sortKey="Cowell, J" uniqKey="Cowell J">J Cowell</name>
</author>
<author>
<name sortKey="De Leone, Cj" uniqKey="De Leone C">CJ De Leone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nessler, Ja" uniqKey="Nessler J">JA Nessler</name>
</author>
<author>
<name sortKey="Mcmillan, D" uniqKey="Mcmillan D">D McMillan</name>
</author>
<author>
<name sortKey="Schoulten, M" uniqKey="Schoulten M">M Schoulten</name>
</author>
<author>
<name sortKey="Shallow, T" uniqKey="Shallow T">T Shallow</name>
</author>
<author>
<name sortKey="Stewart, B" uniqKey="Stewart B">B Stewart</name>
</author>
<author>
<name sortKey="De Leone, C" uniqKey="De Leone C">C De Leone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Norberg, " uniqKey="Norberg ">Å Norberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Novacheck, Tf" uniqKey="Novacheck T">TF Novacheck</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="O Eill, C" uniqKey="O Eill C">C O’Neill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oullier, O" uniqKey="Oullier O">O Oullier</name>
</author>
<author>
<name sortKey="De Guzman, Gc" uniqKey="De Guzman G">GC de Guzman</name>
</author>
<author>
<name sortKey="Jantzen, Kj" uniqKey="Jantzen K">KJ Jantzen</name>
</author>
<author>
<name sortKey="Lagarde, J" uniqKey="Lagarde J">J Lagarde</name>
</author>
<author>
<name sortKey="Kelso, Ja" uniqKey="Kelso J">JA Kelso</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Panksepp, J" uniqKey="Panksepp J">J Panksepp</name>
</author>
<author>
<name sortKey="Bernatzky, G" uniqKey="Bernatzky G">G Bernatzky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pastore, Re" uniqKey="Pastore R">RE Pastore</name>
</author>
<author>
<name sortKey="Flint, Jd" uniqKey="Flint J">JD Flint</name>
</author>
<author>
<name sortKey="Gaston, Jr" uniqKey="Gaston J">JR Gaston</name>
</author>
<author>
<name sortKey="Solomon, Mj" uniqKey="Solomon M">MJ Solomon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Patel, Ad" uniqKey="Patel A">AD Patel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Patel, Ad" uniqKey="Patel A">AD Patel</name>
</author>
<author>
<name sortKey="Iversen, Jr" uniqKey="Iversen J">JR Iversen</name>
</author>
<author>
<name sortKey="Bregman, Mr" uniqKey="Bregman M">MR Bregman</name>
</author>
<author>
<name sortKey="Schulz, I" uniqKey="Schulz I">I Schulz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Payne, Rb" uniqKey="Payne R">RB Payne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Phillips Silver, J" uniqKey="Phillips Silver J">J Phillips-Silver</name>
</author>
<author>
<name sortKey="Trainor, Lj" uniqKey="Trainor L">LJ Trainor</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pitcher, Tj" uniqKey="Pitcher T">TJ Pitcher</name>
</author>
<author>
<name sortKey="Partridge, Bl" uniqKey="Partridge B">BL Partridge</name>
</author>
<author>
<name sortKey="Wardle, Cs" uniqKey="Wardle C">CS Wardle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Repp, Bh" uniqKey="Repp B">BH Repp</name>
</author>
<author>
<name sortKey="Penel, A" uniqKey="Penel A">A Penel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roberts, Bl" uniqKey="Roberts B">BL Roberts</name>
</author>
<author>
<name sortKey="Russell, Ij" uniqKey="Russell I">IJ Russell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Russell, Ij" uniqKey="Russell I">IJ Russell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Russell, Ij" uniqKey="Russell I">IJ Russell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Russell, Ij" uniqKey="Russell I">IJ Russell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Russo, Fa" uniqKey="Russo F">FA Russo</name>
</author>
<author>
<name sortKey="Pichora Fuller, Mk" uniqKey="Pichora Fuller M">MK Pichora-Fuller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sato, A" uniqKey="Sato A">A Sato</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schachner, A" uniqKey="Schachner A">A Schachner</name>
</author>
<author>
<name sortKey="Brady, Tf" uniqKey="Brady T">TF Brady</name>
</author>
<author>
<name sortKey="Pepperberg, Im" uniqKey="Pepperberg I">IM Pepperberg</name>
</author>
<author>
<name sortKey="Hauser, Md" uniqKey="Hauser M">MD Hauser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schildberger, K" uniqKey="Schildberger K">K Schildberger</name>
</author>
<author>
<name sortKey="Milde, Jj" uniqKey="Milde J">JJ Milde</name>
</author>
<author>
<name sortKey="Horner, M" uniqKey="Horner M">M Horner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schmitt, D" uniqKey="Schmitt D">D Schmitt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schmitt, D" uniqKey="Schmitt D">D Schmitt</name>
</author>
<author>
<name sortKey="Cartmill, M" uniqKey="Cartmill M">M Cartmill</name>
</author>
<author>
<name sortKey="Griffin, Tm" uniqKey="Griffin T">TM Griffin</name>
</author>
<author>
<name sortKey="Hanna, Jb" uniqKey="Hanna J">JB Hanna</name>
</author>
<author>
<name sortKey="Lemelin, P" uniqKey="Lemelin P">P Lemelin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shergill, Ss" uniqKey="Shergill S">SS Shergill</name>
</author>
<author>
<name sortKey="Bays, Pm" uniqKey="Bays P">PM Bays</name>
</author>
<author>
<name sortKey="Frith, Cd" uniqKey="Frith C">CD Frith</name>
</author>
<author>
<name sortKey="Wolpert, Dm" uniqKey="Wolpert D">DM Wolpert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sperry, Rw" uniqKey="Sperry R">RW Sperry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stevens, Nj" uniqKey="Stevens N">NJ Stevens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Styns, F" uniqKey="Styns F">F Styns</name>
</author>
<author>
<name sortKey="Van Noorden, L" uniqKey="Van Noorden L">L van Noorden</name>
</author>
<author>
<name sortKey="Moelants, D" uniqKey="Moelants D">D Moelants</name>
</author>
<author>
<name sortKey="Leman, M" uniqKey="Leman M">M Leman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sueur, C" uniqKey="Sueur C">C Sueur</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sutoo, D" uniqKey="Sutoo D">D Sutoo</name>
</author>
<author>
<name sortKey="Akiyama, K" uniqKey="Akiyama K">K Akiyama</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Terrier, P" uniqKey="Terrier P">P Terrier</name>
</author>
<author>
<name sortKey="Turner, V" uniqKey="Turner V">V Turner</name>
</author>
<author>
<name sortKey="Schutz, Y" uniqKey="Schutz Y">Y Schutz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thorpe, Sk" uniqKey="Thorpe S">SK Thorpe</name>
</author>
<author>
<name sortKey="Holder, R" uniqKey="Holder R">R Holder</name>
</author>
<author>
<name sortKey="Crompton, Rh" uniqKey="Crompton R">RH Crompton</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tsakiris, M" uniqKey="Tsakiris M">M Tsakiris</name>
</author>
<author>
<name sortKey="Haggard, P" uniqKey="Haggard P">P Haggard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tudor Locke, Ce" uniqKey="Tudor Locke C">CE Tudor-Locke</name>
</author>
<author>
<name sortKey="Myers, Am" uniqKey="Myers A">AM Myers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tytell, Ed" uniqKey="Tytell E">ED Tytell</name>
</author>
<author>
<name sortKey="Alexander, Jk" uniqKey="Alexander J">JK Alexander</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Ulzen, Nr" uniqKey="Van Ulzen N">NR van Ulzen</name>
</author>
<author>
<name sortKey="Lamoth, Cj" uniqKey="Lamoth C">CJ Lamoth</name>
</author>
<author>
<name sortKey="Daffertshofer, A" uniqKey="Daffertshofer A">A Daffertshofer</name>
</author>
<author>
<name sortKey="Semin, Gr" uniqKey="Semin G">GR Semin</name>
</author>
<author>
<name sortKey="Beek, Pj" uniqKey="Beek P">PJ Beek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vet, Lem" uniqKey="Vet L">LEM Vet</name>
</author>
<author>
<name sortKey="Bakker, K" uniqKey="Bakker K">K Bakker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Visell, Y" uniqKey="Visell Y">Y Visell</name>
</author>
<author>
<name sortKey="Fontana, F" uniqKey="Fontana F">F Fontana</name>
</author>
<author>
<name sortKey="Giordano, Bl" uniqKey="Giordano B">BL Giordano</name>
</author>
<author>
<name sortKey="Nordahl, R" uniqKey="Nordahl R">R Nordahl</name>
</author>
<author>
<name sortKey="Serafin, S" uniqKey="Serafin S">S Serafin</name>
</author>
<author>
<name sortKey="Bresin, R" uniqKey="Bresin R">R Bresin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Von Holst, E" uniqKey="Von Holst E">E von Holst</name>
</author>
<author>
<name sortKey="Mittelstaedt, H" uniqKey="Mittelstaedt H">H Mittelstaedt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weber, T" uniqKey="Weber T">T Weber</name>
</author>
<author>
<name sortKey="Thorson, J" uniqKey="Thorson J">J Thorson</name>
</author>
<author>
<name sortKey="Huber, F" uniqKey="Huber F">F Huber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wilke, Jt" uniqKey="Wilke J">JT Wilke</name>
</author>
<author>
<name sortKey="Lansing, Rw" uniqKey="Lansing R">RW Lansing</name>
</author>
<author>
<name sortKey="Rogers, Ca" uniqKey="Rogers C">CA Rogers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wilson, Eo" uniqKey="Wilson E">EO Wilson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zarco, W" uniqKey="Zarco W">W Zarco</name>
</author>
<author>
<name sortKey="Merchant, H" uniqKey="Merchant H">H Merchant</name>
</author>
<author>
<name sortKey="Prado, L" uniqKey="Prado L">L Prado</name>
</author>
<author>
<name sortKey="Mendez, Jc" uniqKey="Mendez J">JC Mendez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zatorre, Rj" uniqKey="Zatorre R">RJ Zatorre</name>
</author>
<author>
<name sortKey="Chen, Jl" uniqKey="Chen J">JL Chen</name>
</author>
<author>
<name sortKey="Penhune, Vb" uniqKey="Penhune V">VB Penhune</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zivotofsky, Az" uniqKey="Zivotofsky A">AZ Zivotofsky</name>
</author>
<author>
<name sortKey="Hausdorff, Jm" uniqKey="Hausdorff J">JM Hausdorff</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Anim Cogn</journal-id>
<journal-id journal-id-type="iso-abbrev">Anim Cogn</journal-id>
<journal-title-group>
<journal-title>Animal Cognition</journal-title>
</journal-title-group>
<issn pub-type="ppub">1435-9448</issn>
<issn pub-type="epub">1435-9456</issn>
<publisher>
<publisher-name>Springer Berlin Heidelberg</publisher-name>
<publisher-loc>Berlin/Heidelberg</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">23990063</article-id>
<article-id pub-id-type="pmc">3889703</article-id>
<article-id pub-id-type="publisher-id">678</article-id>
<article-id pub-id-type="doi">10.1007/s10071-013-0678-z</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Self-generated sounds of locomotion and ventilation and the evolution of human rhythmic abilities</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Larsson</surname>
<given-names>Matz</given-names>
</name>
<address>
<phone>+46-19-6025596</phone>
<fax>+46-19-186526</fax>
<email>larsson.matz@gmail.com</email>
<email>matz.larsson@orebroll.se</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
<xref ref-type="aff" rid="Aff2"></xref>
<xref ref-type="aff" rid="Aff3"></xref>
</contrib>
<aff id="Aff1">
<label></label>
The Cardiology Clinic, Örebro University Hospital, 701 85 Örebro, Sweden</aff>
<aff id="Aff2">
<label></label>
The Respiratory Clinic, Örebro University Hospital, 701 85 Örebro, Sweden</aff>
<aff id="Aff3">
<label></label>
Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>30</day>
<month>8</month>
<year>2013</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>30</day>
<month>8</month>
<year>2013</year>
</pub-date>
<pub-date pub-type="ppub">
<year>2014</year>
</pub-date>
<volume>17</volume>
<issue>1</issue>
<fpage>1</fpage>
<lpage>14</lpage>
<history>
<date date-type="received">
<day>19</day>
<month>3</month>
<year>2013</year>
</date>
<date date-type="rev-recd">
<day>7</day>
<month>8</month>
<year>2013</year>
</date>
<date date-type="accepted">
<day>20</day>
<month>8</month>
<year>2013</year>
</date>
</history>
<permissions>
<copyright-statement>© The Author(s) 2013</copyright-statement>
<license license-type="OpenAccess">
<license-p>
<bold>Open Access</bold>
This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.</license-p>
</license>
</permissions>
<abstract id="Abs1">
<p>It has been suggested that the basic building blocks of music mimic sounds of moving humans, and because the brain was primed to exploit such sounds, they eventually became incorporated in human culture. However, that raises further questions. Why do genetically close, culturally well-developed apes lack musical abilities? Did our switch to bipedalism influence the origins of music? Four hypotheses are raised: (1) Human locomotion and ventilation can mask critical sounds in the environment. (2) Synchronization of locomotion reduces that problem. (3) Predictable sounds of locomotion may stimulate the evolution of synchronized behavior. (4) Bipedal gait and the associated sounds of locomotion influenced the evolution of human rhythmic abilities. Theoretical models and research data suggest that noise of locomotion and ventilation may mask critical auditory information. People often synchronize steps subconsciously. Human locomotion is likely to produce more predictable sounds than those of non-human primates. Predictable locomotion sounds may have improved our capacity of entrainment to external rhythms and to feel the beat in music. A sense of rhythm could aid the brain in distinguishing among sounds arising from discrete sources and also help individuals to synchronize their movements with one another. Synchronization of group movement may improve perception by providing periods of relative silence and by facilitating auditory processing. The adaptive value of such skills to early ancestors may have been keener detection of prey or stalkers and enhanced communication. Bipedal walking may have influenced the development of entrainment in humans and thereby the evolution of rhythmic abilities. </p>
</abstract>
<kwd-group xml:lang="en">
<title>Keywords</title>
<kwd>The origins of music</kwd>
<kwd>Vocal learning</kwd>
<kwd>Primate</kwd>
<kwd>Entrainment</kwd>
<kwd>Auditory masking</kwd>
<kwd>Collective behavior</kwd>
</kwd-group>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© Springer-Verlag Berlin Heidelberg 2014</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1" sec-type="intro">
<title>Introduction</title>
<p>Throughout human history, music has played a major role in all cultures, but the origins of music remain mysterious (Hauser and McDermott
<xref ref-type="bibr" rid="CR62">2003</xref>
). Some suggest that music evolved as a system to attract mates and to signal mate quality (Darwin
<xref ref-type="bibr" rid="CR32">1871</xref>
/1981; Miller
<xref ref-type="bibr" rid="CR98">2000</xref>
; Pinker
<xref ref-type="bibr" rid="CR120">1997</xref>
), and others suggest that music functions to coordinate coalitions (Hagen and Bryant
<xref ref-type="bibr" rid="CR60">2003</xref>
). Pinker proposed that music may be a fortuitous side effect of diverse perceptual and cognitive mechanisms that serve other functions (Pinker
<xref ref-type="bibr" rid="CR120">1997</xref>
). Clarke (
<xref ref-type="bibr" rid="CR25">2005</xref>
) stated that music and language exemplify how culture and biology have become integrated in complex ways. It has been proposed by Chater et al. (
<xref ref-type="bibr" rid="CR23">2009</xref>
), Darwin (
<xref ref-type="bibr" rid="CR32">1871</xref>
/1981), and Wilson (
<xref ref-type="bibr" rid="CR151">2011</xref>
, p. 225–235) that the development of language from its underlying processing mechanisms arose with language evolving to fit the human brain, rather than the reverse, and an analogous situation has been proposed for music (Clarke
<xref ref-type="bibr" rid="CR25">2005</xref>
; Pinker
<xref ref-type="bibr" rid="CR120">1997</xref>
; Changizi
<xref ref-type="bibr" rid="CR21">2011</xref>
). However, the most advanced cultures known in animals, those of the chimpanzee and the bonobo (Wilson
<xref ref-type="bibr" rid="CR151">2011</xref>
), lack even rudimentary musical abilities (Jarvis
<xref ref-type="bibr" rid="CR73">2007</xref>
; Fitch
<xref ref-type="bibr" rid="CR45">2006</xref>
). Why and how did humans evolve musical abilities, despite the fact that their closest relatives, apes, are not vocal learners (Jarvis
<xref ref-type="bibr" rid="CR72">2004</xref>
) and cannot entrain to external rhythms (Fitch
<xref ref-type="bibr" rid="CR45">2006</xref>
)? Trevarthen (
<xref ref-type="bibr" rid="CR141">1999</xref>
) proposed that the bipedal walk and its accompanying consciousness of body rhythms have implications for our internal timing system as well as for freeing the arms for communicative purposes. Changizi (
<xref ref-type="bibr" rid="CR21">2011</xref>
) hypothesized that the human brain was harnessed by music because humans are adept at listening and interpreting the meaning of footsteps. Thus, he suggests that music evolved to mimic footsteps and sooner or later became incorporated in human culture. The idea that sense of rhythm is linked with footsteps is not new. Morgan (
<xref ref-type="bibr" rid="CR101">1893</xref>
, p. 290) wrote, “I would suggest that the psychological basis of the sense of rhythm might be found in… the organic rhythms of our daily life. We cannot walk nor breathe except to rhythm; and if we watch a little child we should obtain abundant evidence of rhythmic movements”. Here, possible links between human walking and rhythmic abilities are further explored, focusing on incidental sounds and vibrations produced as a by-product of locomotion and respiration. The review raises the question whether predictability of such self-generated sounds may boost the evolution of entrainment to external rhythms, and whether that in turn may advance vocal learning abilities. Accordingly, a fundamental question is whether human locomotion is likely to produce more predictable sounds than those of non-human primates. Moreover, what was the primary adaptive value of entrainment to external rhythms in human ancestors? Could a sense of rhythm aid the brain in distinguishing among sounds arising from discrete sources and also help individuals to synchronize their movements with one another? The following hypotheses are raised: (1) Human locomotion and ventilation can mask critical sounds in the environment. (2) Synchronization of locomotion reduces such masking problems. (3) Highly predictable sounds of locomotion in a species stimulate the evolution of synchronized locomotion. 4) The evolutionary switch to bipedalism and the associated sounds of locomotion influenced the evolution of human rhythmic abilities.</p>
<p>Auditory masking, mechanisms that suppress self-generated sound, and sounds of locomotion and ventilation across the animal kingdom with focus on primate locomotion, and then the synchronization of movements in human and non-human primates are explored. Finally, hypotheses are raised with respect to how bipedal locomotion may have stimulated the evolution of human rhythmic and musical abilities.</p>
</sec>
<sec id="Sec2">
<title>Masking</title>
<p>Auditory masking occurs when the perception of a sound is affected by the presence of another sound. Masking effects are particularly strong when the masker and the signal are of the same frequency and weaken as the signal frequency moves further away from the masker frequency (Gelfand
<xref ref-type="bibr" rid="CR51">2004</xref>
). When two sounds are of identical frequency, the listener cannot distinguish between them and they are perceived as one sound with the lower-amplitude sound masked by the louder. Masking of differing frequencies requires that the amplitude of the competing sound be greater in order to produce a masking effect. A masker may be simultaneous, as when a signal is made inaudible by a competing sound of equal duration, or it may precede (forward masking) or follow the signal (backward masking). The effectiveness of forward and backward masking attenuates exponentially from the onset or offset of the masker (Marler et al.
<xref ref-type="bibr" rid="CR88">2002</xref>
; Moore
<xref ref-type="bibr" rid="CR100">2003</xref>
, pp. 107–116). Learning reduces backward masking; the brain adapts to repetitive sequences of masking noise emitted soon after a signal and learns to discriminate between signal and masker, thus substantially increasing signal detection (Kidd and Feth
<xref ref-type="bibr" rid="CR74">1982</xref>
; Moore
<xref ref-type="bibr" rid="CR100">2003</xref>
, pp. 107–116). Moore (
<xref ref-type="bibr" rid="CR100">2003</xref>
, p. 107) states that the adaptive value of this learning effect is poorly understood. The study of whether learning reduces the masking potential of repetitive self-generated sounds of locomotion is of interest. No doubt animal auditory systems have developed other mechanisms to reduce masking from self-generated sounds.</p>
</sec>
<sec id="Sec3">
<title>Suppression of the perception of self-generated sounds</title>
<p>An animal’s locomotion, breathing, and vocalizations produce sounds that may stimulate its own auditory system. A possible consequence is excessive stimulation (sensory reafference) of the auditory system or masking of signals originating in the surroundings (von Holst and Mittelstaedt
<xref ref-type="bibr" rid="CR148">1950</xref>
). Sensory reafference in relation to vocalization has been studied (Greenlee et al.
<xref ref-type="bibr" rid="CR57">2011</xref>
; Hawco et al.
<xref ref-type="bibr" rid="CR63">2009</xref>
), while sounds associated with locomotion and ventilation have received little attention.</p>
<p>Healthy adults take around 10,000 steps each day (Tudor-Locke and Myers
<xref ref-type="bibr" rid="CR143">2001</xref>
; Bohannon
<xref ref-type="bibr" rid="CR16">2007</xref>
) and approximately 15 breaths per minute throughout life. How does the auditory system avoid overstimulation and discriminate locomotion and ventilation sounds from critical sounds in the environment? Sperry (
<xref ref-type="bibr" rid="CR134">1950</xref>
) coined the term “corollary discharge” (CD) for motor-related signals that influence sensory processing. Crapse and Sommer (
<xref ref-type="bibr" rid="CR28">2008a</xref>
) have suggested that adaptation processes to compensate for motor-related sensory problems, such as sensory reafference, are remarkably consistent among species. In general, such adaptation involves concurrent production of a motor command destined for an effector and a motor-command copy destined for a sensory structure functioning to minimize, eliminate, or compensate for the movement-related noise (Crapse and Sommer
<xref ref-type="bibr" rid="CR28">2008a</xref>
). In other words, nervous systems keep track of movement commands and inform the system’s sensory processing areas about forthcoming movements (Crapse and Sommer
<xref ref-type="bibr" rid="CR29">2008b</xref>
). At the lower-order level of reflex inhibition and sensory filtration, CD is a discriminatory mechanism that prevents maladaptive responses and sensory saturation by restricting or filtering information. Thus, CD serves as a guard intervening at points along a sensorimotor pathway to regulate the sensory information entering the system (Crapse and Sommer
<xref ref-type="bibr" rid="CR28">2008a</xref>
). Higher-order CD signaling involves sensory analysis, sensorimotor planning, and learning (Crapse and Sommer
<xref ref-type="bibr" rid="CR29">2008b</xref>
). Corollary discharge signaling may improve human capacity to perceive variations in the environment and discriminate them from self-generated sensory consequences (Cullen
<xref ref-type="bibr" rid="CR30">2004</xref>
). Sensory attenuation of the effects of self-generated action has been described (Blakemore et al.
<xref ref-type="bibr" rid="CR14">1999</xref>
; Shergill et al.
<xref ref-type="bibr" rid="CR133">2003</xref>
; Aliu et al.
<xref ref-type="bibr" rid="CR1">2009</xref>
; Tsakiris and Haggard
<xref ref-type="bibr" rid="CR142">2003</xref>
; Sato
<xref ref-type="bibr" rid="CR128">2008</xref>
). Martikainen et al. (
<xref ref-type="bibr" rid="CR89">2005</xref>
) found that responses in the human auditory cortex were significantly weaker to self-triggered sounds. Baess et al. (
<xref ref-type="bibr" rid="CR4">2009</xref>
) compared auditory middle latency responses (MLR) evoked by self-initiated click sounds to responses to externally initiated but otherwise identical sounds and found that MLRs were significantly attenuated in the self-initiated condition. A self-generated sensory episode is usually perceived as less powerful than a similar sensory episode generated externally (Blakemore et al.
<xref ref-type="bibr" rid="CR14">1999</xref>
; Sato
<xref ref-type="bibr" rid="CR128">2008</xref>
). However, Desantis et al. (
<xref ref-type="bibr" rid="CR35">2012</xref>
) observed that the accuracy of discrimination did not significantly differ between these conditions, indicating that self-generation does not necessarily reduce the amount of perceptual information being processed. Although sounds of locomotion and ventilation are, by definition, self-generated and extremely common, studies of their impact on perception and behavior are scarce.</p>
</sec>
<sec id="Sec4">
<title>Incidental sounds of locomotion and ventilation in the animal kingdom</title>
<sec id="Sec5">
<title>Invertebrates</title>
<p>The auditory receptors of crickets are located on their forelegs, and as a consequence, walking produces excitation of auditory receptors in the absence of sound and suppression of action potentials in response to sounds (Schildberger et al.
<xref ref-type="bibr" rid="CR130">1988</xref>
). Female crickets orienting to a male calling song pause frequently and change direction primarily during pauses (Murphey
<xref ref-type="bibr" rid="CR102">1972</xref>
; Bailey and Thomson
<xref ref-type="bibr" rid="CR6">1977</xref>
). There is evidence that orientation is less effective when the song is heard only during moves than when it is heard only during pauses (Weber et al.
<xref ref-type="bibr" rid="CR149">1981</xref>
). The tympanic membrane of grasshoppers is situated near air sacs in the tracheal system; therefore, it is deflected inward and outward during the respiratory cycle (Meyer and Elsner
<xref ref-type="bibr" rid="CR95">1995</xref>
; Meyer and Hedwig
<xref ref-type="bibr" rid="CR96">1995</xref>
). These slow movements change its auditory response properties and modulate the afferent activity. Ventilation thus distorts the perception of conspecific communication signals. Singing males of
<italic>Chorthippus biguttulus</italic>
may arrange their ventilatory and stridulatory activity in a manner that leaves “windows” open for listening (Meyer and Elsner
<xref ref-type="bibr" rid="CR95">1995</xref>
; Meyer and Hedwig
<xref ref-type="bibr" rid="CR96">1995</xref>
). Parasitoid wasp species that detect their prey using vibrations in the substrate spend a higher proportion of time motionless than species that use their ovipositors to probe for prey (Vet and Bakker
<xref ref-type="bibr" rid="CR146">1985</xref>
) suggesting that movement interferes with detection of prey movement (Kramer and McLaughlin
<xref ref-type="bibr" rid="CR77">2001</xref>
).</p>
</sec>
<sec id="Sec6">
<title>Spiders</title>
<p>The synchronized and rhythmical activity of the social spider
<italic>Anelosimus eximius</italic>
(Araneae, Theridiidae) is likely to promote prey localization (Krafft and Pasquet
<xref ref-type="bibr" rid="CR76">1991</xref>
). Synchronization of movements with resting periods (respected by all in the group) creates “silent” periods, during which the spiders may assess and locate the struggling prey.</p>
</sec>
<sec id="Sec7">
<title>Vertebrates</title>
<p>Pressure waves/water movements caused by an individual’s own locomotion or breathing might interfere with lateral line and electrosensory perception in fish (Russell
<xref ref-type="bibr" rid="CR124">1968</xref>
,
<xref ref-type="bibr" rid="CR126">1974</xref>
; Roberts and Russell
<xref ref-type="bibr" rid="CR123">1972</xref>
) and in
<italic>Xenopus laevis</italic>
(Russell
<xref ref-type="bibr" rid="CR125">1971</xref>
). Swimming fish larvae were shown to display reduced responsiveness to flow stimuli and were 40 % as likely to respond to flow signals as motionless larvae, implying sensory benefits of intermittent swimming cessation (Feitl et al.
<xref ref-type="bibr" rid="CR44">2010</xref>
). Mechanisms to decrease the masking potential of fish breathing have been described. An adaptive filter in the medullary nuclei cancels self-induced breathing noise in the electrosensory and lateral line systems of fish (Montgomery and Bodznick
<xref ref-type="bibr" rid="CR99">1994</xref>
). Second-order electrosensory neurons in elasmobranch fish and mechanosensory neurons in teleost fish have adapted to cancel the effects of stimuli that are tied with fish respiratory movements (Montgomery and Bodznick
<xref ref-type="bibr" rid="CR99">1994</xref>
). It has been suggested that the need to cope with auditory masking problems associated with incidental sounds of locomotion influenced the evolution of synchronized behavior in fish groups. It is likely that schooling fish produce overlapping and confusing acoustical signals, which may result in predator confusion (Larsson
<xref ref-type="bibr" rid="CR78">2009</xref>
,
<xref ref-type="bibr" rid="CR80">2012b</xref>
). Since synchronized locomotion in vertebrate ancestors may have had highly adaptive functions, the vertebrate brain may be pre-programmed to develop synchronized behavior in other ecological niches, e.g., birds flying in formation and surface diving dolphins (Larsson
<xref ref-type="bibr" rid="CR79">2012a</xref>
).</p>
</sec>
</sec>
<sec id="Sec8">
<title>Signaling functions of sounds of locomotion</title>
<p>The fact that incidental sound of locomotion may be a masker in many situations does not contradict the possibility that sound produced during locomotion may create essential signals. Wing beats of certain characteristics in drosophila (Bennet-Clark et al.
<xref ref-type="bibr" rid="CR10">1980</xref>
), mosquitoes (Gibson and Russell
<xref ref-type="bibr" rid="CR52">2006</xref>
), moths (Bailey
<xref ref-type="bibr" rid="CR5">1991</xref>
), and some bird species, e.g., the flappet lark (Payne
<xref ref-type="bibr" rid="CR118">1973</xref>
; Norberg
<xref ref-type="bibr" rid="CR110">1991</xref>
) and hummingbird (Hunter
<xref ref-type="bibr" rid="CR68">2008</xref>
) have been suggested to produce audible intersexual advertisements. Wingbeats of certain characteristics may serve as a predator alarm in the mourning dove (Coleman
<xref ref-type="bibr" rid="CR26">2008</xref>
) and the crested pigeon (Hingee and Magrath
<xref ref-type="bibr" rid="CR64">2009</xref>
). Locomotion-related sound and water movements seem to play a crucial role in communication in schooling fish (Pitcher et al.
<xref ref-type="bibr" rid="CR121">1976</xref>
).</p>
<sec id="Sec9">
<title>Locomotion sounds in primates</title>
<p>Apes show a wide range of locomotion behaviors, including brachiation, quadrumanous (four-handed) climbing, quadrupedal knuckle or fist walking, and regular short bouts of bipedal locomotion (Schmitt
<xref ref-type="bibr" rid="CR131">2003</xref>
). Little is known about the sounds they produce during locomotion. However, studies of primate locomotion may give an idea to what extent these sounds may be regular and predictable. The coordination of limb movements of non-human primates was reviewed by Stevens (
<xref ref-type="bibr" rid="CR135">2006</xref>
). While most mammals use lateral sequence gaits in which a forelimb follows an ipsilateral hind limb during the stride cycle, primates have a tendency to utilize diagonal sequence gaits, i.e., the contralateral forelimb follows a given hind limb during the stride cycle. Primates demonstrate a high degree of flexibility in gait sequence pattern, which is likely to offer advantages for moving through discontinuous and unstable tree limbs (Stevens
<xref ref-type="bibr" rid="CR135">2006</xref>
). Primates moving in trees usually strive to maintain contact with at least one limb, resulting in little or no aerial phase (O’Neill
<xref ref-type="bibr" rid="CR112">2012</xref>
; Schmitt et al.
<xref ref-type="bibr" rid="CR132">2006</xref>
). The distance between limbs, and their degree of flexibility, is likely to vary, leading to the lack of regular limb sequences (Thorpe et al.
<xref ref-type="bibr" rid="CR140">2009</xref>
). Orangutans control excess sway by using irregular gait patterns and multiple support limbs (Thorpe et al.
<xref ref-type="bibr" rid="CR140">2009</xref>
). Due to the fragmented nature of forest canopies, arboreal animals must often cross large gaps between trees (Channon et al.
<xref ref-type="bibr" rid="CR22">2011</xref>
). During locomotion on ground, the stride length and walking speed of chacma baboons were reported to vary considerably (Sueur
<xref ref-type="bibr" rid="CR137">2011</xref>
). Many non-human primates use bipedal gait opportunistically, moving on flexed limbs, “bent-hip, bent knee”, which probably was the earliest form of bipedal gait in the hominids (Demes and O’Neill
<xref ref-type="bibr" rid="CR34">2013</xref>
). Capuchin monkeys, basically arboreal quadrupeds, come to the ground frequently and, especially in the context of transport and tool use, often use bipedal gait (Demes and O’Neill
<xref ref-type="bibr" rid="CR34">2013</xref>
). Although bipedal gait is not exclusive to humans, data from bearded capuchin monkeys and adult African apes indicate that the average proportion of bipedal gait is no more than 1–2 % of total locomotion (Duarte et al.
<xref ref-type="bibr" rid="CR39">2012</xref>
). Moreover, non-human primates’ bipedal gait differs distinctly from human walking in that primates do not use pendulum-like walking (Demes and O’Neill
<xref ref-type="bibr" rid="CR34">2013</xref>
).</p>
<p>Human walking shows long-term regularities (Dingwell and Cusumano
<xref ref-type="bibr" rid="CR37">2010</xref>
; Hausdorff et al.
<xref ref-type="bibr" rid="CR61">1996</xref>
). During unconstrained over-ground walking, stride time, stride length, and speed exhibit strong statistical consistency (Terrier et al.
<xref ref-type="bibr" rid="CR139">2005</xref>
). The first hominids habitually using an upright bipedal gait probably evolved in Africa five to six million years ago (Schmitt
<xref ref-type="bibr" rid="CR131">2003</xref>
). Human walking on a flat surface is combined with oscillating movements of the legs, arms, and head (Goldberger et al.
<xref ref-type="bibr" rid="CR55">2000</xref>
; Nessler and Gilliland
<xref ref-type="bibr" rid="CR104">2009</xref>
). Laboratory studies have suggested that the preferred cadence of walking is approximately 120 steps per minute (SPM), which has also been demonstrated during extended periods of unconstrained locomotor activity (MacDougall and Moore
<xref ref-type="bibr" rid="CR86">2005</xref>
). While data about the characteristics of non-human primates’ locomotion sounds are lacking, human locomotor sound has been thoroughly examined.</p>
</sec>
<sec id="Sec10">
<title>Sounds in human bipedal locomotion</title>
<p>Humans and other species often stop and listen if they need to detect a faint sound or to make a fine auditory discrimination (Kramer and McLaughlin
<xref ref-type="bibr" rid="CR77">2001</xref>
). Locomotion typically creates audible sounds containing a number of qualitatively dissimilar acoustical events: isolated impulsive signals, sliding sounds, crushing sounds, and complex temporal patterns of overlapping impulsive signals (Visell et al.
<xref ref-type="bibr" rid="CR147">2009</xref>
). Other airborne or bone-conducted locomotion sounds produced by arm movements, irregularities in joints, or clothing movements may also be perceived by a walker. Walking conveys information about the properties of the sound source, and even without explicit training, listeners learn to draw conclusions based on the features of the sound (Visell et al.
<xref ref-type="bibr" rid="CR147">2009</xref>
), including such aspects as the gender (Giordano and Bresin
<xref ref-type="bibr" rid="CR53">2006</xref>
; Li et al.
<xref ref-type="bibr" rid="CR82">1991</xref>
), posture (Pastore et al.
<xref ref-type="bibr" rid="CR115">2008</xref>
) and emotions of a walker (Giordano and Bresin
<xref ref-type="bibr" rid="CR53">2006</xref>
), and properties of the ground surface (Giordano et al.
<xref ref-type="bibr" rid="CR54">2012</xref>
). Due to the lack of data concerning the frequency and intensity of the sounds of locomotion at ear level, I obtained some preliminary data of sounds generated by a man walking on a beach and in shallow water. Locomotion sound was recorded approximately 5 cm from the walker’s ear with a portable dB meter (Table 
<xref rid="Tab1" ref-type="table">1</xref>
). Walking on sand and gravel increased the sound level 24 dB LAeq above baseline (from 38 to 62 dB) and walking in shallow water 32 dB LAeq (from 34 to 66 dB).
<xref ref-type="fn" rid="Fn1">1</xref>
The sound level and masking potential of locomotion sound are likely to be variable and be influenced, e.g., by locomotion patterns, the size of the walker, the substrate, and the characteristics of the signal. Self-generated locomotion sounds are likely to have a potential to mask the analogous footsteps’ sounds produced by a nearby individual, since footsteps on similar ground are likely to generate sounds of a similar bandwidth. Self-generated locomotion sounds (the masker) will usually have higher amplitude than those of a second individual (the signal) since the former is produced nearer to the listener. In addition, walking will result in self-generated sound transmitted to the inner ear via the bones of the skull (Moore
<xref ref-type="bibr" rid="CR100">2003</xref>
, pp. 22–23), which is likely to contribute to their masking potential. In the simple trial cited here, frequencies of locomotion sounds overlapped substantially with speech, indicating the potential to mask vocal communication.
<table-wrap id="Tab1">
<label>Table 1</label>
<caption>
<p>Sound levels 5 cm from the right ear of a 182 cm man</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="2">Environment/condition</th>
<th align="left" colspan="2">dB value expressed in (LAFmin) LAeq (LAFmax)</th>
</tr>
<tr>
<th align="left">Stationary</th>
<th align="left">Walking</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">Gravel/sand at beach</td>
<td align="left">(28) 38 (52)</td>
<td align="left">(30) 62 (71)</td>
</tr>
<tr>
<td align="left">Water’s edge</td>
<td align="left">(26) 34 (48)</td>
<td align="left">(32) 66 (75)</td>
</tr>
</tbody>
</table>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left"></th>
<th align="left">Stationary, no breathing</th>
<th align="left">Stationary, breathing (freq. 1/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">Silent room</td>
<td align="left">(17) 19 (26)</td>
<td align="left">(24) 53 (66)</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>Recorded with a dB meter</p>
<p>LAFmin = minimum sound level, dB(A), LAeq = equivalent continuous level (see fact square), LAFmax = maximum sound level, dB(A)</p>
</table-wrap-foot>
</table-wrap>
</p>
<p>Walking and running are periodic activities, with a single period known as the gait cycle (GC). By definition, the GC begins when one foot comes into contact with the ground and ends when the same foot contacts the ground again (Novacheck
<xref ref-type="bibr" rid="CR111">1998</xref>
). Human walking rates are generally in the range of 75 and 125 SPM (Sabatier et al.
<xref ref-type="bibr" rid="CR41">2008</xref>
), corresponding to a GC of 0.8–0.5 s. The GC is comprised of stance and swing phases (Novacheck
<xref ref-type="bibr" rid="CR111">1998</xref>
). In walking, the two initial portions of the stance phase (initial contact and the loading response) normally produce more sound energy than other stance phase portions, although their combined duration is less than 10 % of the GC (Novacheck
<xref ref-type="bibr" rid="CR111">1998</xref>
). A walking sound is usually a sequence of isolated impact sounds generated by a temporally limited interaction between two objects (Visell et al.
<xref ref-type="bibr" rid="CR147">2009</xref>
). The foot and ground exert an equal and opposite force on one another, the “ground reaction force” (GRF) (Novacheck
<xref ref-type="bibr" rid="CR111">1998</xref>
), which is associated with the movement of the center of the mass of the individual (Galbrait and Barton
<xref ref-type="bibr" rid="CR50">1970</xref>
). It has been demonstrated in capuchin monkeys that GRFs are larger in bipedal gait than in quadrupedal locomotion (Demes and O’Neill
<xref ref-type="bibr" rid="CR34">2013</xref>
). In acoustics, the term GRF usually refers to sounds of frequencies lower than approximately 300 Hz (Ekimov and Sabatier
<xref ref-type="bibr" rid="CR42">2006</xref>
). The net force, F, exerted by the foot against the ground will produce a time-varying sound spectrum, in which the higher frequencies (in contrast to the GRF) depend on footwear and ground surface characteristics (Ekimov and Sabatier
<xref ref-type="bibr" rid="CR42">2006</xref>
).</p>
<p>Running is defined as a gait in which there is an aerial phase, a time when neither foot touches the ground. Walking has by definition no aerial phase. The stance of each foot is shorter in running, while the swing shows the opposite trend (Novacheck
<xref ref-type="bibr" rid="CR111">1998</xref>
). Pacing of barefoot running in athletes is usually greater than 170 SPM (GC < 0.35 s) (Lieberman
<xref ref-type="bibr" rid="CR83">2012</xref>
). Barefoot locomotion produces a greater disturbance than running when shod (Light et al.
<xref ref-type="bibr" rid="CR85">1980</xref>
). During barefoot running at 4 m/s on a hard surface, the magnitude of the peak of the GRF is between 1.5 and 2.5 body weight. This sends a shock wave up the body that can be measured in the head about 10 ms later (Lieberman et al.
<xref ref-type="bibr" rid="CR84">2010</xref>
). In theory that shock wave is likely to produce substantial sound due to bone conduction. Data of the magnitude, characteristics, and duration of sounds produced are scarcer for running than for walking. Since the body has no contact with the ground during the swing, the amplitude of air-conducted and bone-conducted sounds of locomotion is likely to be significantly lower in the swing phase. Due to a short stance and long swing period with no contact with the ground, the proportion of relatively silent periods is likely to be longer in running than in walking.</p>
</sec>
<sec id="Sec11">
<title>Human sounds of ventilation</title>
<p>Data concerning non-human primate breathing sounds are not available, and in humans, data on the amplitude and bandwidth of respiratory sound at the ear canal are lacking. Inspiratory sound recorded outside of the mouth at a roughly average flow rate of 60 L/min has been shown to have a mean amplitude of 51 dB (Forgacs et al.
<xref ref-type="bibr" rid="CR46">1971</xref>
). The sound waves were of random amplitude with a regularly spread frequency distribution ranging from about 200 to 2,000 Hz. Groger and Wiegrebe (
<xref ref-type="bibr" rid="CR58">2006</xref>
) reported that the external amplitude of human respiration sounds in non-exercise, calm nose breathing range from 25 to 35 dB. In unpublished experiments, I found that breathing of a human male instructed to maintain normal breathing volume, inspiring through the nose and expiring through the mouth at a frequency of 15 breaths per minute, increased the sound level by 34 dB LAeq (from 19 to 53 dB) approximately 5 cm from the ear (Table 
<xref rid="Tab1" ref-type="table">1</xref>
). These studies measured sound transmitted by air conduction. In addition, breathing will result in self-generated sound transmitted to the inner ear via the bones of the skull (Moore
<xref ref-type="bibr" rid="CR100">2003</xref>
, pp. 22–23), which is likely to contribute to their masking potential. In analogy with locomotion sound, self-generated ventilation sounds may have a potential to mask the analogous breathing sounds produced by a nearby individual. Self-generated ventilation sounds (the masker) will usually have higher amplitude than those of a second individual (the signal) since the former is produced nearer to the listener. In the simple trial (see Table 
<xref rid="Tab1" ref-type="table">1</xref>
), frequencies of ventilation sounds overlapped substantially with speech, indicating the potential to mask vocal communication. People typically cease breathing in hearing experiments when they are trying to perceive speech of very low amplitude (Parivash Ranjbahr, personal communication). The term “breathtaking” may indicate a tendency of humans to inhibit breathing in moments of fear or excitement, however, that has not been reported in the scientific literature.</p>
</sec>
</sec>
<sec id="Sec12">
<title>Respiratory–locomotor coupling</title>
<p>Breathing and locomotion are interrelated, and respiratory–locomotor coupling (RLC) is evident in all classes of vertebrates (Bramble and Carrier
<xref ref-type="bibr" rid="CR18">1983</xref>
; Funk et al.
<xref ref-type="bibr" rid="CR48">1992</xref>
); however, I have not found any data of RLC in non-human primates. The adaptive value of RLC is poorly understood. Energy saving has been suggested, although supporting evidence is lacking (Boggs
<xref ref-type="bibr" rid="CR15">2001</xref>
; Funk et al.
<xref ref-type="bibr" rid="CR49">1997</xref>
; Tytell and Alexander
<xref ref-type="bibr" rid="CR144">2007</xref>
). Human coupling of locomotion and breathing does not seem to result in energy gain or obvious mechanical benefits (Banzett et al.
<xref ref-type="bibr" rid="CR7">1992</xref>
; Bernasconi and Kohl
<xref ref-type="bibr" rid="CR12">1993</xref>
; Wilke et al.
<xref ref-type="bibr" rid="CR150">1975</xref>
). Human runners employ several phase-locked patterns (4:1, 3:1 2:1 1:1, 5:2, and 3:2), with 2:1 appearing to be most common (Bramble and Carrier
<xref ref-type="bibr" rid="CR18">1983</xref>
). Wilke et al. (
<xref ref-type="bibr" rid="CR150">1975</xref>
) suggested that the entrainment of breathing and locomotory cycles in humans is an expression of the ease with which breathing becomes entrained to various rhythmic events. Breathing in humans can be subconsciously entrained to many kinds of rhythmic events, such as finger tapping, that have no mechanical link to the respiratory system (Haas et al.
<xref ref-type="bibr" rid="CR59">1986</xref>
). Banzett et al. (
<xref ref-type="bibr" rid="CR7">1992</xref>
) concluded that coordination of breathing and stride in humans belongs to this class of coupling phenomena and has no obvious mechanical advantage.</p>
</sec>
<sec id="Sec13">
<title>Reduced masking through RLC</title>
<p>The benefits of RLC may include enhanced hearing through concurrent noise production and silent intervals along with auditory grouping of self-produced noise. RLC is also likely to produce rhythmic and more predictable noise (Larsson
<xref ref-type="bibr" rid="CR79">2012a</xref>
). The amplitude of respiration is positively correlated to the flow rate (Forgacs et al.
<xref ref-type="bibr" rid="CR46">1971</xref>
); therefore, inspiratory sounds, as well as the amplitude of locomotion sounds, are likely to increase during exercise. This may produce enhanced benefits in situations when breathing and locomotion generate high-amplitude noise. This suggestion is supported by the fact that the tendency of humans to entrain respiration and locomotion is stronger in running than when walking (Bechbache and Duffin
<xref ref-type="bibr" rid="CR9">1977</xref>
), since running usually produces more noise.</p>
</sec>
<sec id="Sec14">
<title>Synchronization of breathing</title>
<p>In resting humpback whales, synchronized breathing is commonly observed (Cynthia D’Vincent, personal communication). Surface diving dolphins are another example of synchronized breathing in animals (Larsson
<xref ref-type="bibr" rid="CR79">2012a</xref>
). An adaptive result of synchronization of self-produced noise, leading to extended silent periods, may be reduced masking (Larsson
<xref ref-type="bibr" rid="CR79">2012a</xref>
). Yawn contagion has been demonstrated in humans and several non-human animal species such as dogs (Madsen and Persson
<xref ref-type="bibr" rid="CR87">2013</xref>
) and chimpanzees (Massen et al.
<xref ref-type="bibr" rid="CR90">2012</xref>
). Contagious yawning has been suggested to lead to synchronization of behavior, and in chimpanzees, it is most apparent among males (Massen et al.
<xref ref-type="bibr" rid="CR90">2012</xref>
). In humans, auditory cues have been reported to be stronger than visual contagious yawn cues (Arnott et al.
<xref ref-type="bibr" rid="CR2">2009</xref>
). Social coherence has often been suggested as the function of synchronized yawning (Massen et al.
<xref ref-type="bibr" rid="CR90">2012</xref>
), while its influence on hearing perception of animal groups has scarcely been explored.</p>
</sec>
<sec id="Sec15">
<title>Synchronization of body movements in primates</title>
<p>Oullier et al. (
<xref ref-type="bibr" rid="CR113">2008</xref>
) evaluated phase synchrony by requiring pairs of humans facing each other to actively produce actions, while seeing, or not seeing similar actions being performed. Phase synchrony (unintentional in-phase coordinated behavior) emerged when they were exchanging visual information, whether or not they were explicitly instructed to coordinate with each other. However, rhythmic movement in humans is more robustly connected to acoustic than to visual cues (Repp and Penel
<xref ref-type="bibr" rid="CR122">2004</xref>
). Little is known about spontaneous synchronization in other species than humans. Nagasaka et al. (
<xref ref-type="bibr" rid="CR103">2013</xref>
) examined spontaneous behavior synchronization in Japanese macaques. Synchronization was quantified by changes in button-pressing behavior while pairs of monkeys were facing each other. Participant-/partner-dependent synchronization was observed. Visual information from the partner induced a higher degree of synchronization than did auditory information (Nagasaka et al.
<xref ref-type="bibr" rid="CR103">2013</xref>
). Zarco et al. (
<xref ref-type="bibr" rid="CR152">2009</xref>
) conducted a comparison of psychometric performance in humans and rhesus monkeys. The tasks involved tapping on a push button to measure the participants’ ability to produce accurate time intervals. Their results suggested that the species have a similar timing mechanism when passage of time needs to be quantified for a single interval. Overall, human subjects were more accurate than monkeys and showed less timing variability, especially during the self-pacing phase when multiple intervals were produced. The authors suggested that the internal timing machinery in macaques is not capable of producing multiple consecutive intervals. The typical human bias toward auditory as opposed to visual cues for the accurate execution of time intervals was not evident in rhesus monkeys.</p>
</sec>
<sec id="Sec16">
<title>Synchronization of steps</title>
<p>Walking side by side, people often subconsciously synchronize steps, suggesting that the perception of one’s partner directly influences gait in the absence of conscious effort or intent (Nessler et al.
<xref ref-type="bibr" rid="CR106">2009</xref>
,
<xref ref-type="bibr" rid="CR109">2012</xref>
; Nessler and Gilliland
<xref ref-type="bibr" rid="CR105">2010</xref>
; van Ulzen et al.
<xref ref-type="bibr" rid="CR145">2008</xref>
; Zivotofsky and Hausdorff
<xref ref-type="bibr" rid="CR154">2007</xref>
). When two individuals stroll on neighboring treadmills, the walking pattern of both is substantially changed (Nessler et al.
<xref ref-type="bibr" rid="CR106">2009</xref>
,
<xref ref-type="bibr" rid="CR107">2011a</xref>
). Each person makes fine adjustments of the locomotion kinematics in order to resemble their partner’s behavior (Nessler et al.
<xref ref-type="bibr" rid="CR109">2012</xref>
). In paired walking, participants can be phase locked with a phase difference close to 0° (in phase), or they can be phase locked with a phase difference close to 180° (anti-phase) with walkers contacting the ground simultaneously with opposite-side feet (Nessler et al.
<xref ref-type="bibr" rid="CR109">2012</xref>
). The latter means that the right foot of one walker and left foot of the partner will reach the ground almost simultaneously. Leg length difference has been found to be significantly related to locking of step (Nessler and Gilliland
<xref ref-type="bibr" rid="CR104">2009</xref>
). Since the level of frequency locking did not significantly differ with varying visual and auditory information, the authors suggested that only a small amount of sensory information was sufficient to cause unintentional synchronization. Interviews following these experiments indicated that a small amount of sound was often detectable while wearing earplugs or sound-restricting earmuffs, and several participants indicated that they could feel mechanical vibrations resulting from their partner’s steps (Nessler and Gilliland
<xref ref-type="bibr" rid="CR104">2009</xref>
). Such sound and vibrations may have provided sensory information about the partner’s locomotion even in the experimental conditions with restricted visual or auditory information. In healthy individuals attempting to walk in time with a metronome at 120 beats per minute (BPM), the average pace was 119.52 ± 3.12 SPM, demonstrating a high degree of synchronization with rhythmic auditory sounds (Bilney et al.
<xref ref-type="bibr" rid="CR13">2005</xref>
).</p>
<p>No doubt similarity of the biomechanical characteristics of the individuals influences synchronization (Nessler et al.
<xref ref-type="bibr" rid="CR106">2009</xref>
,
<xref ref-type="bibr" rid="CR108">2011b</xref>
). However, selective regulation of treadmill velocity and inclination can lead to synchronization among persons with large differences in leg length and preferred pace that otherwise would not exhibit this kind of interaction (Nessler et al.
<xref ref-type="bibr" rid="CR108">2011b</xref>
). There are limits to this synchronization behavior (Nessler et al.
<xref ref-type="bibr" rid="CR106">2009</xref>
,
<xref ref-type="bibr" rid="CR109">2012</xref>
; van Ulzen et al.
<xref ref-type="bibr" rid="CR145">2008</xref>
). Synchronization between partners is often transient (Nessler et al.
<xref ref-type="bibr" rid="CR106">2009</xref>
; Zivotofsky and Hausdorff
<xref ref-type="bibr" rid="CR154">2007</xref>
). Pedestrian-induced lateral vibration of footbridges has been described (Fujino et al.
<xref ref-type="bibr" rid="CR47">1993</xref>
; Dallard et al.
<xref ref-type="bibr" rid="CR31">2001</xref>
). Typically, the walkers have no intention to march in step, but have naturally fallen into step with each other, apparently after the bridge begins to sway (Dallard et al.
<xref ref-type="bibr" rid="CR31">2001</xref>
). Dallard et al. (
<xref ref-type="bibr" rid="CR31">2001</xref>
) suggest that people in a crowd also tend to synchronize with one another when there is no pavement motion, but that the probability of synchronization increases with increasing pavement motion amplitude. People have a stronger tendency to synchronize their steps to an oscillating bridge when it has a frequency close to their natural walking or running frequency. Thus, lateral deck movement encourages pedestrians to walk in step, and this step synchronization increases the human force and makes it resonate with the bridge deck (Fujino et al.
<xref ref-type="bibr" rid="CR47">1993</xref>
; Dallard et al.
<xref ref-type="bibr" rid="CR31">2001</xref>
). Data on synchronization in runners are lacking; however, my own observations of running couples of similar leg length suggest a clear tendency toward pacing. Synchronized locomotion in non-human primates seems not to have been reported, but in light of the irregularity of most primate locomotion, discussed above, it seems unlikely to be prominent.</p>
</sec>
<sec id="Sec17">
<title>Why do humans tend to synchronize movements?</title>
<p>Social dynamics have been proposed to influence synchronization, and an individual’s movement pattern has been characterized as the result of interaction between her/his ideal movement pattern and that of nearby individuals (Issartel et al.
<xref ref-type="bibr" rid="CR70">2007</xref>
). Walking at speeds that differ from one’s preferred pace may result in increased energy expenditure, and it has been suggested that energy cost may play a role in unintentional entrainment, i.e., walkers may compromise on a cadence in light of metabolic energy consumption (Nessler and Gilliland
<xref ref-type="bibr" rid="CR104">2009</xref>
). McNeill (
<xref ref-type="bibr" rid="CR92">1995</xref>
) suggested that synchronization of movements in a group is a potent way of creating and sustaining community and communication. Merker (
<xref ref-type="bibr" rid="CR93">2000</xref>
) hypothesized a potentially confusing auditory effect based on the mimicry of a large animal or the possibility of frightening enemies when groups of ancestors walked in synchrony. Acoustic effects of synchronization have otherwise been little discussed.</p>
</sec>
<sec id="Sec18">
<title>Silent periods</title>
<p>Synchronization of movements in animal groups, such as surface diving dolphin groups synchronizing splashdown, might reduce auditory masking problems through periods of relative silence (Larsson
<xref ref-type="bibr" rid="CR78">2009</xref>
,
<xref ref-type="bibr" rid="CR79">2012a</xref>
,
<xref ref-type="bibr" rid="CR80">b</xref>
). Human groups walking or running out of step are likely to produce a roughly consistent amount of sound energy over the entire time span. Noisy phases of the GC will rarely overlap; thus, the total time of relatively silent periods will be reduced compared to walking in pace. For example, three similar-sized men running in phase will produce relatively little noise during the swing. During the relatively noisy stance period, the sound energy will be three times that of one man. However, this means that the perceived sound will increase less than 6 dB (If the footstep sound of one man has a level of 60 dB, two men will produce roughly 63 dB, four men 66 dB, and an intermediate value for three men).</p>
</sec>
<sec id="Sec19">
<title>Predictable noise</title>
<p>The ability to segregate and identify sound sources in an auditory scene, for example a listener’s ability to group signal components into auditory objects and consequentially separate discrete sources from a complex mixture of sounds, is known as “auditory scene analysis” and onset time is suggested to be a useful grouping cue (Bregman
<xref ref-type="bibr" rid="CR19">1990</xref>
). Synchronization of human gait may improve the capacity to discriminate sound sources, since the onset time of the sounds of GC will coincide. In synchronized walking, one’s own and an accompanying person’s footsteps may be grouped together to form an auditory object, improving the brain’s ability to discriminate footsteps from other sound sources. Moreover, it is likely that two humans walking in pace on a consistent surface will be familiar with the sound patterns produced. Predictability of masking sounds may reduce backward masking (that caused by noise following the signal) due to a learning effect (Kidd and Feth
<xref ref-type="bibr" rid="CR74">1982</xref>
; Moore
<xref ref-type="bibr" rid="CR100">2003</xref>
, pp. 107–116), which in turn may favor speech perception. Human speech perception often takes place against a background of intense and irrelevant noise (Darwin
<xref ref-type="bibr" rid="CR33">2008</xref>
). However, familiarity with the noise seems to reduce its masking potential. Word identification has been shown to be better in the presence of familiar background music than in that of unfamiliar background music (Russo and Pichora-Fuller
<xref ref-type="bibr" rid="CR127">2008</xref>
). A masker’s rhythmic properties seem to influence speech perception. Ekström and Borg (
<xref ref-type="bibr" rid="CR43">2011</xref>
) investigated the masking effect of a piano composition, played at 60, 120, or 180 BPM, on speech perception thresholds. All masking sounds were presented at an equivalent sound level (50 dBA). Low octave and fast tempo had the largest masking effect. The normal walking tempo of humans is close to 120 SPM. Two people walking in pace at this tempo will produce a regular rhythm of 120 while unpaced walking, for instance 110 BPM combined with 130 BPM, will produce a faster and more unpredictable rhythm.</p>
</sec>
<sec id="Sec20">
<title>Steps in evolution?</title>
<p>Primitive hominids lived and moved around in small groups (Wilson
<xref ref-type="bibr" rid="CR151">2011</xref>
, pp. 57–105). The noise generated by the locomotion of two or more individuals can result in a complicated mix of footsteps, breathing, movements against vegetation, echoes, etc. The ability to perceive differences in pitch, rhythm, and harmonies, all of which are components of “musicality,” could help the brain to distinguish among sounds arising from discrete sources, and also help the individual to synchronize movements with the group. Endurance and an interest in listening might, for the same reasons, have been associated with survival advantages eventually resulting in adaptive selection for rhythmic and musical abilities and reinforcement of such abilities. Listening to music seems to stimulate release of dopamine in humans (Meyer-Bisch
<xref ref-type="bibr" rid="CR97">2005</xref>
) and other animals (Panksepp and Bernatzky
<xref ref-type="bibr" rid="CR114">2002</xref>
; Sutoo and Akiyama
<xref ref-type="bibr" rid="CR138">2004</xref>
). Aiding in discrimination of important signals has been discussed as a major function of dopamine (Durstewitz et al.
<xref ref-type="bibr" rid="CR40">1999</xref>
). Rhythmic group locomotion combined with attentive listening in nature may have resulted in reinforcement through dopamine release. To speculate further, a primarily survival-based behavior may eventually have attained similarities to dance and music, due to such reinforcement mechanisms. Since music may facilitate social cohesion, improve group effort, reduce conflict, facilitate perceptual and motor skill development, and improve transgenerational communication (Huron
<xref ref-type="bibr" rid="CR69">2001</xref>
), music-like behavior may at some stage have become incorporated into human culture. Changizi (
<xref ref-type="bibr" rid="CR21">2011</xref>
) proposed that the human brain was well prepared to exploit incidental sounds of locomotion throughout cultural development.</p>
</sec>
<sec id="Sec21">
<title>Similarities between human movement, breathing, and music</title>
<p>According to Changizi (
<xref ref-type="bibr" rid="CR21">2011</xref>
), the most informative sounds of moving individuals are the basic building blocks of music. Four properties of moving individuals correspond directly to four fundamental ingredients of music: (1) the distance to the sound source (i.e., the moving individual) corresponds to loudness in music, (2) directionality influences pitch through the Doppler effect, (3) the moving individual’s speed corresponds to tempo in music, and (4) the moving individual’s gait pattern corresponds to the rhythm in music. He presents a list (pp. 191–195) with 42 potential similarities between music and human movement. To this list may be added that passive listening to music, or imagining it, activates areas of the brain associated with motor behavior (Chen et al.
<xref ref-type="bibr" rid="CR24">2006</xref>
; Janata and Grafton
<xref ref-type="bibr" rid="CR71">2003</xref>
). Listening to a rhythm often stimulates body movements (Grahn and Brett
<xref ref-type="bibr" rid="CR56">2007</xref>
). Rhythm information may be represented and retained in the brain as information about bodily movements (Konoike et al.
<xref ref-type="bibr" rid="CR75">2012</xref>
). Interactions between auditory and motor systems are important for the execution of rhythmic movements in humans, and music has a remarkable ability to drive rhythmic, metrically organized, motor behavior (Zatorre et al.
<xref ref-type="bibr" rid="CR153">2007</xref>
). Phillips-Silver and Trainor (
<xref ref-type="bibr" rid="CR119">2005</xref>
) demonstrated a strong multisensory connection between body movements and auditory rhythm processing in infants. To tap or move in rhythm to music is rare during the first year of human life but steadily increases until the age of puberty (Drake
<xref ref-type="bibr" rid="CR38">1997</xref>
; Hugardt
<xref ref-type="bibr" rid="CR67">2001</xref>
; Merker
<xref ref-type="bibr" rid="CR94">2005</xref>
), a timetable that shows some analogies with the child’s increasing capacity to walk. Music often influences emotions and vice versa. Interactions between locomotion sound and emotions have also been demonstrated. Giordano and Bresin (
<xref ref-type="bibr" rid="CR53">2006</xref>
) suggested that locomotion sounds may be influenced by the emotion of the walker, and according to Bresin et al. (
<xref ref-type="bibr" rid="CR20">2010</xref>
), the sounds produced on a more firm surface lead to more aggressive walking patterns. Runners changed step length and thereby the speed when music of different “emotional” character was recorded, although the pace was the same in all conditions (130 BPM) (Leman et al.
<xref ref-type="bibr" rid="CR81">2013</xref>
). Walking and running will usually produce rhythms in the range of 75–190 BPM. People can synchronize walking movements with music over a broad spectrum of tempos, but this synchronization is optimal in a narrow range around 120 BPM (Styns et al.
<xref ref-type="bibr" rid="CR136">2007</xref>
). Music is often played at a tempo similar to walking (Changizi
<xref ref-type="bibr" rid="CR21">2011</xref>
, p. 191). Respiration frequency can be increased by musical stimuli, and the increased breathing rate secondarily increases heart rate and blood pressure. This increase has been shown to be proportional to the tempo of music (Bernardi et al.
<xref ref-type="bibr" rid="CR11">2006</xref>
). A slow tempo (60–80 beats per minute) is related to relaxation and pain relief. Silence (a pause from music) further increases relaxation (Bernardi et al.
<xref ref-type="bibr" rid="CR11">2006</xref>
). The phase-locked patterns in human runner and walker RLC, 4:1, 3:1, 2:1, contribute to similarities between locomotion/ventilation sounds and rhythms in music.</p>
</sec>
<sec id="Sec22">
<title>Discussion and conclusions</title>
<p>Human locomotion and ventilation noise seem to have the potential to mask critical sounds in the environment, such as the footsteps and breathing of a stalker or prey. Synchronized walking of people in small groups is likely to reduce the masking properties of locomotion sounds. Possible adaptive advantages could be early detection of stalkers and enhanced perception of vocal communication within the group. Thus, the acoustic advantages that have been suggested for schooling fish, dolphin, and bird groups (Larsson
<xref ref-type="bibr" rid="CR78">2009</xref>
,
<xref ref-type="bibr" rid="CR79">2012a</xref>
,
<xref ref-type="bibr" rid="CR80">b</xref>
) may also be relevant for humans moving in synchrony. Moreover, limited data suggest that locomotion sounds may be used subconsciously to achieve synchronization of group locomotion (Nessler and Gilliland
<xref ref-type="bibr" rid="CR104">2009</xref>
; Fujino et al.
<xref ref-type="bibr" rid="CR47">1993</xref>
; Dallard et al.
<xref ref-type="bibr" rid="CR31">2001</xref>
). Changizi (
<xref ref-type="bibr" rid="CR21">2011</xref>
) suggests that the brain became “harnessed by music,” proposing that the fundamental ingredients of music developed to be similar to the sounds produced by a moving individual, since the human brain was adept at interpreting and analyzing such sounds in nature. The evidence presented here suggests an evolutionary adaptation of the auditory system to perceive and analyze rhythmic locomotion sound, complementing Changizi’s premise.</p>
<p>Archaeological data indicate that, in primitive societies, anywhere from 10 to 60 % of men died by homicide or in warfare (Bowles
<xref ref-type="bibr" rid="CR17">2009</xref>
). Thus, abilities to reduce masking and increase the chance of hearing an approaching enemy would have had high adaptive value in bipedal hominids. However, reducing masking from incidental sounds of locomotion is as likely to have adaptive value in non-human primates. Groups of arboreal primates would also benefit from simultaneous movement and pauses to produce silent intervals. The spontaneous behavior synchronization demonstrated among Japanese macaques (Nagasaka et al.
<xref ref-type="bibr" rid="CR103">2013</xref>
) may offer such acoustic benefits in nature. The higher degree of synchronization induced by visual information from the partner, as opposed to auditory cues, does not preclude a contribution of reduced auditory masking. Since auditory cues created by their locomotion are less repetitive and predictable than human steps, tree-climbers’ visual cues to synchronize locomotion may be more reliable than auditory cues. This may also provide a rationale for the non-human primates’ inability to accurately produce multiple tap intervals (Zarco et al.
<xref ref-type="bibr" rid="CR152">2009</xref>
), and possibly explain why monkeys detect rhythmic groups in music, but not the beat (Honing et al.
<xref ref-type="bibr" rid="CR66">2012</xref>
). Beat induction is the cognitive skill that let us pay attention to a regular pulse in music to which we can then synchronize. Perceiving this regularity in music allows humans to dance and create music together. Beat induction is a fundamental musical characteristic that, possibly, played a crucial role in the origins of music (Honing
<xref ref-type="bibr" rid="CR65">2012</xref>
). It is clearly correlated with motor activities, and increasing evidence shows that the neural circuits involved in beat perception overlap with motor circuitry even in the absence of overt movement (McAuley et al.
<xref ref-type="bibr" rid="CR91">2012</xref>
). Successful beat induction was diminished when the implied beat was at a slower cadence (1,500 ms or 40 BPM) compared with a quicker tempo (600 ms or 100 BPM) (McAuley et al.
<xref ref-type="bibr" rid="CR91">2012</xref>
) that corresponds to a normal human gait tempo.</p>
<p>The lack of empirical research on locomotion and ventilation sounds is a major limitation and should be an incentive for further research, e.g., about the prevalence of human walking in step and the neurophysiological mechanisms behind. The list of further research topics could also include perceptual factors such as acoustics (background noise, hearing acuity, level of sound generated) and the role of vision in synchronization of steps; how pacing influences vocal communication and vice versa; the masking potential of locomotion and ventilation sounds, not least the masking potential of different phases of the GC and the respiratory cycle; masking due to bone-conducted locomotion and ventilation sounds; the possible suppression effect of self-generated locomotion/ventilation sounds in the CNS; acoustic consequences of RLC in vertebrates; and comparative analyzes of acoustic and rhythmic properties of human bipedal walking versus arboreal locomotion and quadruped walking in apes.</p>
<p>Most, if not all, vertebrates are capable of auditory learning, which essentially means an ability to make associations with sounds heard, but few are capable of vocal learning, the ability to modify acoustic and/or syntactic structure of sounds produced, including imitation and improvisation (Jarvis
<xref ref-type="bibr" rid="CR73">2007</xref>
). Vocal learning has been found in humans, bats, cetaceans, pinnipeds, elephants, parrots, hummingbirds, songbirds (Jarvis
<xref ref-type="bibr" rid="CR73">2007</xref>
), and recently also in the ultrasound register of mice (Arriaga et al.
<xref ref-type="bibr" rid="CR3">2012</xref>
). The vocal learning and rhythmic synchronization hypothesis proposes that vocal learning provides a neurobiological foundation for auditory/motor entrainment (Patel
<xref ref-type="bibr" rid="CR116">2006</xref>
). Schachner et al. (
<xref ref-type="bibr" rid="CR129">2009</xref>
) suggested that entrainment to auditory beats emerged as a by-product of the capacity for vocal mimicry. Spontaneous motor entrainment to music has been demonstrated in vocal learners such as parrot and elephant species (Patel et al.
<xref ref-type="bibr" rid="CR117">2009</xref>
; Schachner et al.
<xref ref-type="bibr" rid="CR129">2009</xref>
). However, entrainment has recently been demonstrated in the less vocally flexible California sea lion, which has been suggested to be a limitation of the vocal learning and rhythmic synchronization hypothesis (Cook et al.
<xref ref-type="bibr" rid="CR27">2013</xref>
). This review article suggests the alternative view: that repetitive and predictable locomotion sounds influenced the development of entrainment in humans. It is likely that animal species that display oscillating, predictable locomotion patterns also produce rhythmic and predictable sounds of locomotion. An interesting question for the future is whether exposure to repetitive sounds of locomotion may stimulate the evolution toward auditory–motor entrainment. A related question is whether auditory–motor entrainment may stimulate the evolution of vocal abilities. Several vocal learning species produce oscillating movement patterns for long periods when they are moving in groups, for example human and elephant gait; coast and burst swimming in cetaceans and pinnipeds; wing flapping in bats, parrots, hummingbirds, and not least swarms of songbirds. At least bats and birds use their forelimbs to a large extent during locomotion. Brain structures involved in vocal communication in vertebrates are closely linked to motor processing of the forelimbs (Bass and Chagnaud
<xref ref-type="bibr" rid="CR8">2012</xref>
). Developmental studies of sound-producing fishes and tetrapods reveal that structures in the nervous system dedicated to vocalization originate from the same caudal hindbrain rhombomere (rh) 8-spinal compartment (Bass and Chagnaud
<xref ref-type="bibr" rid="CR8">2012</xref>
). Midshipman fish and the hitherto investigated tetrapods have forelimb motoneurons that function in both sonic and gestural signaling, and vocal and pectoral systems seem to have a shared developmental origin. In addition, vocal and pectoral systems have been proposed to possess shared social signal functions (Bass and Chagnaud
<xref ref-type="bibr" rid="CR8">2012</xref>
). Although the hypothesis presented here proposes a connection of music with motor processing of the hind limbs, a high degree of neuronal coordination of arm and leg movements has been demonstrated during human locomotion (Dietz et al.
<xref ref-type="bibr" rid="CR36">2001</xref>
).</p>
<p>Studies of interactions between movements and sound perception may increase the understanding of synchronized flock behavior in animals, including humans. Human synchrony phenomena related to walking, its acoustic and social significance, and the brain processes involved are little understood and may provide interesting areas for future research, not least bipedal walking and the evolution of rhythmic and musical abilities.</p>
</sec>
</body>
<back>
<fn-group>
<fn id="Fn1">
<label>1</label>
<p>Decibel (dB) is a logarithmic scale, which means that doubling the sound energy will increase the dB value by 3 dB. Equivalent continuous level or LAeq (A = average) is equivalent to the level of continuous noise given in decibels A (dBA) and integrates sound energy measured over a period of time (approximately 10 s in these recordings) to adjust for fluctuation of usual noise levels. The dBA filter is widely used. dBA roughly corresponds to the inverse of the 40 dB (at 1 kHz) equal-loudness curve for the human ear; using the dBA filter, the sound level meter is less sensitive to very high and very low frequencies. Measurements made with this scale are expressed as dBA (Meyer-Bisch
<xref ref-type="bibr" rid="CR97">2005</xref>
). These recordings (using LAeq) did not demonstrate differences in amplitude between relatively silent and relatively noisy phases of the gait cycle.</p>
</fn>
</fn-group>
<ack>
<p>I am grateful to Seth-Reino Ekström for fruitful discussions; Donald Kramer, Professor Emeritus, Victoria, British Columbia, and Stephen E. G. Lea, Editor-in-Chief, Animal Cognition, and four anonymous reviewers for valuable suggestions about the content and editorial comments; The Lucidus Consultancy for help with the English language and editorial comments; Christer Berg, Engineer at Örebro University Hospital (ÖUH), Sweden, for technical help with sound recordings; Erik Borg, Professor Emeritus, Claes Möller, Professor, and Parivash Ranjbahr PhD, Department of Audiology, ÖUH for consultations about auditory perception; Margareta Landin at the Medical Library ÖUH; Nyckelfonden, Örebro County Council for a postdoctoral grant; and The Cardiology Clinic ÖUH for support in publication.</p>
</ack>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aliu</surname>
<given-names>SO</given-names>
</name>
<name>
<surname>Houde</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Nagarajan</surname>
<given-names>SS</given-names>
</name>
</person-group>
<article-title>Motor-induced suppression of the auditory cortex</article-title>
<source>J Cogn Neurosci</source>
<year>2009</year>
<volume>21</volume>
<issue>4</issue>
<fpage>791</fpage>
<lpage>802</lpage>
<pub-id pub-id-type="doi">10.1162/jocn.2009.21055</pub-id>
<pub-id pub-id-type="pmid">18593265</pub-id>
</element-citation>
</ref>
<ref id="CR2">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arnott</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Singhal</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Goodale</surname>
<given-names>MA</given-names>
</name>
</person-group>
<article-title>An investigation of auditory contagious yawning</article-title>
<source>Cogn Affect Behav Neurosci</source>
<year>2009</year>
<volume>9</volume>
<issue>3</issue>
<fpage>335</fpage>
<lpage>342</lpage>
<pub-id pub-id-type="doi">10.3758/CABN.9.3.335</pub-id>
<pub-id pub-id-type="pmid">19679768</pub-id>
</element-citation>
</ref>
<ref id="CR3">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arriaga</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>EP</given-names>
</name>
<name>
<surname>Jarvis</surname>
<given-names>ED</given-names>
</name>
</person-group>
<article-title>Of mice, birds, and men: the mouse ultrasonic song system has some features similar to humans and song-learning birds</article-title>
<source>PLoS ONE</source>
<year>2012</year>
<volume>7</volume>
<issue>10</issue>
<fpage>e46610</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0046610</pub-id>
<pub-id pub-id-type="pmid">23071596</pub-id>
</element-citation>
</ref>
<ref id="CR4">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baess</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Widmann</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Roye</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Schroger</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Jacobsen</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Attenuated human auditory middle latency response and evoked 40-Hz response to self-initiated sounds</article-title>
<source>Eur J Neurosci</source>
<year>2009</year>
<volume>29</volume>
<issue>7</issue>
<fpage>1514</fpage>
<lpage>1521</lpage>
<pub-id pub-id-type="doi">10.1111/j.1460-9568.2009.06683.x</pub-id>
<pub-id pub-id-type="pmid">19323693</pub-id>
</element-citation>
</ref>
<ref id="CR5">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Bailey</surname>
<given-names>WJ</given-names>
</name>
</person-group>
<source>Acoustic behaviour of insects: an evolutionary perspective</source>
<year>1991</year>
<publisher-loc>London</publisher-loc>
<publisher-name>Chapman & Hall</publisher-name>
</element-citation>
</ref>
<ref id="CR6">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bailey</surname>
<given-names>WJ</given-names>
</name>
<name>
<surname>Thomson</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Acoustical orientation in the cricket
<italic>Teleogryllus oceanicus</italic>
(Le Guillou)</article-title>
<source>J Exp Biol</source>
<year>1977</year>
<volume>67</volume>
<issue>APR</issue>
<fpage>61</fpage>
<lpage>75</lpage>
</element-citation>
</ref>
<ref id="CR7">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Banzett</surname>
<given-names>RB</given-names>
</name>
<name>
<surname>Mead</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Reid</surname>
<given-names>MB</given-names>
</name>
<name>
<surname>Topulos</surname>
<given-names>GP</given-names>
</name>
</person-group>
<article-title>Locomotion in men has no appreciable mechanical effect on breathing</article-title>
<source>J Appl Physiol</source>
<year>1992</year>
<volume>72</volume>
<issue>5</issue>
<fpage>1922</fpage>
<lpage>1926</lpage>
<pub-id pub-id-type="pmid">1601801</pub-id>
</element-citation>
</ref>
<ref id="CR8">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bass</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Chagnaud</surname>
<given-names>BP</given-names>
</name>
</person-group>
<article-title>Shared developmental and evolutionary origins for neural basis of vocal-acoustic and pectoral-gestural signaling</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2012</year>
<volume>109</volume>
<issue>Suppl 1</issue>
<fpage>10677</fpage>
<lpage>10684</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1201886109</pub-id>
<pub-id pub-id-type="pmid">22723366</pub-id>
</element-citation>
</ref>
<ref id="CR9">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bechbache</surname>
<given-names>RR</given-names>
</name>
<name>
<surname>Duffin</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Entrainment of breathing frequency by exercise rhythm</article-title>
<source>J Physiol (Lond)</source>
<year>1977</year>
<volume>272</volume>
<issue>3</issue>
<fpage>553</fpage>
<lpage>561</lpage>
<pub-id pub-id-type="pmid">592202</pub-id>
</element-citation>
</ref>
<ref id="CR10">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bennet-Clark</surname>
<given-names>HC</given-names>
</name>
<name>
<surname>Leroy</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Tsacas</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Species and sex-specific songs and courtship behaviour in the genus
<italic>Zaprionus</italic>
(
<italic>Diptera</italic>
-
<italic>Drosophilidae</italic>
)</article-title>
<source>Anim Behav</source>
<year>1980</year>
<volume>28</volume>
<issue>FEB</issue>
<fpage>230</fpage>
<lpage>255</lpage>
<pub-id pub-id-type="doi">10.1016/S0003-3472(80)80027-3</pub-id>
</element-citation>
</ref>
<ref id="CR11">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bernardi</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Porta</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Sleight</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Cardiovascular, cerebrovascular, and respiratory changes induced by different types of music in musicians and non-musicians: the importance of silence</article-title>
<source>Heart</source>
<year>2006</year>
<volume>92</volume>
<issue>4</issue>
<fpage>445</fpage>
<lpage>452</lpage>
<pub-id pub-id-type="doi">10.1136/hrt.2005.064600</pub-id>
<pub-id pub-id-type="pmid">16199412</pub-id>
</element-citation>
</ref>
<ref id="CR12">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bernasconi</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Kohl</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Analysis of co-ordination between breathing and exercise rhythms in man</article-title>
<source>J Physiol (Lond)</source>
<year>1993</year>
<volume>471</volume>
<fpage>693</fpage>
<lpage>706</lpage>
<pub-id pub-id-type="pmid">8120830</pub-id>
</element-citation>
</ref>
<ref id="CR13">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bilney</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Morris</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Churchyard</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Chiu</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Georgiou-Karistianis</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Evidence for a disorder of locomotor timing in Huntington’s disease</article-title>
<source>Mov Disord</source>
<year>2005</year>
<volume>20</volume>
<issue>1</issue>
<fpage>51</fpage>
<lpage>57</lpage>
<pub-id pub-id-type="doi">10.1002/mds.20294</pub-id>
<pub-id pub-id-type="pmid">15390128</pub-id>
</element-citation>
</ref>
<ref id="CR14">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Blakemore</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Frith</surname>
<given-names>CD</given-names>
</name>
<name>
<surname>Wolpert</surname>
<given-names>DM</given-names>
</name>
</person-group>
<article-title>Spatio-temporal prediction modulates the perception of self-produced stimuli</article-title>
<source>J Cogn Neurosci</source>
<year>1999</year>
<volume>11</volume>
<issue>5</issue>
<fpage>551</fpage>
<lpage>559</lpage>
<pub-id pub-id-type="doi">10.1162/089892999563607</pub-id>
<pub-id pub-id-type="pmid">10511643</pub-id>
</element-citation>
</ref>
<ref id="CR15">
<mixed-citation publication-type="other">Boggs DF (2001) Interactions between locomotion and ventilation in tetrapods. In: Annual meeting of the society for Experimental Biology, Canterbury, England, Apr 02–03, 2001. Elsevier Science Inc, pp 269–288</mixed-citation>
</ref>
<ref id="CR16">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bohannon</surname>
<given-names>RW</given-names>
</name>
</person-group>
<article-title>Number of pedometer-assessed steps taken per day by adults: a descriptive meta-analysis</article-title>
<source>Phys Ther</source>
<year>2007</year>
<volume>87</volume>
<issue>12</issue>
<fpage>1642</fpage>
<lpage>1650</lpage>
<pub-id pub-id-type="doi">10.2522/ptj.20060037</pub-id>
<pub-id pub-id-type="pmid">17911274</pub-id>
</element-citation>
</ref>
<ref id="CR17">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bowles</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Did warfare among ancestral hunter-gatherers affect the evolution of human social behaviors?</article-title>
<source>Science</source>
<year>2009</year>
<volume>324</volume>
<issue>5932</issue>
<fpage>1293</fpage>
<lpage>1298</lpage>
<pub-id pub-id-type="doi">10.1126/science.1168112</pub-id>
<pub-id pub-id-type="pmid">19498163</pub-id>
</element-citation>
</ref>
<ref id="CR18">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bramble</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Carrier</surname>
<given-names>DR</given-names>
</name>
</person-group>
<article-title>Running and breathing in mammals</article-title>
<source>Science</source>
<year>1983</year>
<volume>219</volume>
<issue>4582</issue>
<fpage>251</fpage>
<lpage>256</lpage>
<pub-id pub-id-type="doi">10.1126/science.6849136</pub-id>
<pub-id pub-id-type="pmid">6849136</pub-id>
</element-citation>
</ref>
<ref id="CR19">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Bregman</surname>
<given-names>AS</given-names>
</name>
</person-group>
<source>Auditory scene analysis: the perceptual organization of sound</source>
<year>1990</year>
<publisher-loc>Cambridge, MA</publisher-loc>
<publisher-name>MIT Press</publisher-name>
</element-citation>
</ref>
<ref id="CR20">
<mixed-citation publication-type="other">Bresin R, de Witt A, Papetti S, Civolani M, Fontana F (2010) Expressive sonification of footstep sounds. In: Bresin R, Hermann T, Hunt, A (eds) Proceedings of the Interaction Sonification workshop (ISon), Stockholm, Sweden, 2010, KTH Royal Institute of Technology, pp 51–54</mixed-citation>
</ref>
<ref id="CR21">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Changizi</surname>
<given-names>M</given-names>
</name>
</person-group>
<source>Harnessed: How language and music mimicked nature and transformed ape to man</source>
<year>2011</year>
<publisher-loc>Dallas, TX</publisher-loc>
<publisher-name>BenBella Books</publisher-name>
</element-citation>
</ref>
<ref id="CR22">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Channon</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Gunther</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Crompton</surname>
<given-names>RH</given-names>
</name>
<name>
<surname>D’Aout</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Preuschoft</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Vereecke</surname>
<given-names>EE</given-names>
</name>
</person-group>
<article-title>The effect of substrate compliance on the biomechanics of gibbon leaps</article-title>
<source>J Exp Biol</source>
<year>2011</year>
<volume>214</volume>
<issue>Pt 4</issue>
<fpage>687</fpage>
<lpage>696</lpage>
<pub-id pub-id-type="doi">10.1242/jeb.046797</pub-id>
<pub-id pub-id-type="pmid">21270319</pub-id>
</element-citation>
</ref>
<ref id="CR23">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chater</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Reali</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Christiansen</surname>
<given-names>MH</given-names>
</name>
</person-group>
<article-title>Restrictions on biological adaptation in language evolution</article-title>
<source>PNAS</source>
<year>2009</year>
<volume>106</volume>
<issue>4</issue>
<fpage>1015</fpage>
<lpage>1020</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0807191106</pub-id>
<pub-id pub-id-type="pmid">19164588</pub-id>
</element-citation>
</ref>
<ref id="CR24">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Zatorre</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Penhune</surname>
<given-names>VB</given-names>
</name>
</person-group>
<article-title>Interactions between auditory and dorsal premotor cortex during synchronization to musical rhythms</article-title>
<source>Neuroimage</source>
<year>2006</year>
<volume>32</volume>
<issue>4</issue>
<fpage>1771</fpage>
<lpage>1781</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuroimage.2006.04.207</pub-id>
<pub-id pub-id-type="pmid">16777432</pub-id>
</element-citation>
</ref>
<ref id="CR25">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Clarke</surname>
<given-names>E</given-names>
</name>
</person-group>
<source>Ways of listening: an ecological approach to the perception of musical. Meaning</source>
<year>2005</year>
<publisher-loc>New York</publisher-loc>
<publisher-name>Oxford University Press</publisher-name>
</element-citation>
</ref>
<ref id="CR26">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Coleman</surname>
<given-names>SW</given-names>
</name>
</person-group>
<article-title>Mourning dove (
<italic>Zenaida macroura</italic>
) wing-whistles may contain threat-related information for con- and hetero-specifics</article-title>
<source>Naturwissenschaften</source>
<year>2008</year>
<volume>95</volume>
<issue>10</issue>
<fpage>981</fpage>
<lpage>986</lpage>
<pub-id pub-id-type="doi">10.1007/s00114-008-0404-x</pub-id>
<pub-id pub-id-type="pmid">18551267</pub-id>
</element-citation>
</ref>
<ref id="CR27">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cook</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Rouse</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Reichmuth</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>A california sea lion (
<italic>Zlophus Californianus</italic>
) can keep the beat: motor entrainment to rhythmic auditory stimuli in a non vocal mimic</article-title>
<source>J Comp Psychol</source>
<year>2013</year>
</element-citation>
</ref>
<ref id="CR28">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Crapse</surname>
<given-names>TB</given-names>
</name>
<name>
<surname>Sommer</surname>
<given-names>MA</given-names>
</name>
</person-group>
<article-title>Corollary discharge across the animal kingdom</article-title>
<source>Nat Rev Neurosci</source>
<year>2008</year>
<volume>9</volume>
<issue>8</issue>
<fpage>587</fpage>
<lpage>600</lpage>
<pub-id pub-id-type="doi">10.1038/nrn2457</pub-id>
<pub-id pub-id-type="pmid">18641666</pub-id>
</element-citation>
</ref>
<ref id="CR29">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Crapse</surname>
<given-names>TB</given-names>
</name>
<name>
<surname>Sommer</surname>
<given-names>MA</given-names>
</name>
</person-group>
<article-title>Corollary discharge circuits in the primate brain</article-title>
<source>Curr Opin Neurobiol</source>
<year>2008</year>
<volume>18</volume>
<issue>6</issue>
<fpage>552</fpage>
<lpage>557</lpage>
<pub-id pub-id-type="doi">10.1016/j.conb.2008.09.017</pub-id>
<pub-id pub-id-type="pmid">18848626</pub-id>
</element-citation>
</ref>
<ref id="CR30">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cullen</surname>
<given-names>KE</given-names>
</name>
</person-group>
<article-title>Sensory signals during active versus passive movement</article-title>
<source>Curr Opin Neurobiol</source>
<year>2004</year>
<volume>14</volume>
<issue>6</issue>
<fpage>698</fpage>
<lpage>706</lpage>
<pub-id pub-id-type="doi">10.1016/j.conb.2004.10.002</pub-id>
<pub-id pub-id-type="pmid">15582371</pub-id>
</element-citation>
</ref>
<ref id="CR31">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dallard</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Fitzpatrick</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Flint</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Low</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ridsdill Smith</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Willford</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Roche</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>London Millennium Bridge: pedestrian-induced lateral vibration</article-title>
<source>J Bridge Eng Trans ASCE</source>
<year>2001</year>
<volume>6</volume>
<fpage>412</fpage>
<lpage>417</lpage>
<pub-id pub-id-type="doi">10.1061/(ASCE)1084-0702(2001)6:6(412)</pub-id>
</element-citation>
</ref>
<ref id="CR32">
<mixed-citation publication-type="other">Darwin C (1871/1981) The descent of man, and selection in relation to sex. Princeton University Press. Reprint of 1871 edition by John Murray, London Princeton, NJ London (Originally published 1871)</mixed-citation>
</ref>
<ref id="CR33">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Darwin</surname>
<given-names>CJ</given-names>
</name>
</person-group>
<article-title>Listening to speech in the presence of other sounds</article-title>
<source>Philos Trans R Soc Lond B Biol Sci</source>
<year>2008</year>
<volume>363</volume>
<issue>1493</issue>
<fpage>1011</fpage>
<lpage>1021</lpage>
<pub-id pub-id-type="doi">10.1098/rstb.2007.2156</pub-id>
<pub-id pub-id-type="pmid">17827106</pub-id>
</element-citation>
</ref>
<ref id="CR34">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Demes</surname>
<given-names>B</given-names>
</name>
<name>
<surname>O’Neill</surname>
<given-names>MC</given-names>
</name>
</person-group>
<article-title>Ground reaction forces and center of mass mechanics of bipedal capuchin monkeys: implications for the evolution of human bipedalism</article-title>
<source>Am J Phys Anthropol</source>
<year>2013</year>
<volume>150</volume>
<issue>1</issue>
<fpage>76</fpage>
<lpage>86</lpage>
<pub-id pub-id-type="doi">10.1002/ajpa.22176</pub-id>
<pub-id pub-id-type="pmid">23124531</pub-id>
</element-citation>
</ref>
<ref id="CR35">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Desantis</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Weiss</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Schutz-Bosbach</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Waszak</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Believing and perceiving: authorship belief modulates sensory attenuation</article-title>
<source>PLoS ONE</source>
<year>2012</year>
<volume>7</volume>
<issue>5</issue>
<fpage>e37959</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0037959</pub-id>
<pub-id pub-id-type="pmid">22666424</pub-id>
</element-citation>
</ref>
<ref id="CR36">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dietz</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Fouad</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Bastiaanse</surname>
<given-names>CM</given-names>
</name>
</person-group>
<article-title>Neuronal coordination of arm and leg movements during human locomotion</article-title>
<source>Eur J Neurosci</source>
<year>2001</year>
<volume>14</volume>
<issue>11</issue>
<fpage>1906</fpage>
<lpage>1914</lpage>
<pub-id pub-id-type="doi">10.1046/j.0953-816x.2001.01813.x</pub-id>
<pub-id pub-id-type="pmid">11860485</pub-id>
</element-citation>
</ref>
<ref id="CR37">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dingwell</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Cusumano</surname>
<given-names>JP</given-names>
</name>
</person-group>
<article-title>Re-interpreting detrended fluctuation analyses of stride-to-stride variability in human walking</article-title>
<source>Gait Posture</source>
<year>2010</year>
<volume>32</volume>
<issue>3</issue>
<fpage>348</fpage>
<lpage>353</lpage>
<pub-id pub-id-type="doi">10.1016/j.gaitpost.2010.06.004</pub-id>
<pub-id pub-id-type="pmid">20605097</pub-id>
</element-citation>
</ref>
<ref id="CR38">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Drake</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Motor and perceptually preferred synchronisation by children and adults: binary and ternary ratios</article-title>
<source>Pol Quart Dev Psychol</source>
<year>1997</year>
<volume>3</volume>
<fpage>41</fpage>
<lpage>59</lpage>
</element-citation>
</ref>
<ref id="CR39">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Duarte</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hanna</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Sanches</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Fragaszy</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Kinematics of bipedal locomotion while carrying a load in the arms in bearded capuchin monkeys (
<italic>Sapajus libidinosus</italic>
)</article-title>
<source>J Hum Evol</source>
<year>2012</year>
<volume>63</volume>
<issue>6</issue>
<fpage>851</fpage>
<lpage>858</lpage>
<pub-id pub-id-type="doi">10.1016/j.jhevol.2012.10.002</pub-id>
<pub-id pub-id-type="pmid">23149226</pub-id>
</element-citation>
</ref>
<ref id="CR40">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Durstewitz</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Kelc</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Güntürkün</surname>
<given-names>O</given-names>
</name>
</person-group>
<article-title>A neurocomputational theory of the dopaminergic modulation of working memory functions</article-title>
<source>J Neurosci</source>
<year>1999</year>
<volume>19</volume>
<issue>7</issue>
<fpage>2807</fpage>
<lpage>2822</lpage>
<pub-id pub-id-type="pmid">10087092</pub-id>
</element-citation>
</ref>
<ref id="CR41">
<mixed-citation publication-type="other">Sabatier JM, Ekimov AE, IEEE (2008) A review of human signatures in urban environments using seismic and acoustic methods. 2008 IEEE conference on technologies for homeland security, vols 1 and 2. doi:10.1109/ths.2008.4534452</mixed-citation>
</ref>
<ref id="CR42">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ekimov</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sabatier</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>Vibration and sound signatures of human footsteps in buildings</article-title>
<source>J Acoust Soc Am</source>
<year>2006</year>
<volume>120</volume>
<issue>2</issue>
<fpage>762</fpage>
<lpage>768</lpage>
<pub-id pub-id-type="doi">10.1121/1.2217371</pub-id>
<pub-id pub-id-type="pmid">16938964</pub-id>
</element-citation>
</ref>
<ref id="CR43">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ekström</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Borg</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Hearing speech in music</article-title>
<source>Noise Health</source>
<year>2011</year>
<volume>13</volume>
<issue>53</issue>
<fpage>277</fpage>
<lpage>285</lpage>
<pub-id pub-id-type="doi">10.4103/1463-1741.82960</pub-id>
<pub-id pub-id-type="pmid">21768731</pub-id>
</element-citation>
</ref>
<ref id="CR44">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Feitl</surname>
<given-names>KE</given-names>
</name>
<name>
<surname>Ngo</surname>
<given-names>V</given-names>
</name>
<name>
<surname>McHenry</surname>
<given-names>MJ</given-names>
</name>
</person-group>
<article-title>Are fish less responsive to a flow stimulus when swimming?</article-title>
<source>J Exp Biol</source>
<year>2010</year>
<volume>213</volume>
<issue>Pt 18</issue>
<fpage>3131</fpage>
<lpage>3137</lpage>
<pub-id pub-id-type="doi">10.1242/jeb.045518</pub-id>
<pub-id pub-id-type="pmid">20802114</pub-id>
</element-citation>
</ref>
<ref id="CR45">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fitch</surname>
<given-names>WT</given-names>
</name>
</person-group>
<article-title>The biology and evolution of music: a comparative perspective</article-title>
<source>Cognition</source>
<year>2006</year>
<volume>100</volume>
<issue>1</issue>
<fpage>173</fpage>
<lpage>215</lpage>
<pub-id pub-id-type="doi">10.1016/j.cognition.2005.11.009</pub-id>
<pub-id pub-id-type="pmid">16412411</pub-id>
</element-citation>
</ref>
<ref id="CR46">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Forgacs</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Nathoo</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Richards</surname>
<given-names>Hd</given-names>
</name>
</person-group>
<article-title>Breath sounds</article-title>
<source>Thorax</source>
<year>1971</year>
<volume>26</volume>
<issue>3</issue>
<fpage>288</fpage>
<lpage>295</lpage>
<pub-id pub-id-type="doi">10.1136/thx.26.3.288</pub-id>
<pub-id pub-id-type="pmid">5089494</pub-id>
</element-citation>
</ref>
<ref id="CR47">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fujino</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Pacheco</surname>
<given-names>BM</given-names>
</name>
<name>
<surname>Nakamura</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Warnitchai</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Synchronization of human walking observed during lateral vibration of a congested pedestrian bridge</article-title>
<source>Earthq Eng Struct Dynam</source>
<year>1993</year>
<volume>22</volume>
<issue>9</issue>
<fpage>741</fpage>
<lpage>758</lpage>
<pub-id pub-id-type="doi">10.1002/eqe.4290220902</pub-id>
</element-citation>
</ref>
<ref id="CR48">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Funk</surname>
<given-names>GD</given-names>
</name>
<name>
<surname>Milsom</surname>
<given-names>WK</given-names>
</name>
<name>
<surname>Steeves</surname>
<given-names>JD</given-names>
</name>
</person-group>
<article-title>Coordination of wingbeat and respiration in the Canada goose. I. Passive wing flapping</article-title>
<source>J Appl Physiol</source>
<year>1992</year>
<volume>73</volume>
<issue>3</issue>
<fpage>1014</fpage>
<lpage>1024</lpage>
<pub-id pub-id-type="pmid">1400012</pub-id>
</element-citation>
</ref>
<ref id="CR49">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Funk</surname>
<given-names>GD</given-names>
</name>
<name>
<surname>Valenzuela</surname>
<given-names>IJ</given-names>
</name>
<name>
<surname>Milsom</surname>
<given-names>WK</given-names>
</name>
</person-group>
<article-title>Energetic consequences of coordinating wingbeat and respiratory rhythms in birds</article-title>
<source>J Exp Biol</source>
<year>1997</year>
<volume>200</volume>
<issue>5</issue>
<fpage>915</fpage>
<lpage>920</lpage>
<pub-id pub-id-type="pmid">9318704</pub-id>
</element-citation>
</ref>
<ref id="CR50">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Galbrait</surname>
<given-names>FW</given-names>
</name>
<name>
<surname>Barton</surname>
<given-names>MV</given-names>
</name>
</person-group>
<article-title>Ground loading from footsteps</article-title>
<source>J Acoust Soc Am</source>
<year>1970</year>
<volume>48</volume>
<issue>5</issue>
<fpage>1288</fpage>
<lpage>1292</lpage>
<pub-id pub-id-type="doi">10.1121/1.1912271</pub-id>
</element-citation>
</ref>
<ref id="CR51">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Gelfand</surname>
<given-names>SA</given-names>
</name>
</person-group>
<source>Hearing—an introduction to psychological and physiological acoustics</source>
<year>2004</year>
<edition>4</edition>
<publisher-loc>New York</publisher-loc>
<publisher-name>Marcel Dekker</publisher-name>
</element-citation>
</ref>
<ref id="CR52">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gibson</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Russell</surname>
<given-names>I</given-names>
</name>
</person-group>
<article-title>Flying in tune: sexual recognition in mosquitoes</article-title>
<source>Curr Biol</source>
<year>2006</year>
<volume>16</volume>
<issue>13</issue>
<fpage>1311</fpage>
<lpage>1316</lpage>
<pub-id pub-id-type="doi">10.1016/j.cub.2006.05.053</pub-id>
<pub-id pub-id-type="pmid">16824918</pub-id>
</element-citation>
</ref>
<ref id="CR53">
<mixed-citation publication-type="other">Giordano B, Bresin R (2006) Walking and playing: what’s the origin of emotional expressiveness in music? In: Baroni M, Addessi AR, Caterina R, Costa M (eds) ICMPC9—9th international conference on music perception and cognition, Bologna, Aug 2006, p. 149. Bonomia University Press (abstract)</mixed-citation>
</ref>
<ref id="CR54">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Giordano</surname>
<given-names>BL</given-names>
</name>
<name>
<surname>Visell</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>HY</given-names>
</name>
<name>
<surname>Hayward</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Cooperstock</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>McAdams</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Identification of walked-upon materials in auditory, kinesthetic, haptic, and audio-haptic conditions</article-title>
<source>J Acoust Soc Am</source>
<year>2012</year>
<volume>131</volume>
<issue>5</issue>
<fpage>4002</fpage>
<lpage>4012</lpage>
<pub-id pub-id-type="doi">10.1121/1.3699205</pub-id>
<pub-id pub-id-type="pmid">22559373</pub-id>
</element-citation>
</ref>
<ref id="CR55">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goldberger</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Amaral</surname>
<given-names>LAN</given-names>
</name>
<name>
<surname>Glass</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Hausdorff</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Ivanov</surname>
<given-names>PC</given-names>
</name>
<name>
<surname>Mark</surname>
<given-names>RG</given-names>
</name>
<name>
<surname>Mietus</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Moody</surname>
<given-names>GB</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>CK</given-names>
</name>
<name>
<surname>Stanley</surname>
<given-names>HE</given-names>
</name>
</person-group>
<article-title>PhysioBank, PhysioToolkit, and PhysioNet—components of a new research resource for complex physiologic signals</article-title>
<source>Circulation</source>
<year>2000</year>
<volume>101</volume>
<issue>23</issue>
<fpage>E215</fpage>
<lpage>E220</lpage>
<pub-id pub-id-type="doi">10.1161/01.CIR.101.23.e215</pub-id>
<pub-id pub-id-type="pmid">10851218</pub-id>
</element-citation>
</ref>
<ref id="CR56">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grahn</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Brett</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Rhythm and beat perception in motor areas of the brain</article-title>
<source>J Cogn Neurosci</source>
<year>2007</year>
<volume>19</volume>
<issue>5</issue>
<fpage>893</fpage>
<lpage>906</lpage>
<pub-id pub-id-type="doi">10.1162/jocn.2007.19.5.893</pub-id>
<pub-id pub-id-type="pmid">17488212</pub-id>
</element-citation>
</ref>
<ref id="CR57">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Greenlee</surname>
<given-names>JDW</given-names>
</name>
<name>
<surname>Jackson</surname>
<given-names>AW</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>FX</given-names>
</name>
<name>
<surname>Larson</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Oya</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kawasaki</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>HM</given-names>
</name>
<name>
<surname>Howard</surname>
<given-names>MA</given-names>
</name>
</person-group>
<article-title>Human auditory cortical activation during self-vocalization</article-title>
<source>PLoS ONE</source>
<year>2011</year>
<volume>6</volume>
<issue>3</issue>
<fpage>e14744</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0014744</pub-id>
<pub-id pub-id-type="pmid">21390228</pub-id>
</element-citation>
</ref>
<ref id="CR58">
<mixed-citation publication-type="other">Groger U, Wiegrebe L (2006) Classification of human breathing sounds by the common vampire bat,
<italic>Desmodus rotundus</italic>
. BMC Biol 4. doi:10.1186/1741-7007-4-18</mixed-citation>
</ref>
<ref id="CR59">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Haas</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Distenfeld</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Axen</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Effects of perceived musical rhythm on respiratory pattern</article-title>
<source>J Appl Physiol</source>
<year>1986</year>
<volume>61</volume>
<issue>3</issue>
<fpage>1185</fpage>
<lpage>1191</lpage>
<pub-id pub-id-type="pmid">3759758</pub-id>
</element-citation>
</ref>
<ref id="CR60">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hagen</surname>
<given-names>EH</given-names>
</name>
<name>
<surname>Bryant</surname>
<given-names>GA</given-names>
</name>
</person-group>
<article-title>Music and dance as a coalition signaling system</article-title>
<source>Hum Nat</source>
<year>2003</year>
<volume>14</volume>
<fpage>21</fpage>
<lpage>51</lpage>
<pub-id pub-id-type="doi">10.1007/s12110-003-1015-z</pub-id>
</element-citation>
</ref>
<ref id="CR61">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hausdorff</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Purdon</surname>
<given-names>PL</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>CK</given-names>
</name>
<name>
<surname>Ladin</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>Goldberger</surname>
<given-names>AL</given-names>
</name>
</person-group>
<article-title>Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations</article-title>
<source>J Appl Physiol</source>
<year>1996</year>
<volume>80</volume>
<issue>5</issue>
<fpage>1448</fpage>
<lpage>1457</lpage>
<pub-id pub-id-type="pmid">8727526</pub-id>
</element-citation>
</ref>
<ref id="CR62">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hauser</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>McDermott</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>The evolution of the music faculty: a comparative perspective</article-title>
<source>Nat Neurosci</source>
<year>2003</year>
<volume>6</volume>
<issue>7</issue>
<fpage>663</fpage>
<lpage>668</lpage>
<pub-id pub-id-type="doi">10.1038/nn1080</pub-id>
<pub-id pub-id-type="pmid">12830156</pub-id>
</element-citation>
</ref>
<ref id="CR63">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hawco</surname>
<given-names>CS</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Ferretti</surname>
<given-names>TR</given-names>
</name>
<name>
<surname>Keough</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>ERP correlates of online monitoring of auditory feedback during vocalization</article-title>
<source>Psychophysiology</source>
<year>2009</year>
<volume>46</volume>
<issue>6</issue>
<fpage>1216</fpage>
<lpage>1225</lpage>
<pub-id pub-id-type="doi">10.1111/j.1469-8986.2009.00875.x</pub-id>
<pub-id pub-id-type="pmid">19674393</pub-id>
</element-citation>
</ref>
<ref id="CR64">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hingee</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Magrath</surname>
<given-names>RD</given-names>
</name>
</person-group>
<article-title>Flights of fear: a mechanical wing whistle sounds the alarm in a flocking bird</article-title>
<source>Proc R Soc Lond B Biol Sci</source>
<year>2009</year>
<volume>276</volume>
<issue>1676</issue>
<fpage>4173</fpage>
<lpage>4179</lpage>
<pub-id pub-id-type="doi">10.1098/rspb.2009.1110</pub-id>
</element-citation>
</ref>
<ref id="CR65">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Honing</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Without it no music: beat induction as a fundamental musical trait</article-title>
<source>Ann N Y Acad Sci</source>
<year>2012</year>
<volume>1252</volume>
<fpage>85</fpage>
<lpage>91</lpage>
<pub-id pub-id-type="doi">10.1111/j.1749-6632.2011.06402.x</pub-id>
<pub-id pub-id-type="pmid">22524344</pub-id>
</element-citation>
</ref>
<ref id="CR66">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Honing</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Merchant</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Haden</surname>
<given-names>GP</given-names>
</name>
<name>
<surname>Prado</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Bartolo</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Rhesus monkeys (Macaca mulatta) detect rhythmic groups in music, but not the beat</article-title>
<source>PLoS ONE</source>
<year>2012</year>
<volume>7</volume>
<issue>12</issue>
<fpage>e51369</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0051369</pub-id>
<pub-id pub-id-type="pmid">23251509</pub-id>
</element-citation>
</ref>
<ref id="CR67">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Hugardt</surname>
<given-names>A</given-names>
</name>
</person-group>
<source>Individuality and development in children’s spontaneous tempo and synchronization</source>
<year>2001</year>
<publisher-loc>Sweden</publisher-loc>
<publisher-name>University of Gothenburg</publisher-name>
</element-citation>
</ref>
<ref id="CR68">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hunter</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>On the role of wing sounds in hummingbird communication</article-title>
<source>Auk</source>
<year>2008</year>
<volume>125</volume>
<issue>3</issue>
<fpage>532</fpage>
<lpage>541</lpage>
<pub-id pub-id-type="doi">10.1525/auk.2008.06222</pub-id>
</element-citation>
</ref>
<ref id="CR69">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huron</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Is music an evolutionary adaptation?</article-title>
<source>Ann N Y Acad Sci</source>
<year>2001</year>
<volume>930</volume>
<fpage>43</fpage>
<lpage>61</lpage>
<pub-id pub-id-type="doi">10.1111/j.1749-6632.2001.tb05724.x</pub-id>
<pub-id pub-id-type="pmid">11458859</pub-id>
</element-citation>
</ref>
<ref id="CR70">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Issartel</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Marin</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Cadopi</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Unintended interpersonal co-ordination: “we march to the beat of our own drum?”</article-title>
<source>Neurosci Lett</source>
<year>2007</year>
<volume>411</volume>
<issue>3</issue>
<fpage>174</fpage>
<lpage>179</lpage>
<pub-id pub-id-type="doi">10.1016/j.neulet.2006.09.086</pub-id>
<pub-id pub-id-type="pmid">17123718</pub-id>
</element-citation>
</ref>
<ref id="CR71">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Janata</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Grafton</surname>
<given-names>ST</given-names>
</name>
</person-group>
<article-title>Swinging in the brain: shared neural substrates for behaviors related to sequencing and music</article-title>
<source>Nat Neurosci</source>
<year>2003</year>
<volume>6</volume>
<issue>7</issue>
<fpage>682</fpage>
<lpage>687</lpage>
<pub-id pub-id-type="doi">10.1038/nn1081</pub-id>
<pub-id pub-id-type="pmid">12830159</pub-id>
</element-citation>
</ref>
<ref id="CR72">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jarvis</surname>
<given-names>ED</given-names>
</name>
</person-group>
<article-title>Learned birdsong and the neurobiology of human language</article-title>
<source>Ann N Y Acad Sci</source>
<year>2004</year>
<volume>1016</volume>
<fpage>749</fpage>
<lpage>777</lpage>
<pub-id pub-id-type="doi">10.1196/annals.1298.038</pub-id>
<pub-id pub-id-type="pmid">15313804</pub-id>
</element-citation>
</ref>
<ref id="CR73">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Jarvis</surname>
<given-names>JD</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Kaas</surname>
<given-names>JK</given-names>
</name>
</person-group>
<article-title>The evolution of vocal learning systems in birds and humans</article-title>
<source>Evolution of nervous system</source>
<year>2007</year>
<publisher-loc>Amsterdam</publisher-loc>
<publisher-name>Elsevier</publisher-name>
<fpage>213</fpage>
<lpage>225</lpage>
</element-citation>
</ref>
<ref id="CR74">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kidd</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Feth</surname>
<given-names>LL</given-names>
</name>
</person-group>
<article-title>Effects of masker duration in pure-tone forward masking</article-title>
<source>J Acoust Soc Am</source>
<year>1982</year>
<volume>72</volume>
<issue>5</issue>
<fpage>1384</fpage>
<lpage>1386</lpage>
<pub-id pub-id-type="doi">10.1121/1.388443</pub-id>
<pub-id pub-id-type="pmid">7175023</pub-id>
</element-citation>
</ref>
<ref id="CR75">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Konoike</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Kotozaki</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Miyachi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Miyauchi</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Yomogida</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Akimoto</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kuraoka</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Sugiura</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kawashima</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Nakamura</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Rhythm information represented in the fronto-parieto-cerebellar motor system</article-title>
<source>Neuroimage</source>
<year>2012</year>
<volume>63</volume>
<issue>1</issue>
<fpage>328</fpage>
<lpage>338</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuroimage.2012.07.002</pub-id>
<pub-id pub-id-type="pmid">22796994</pub-id>
</element-citation>
</ref>
<ref id="CR76">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Krafft</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Pasquet</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Synchronized and rhythmical activity during the prey capture in the social spider Anelosimus eximius (
<italic>Araneae</italic>
,
<italic>Theridiidae</italic>
)</article-title>
<source>Insectes Soc</source>
<year>1991</year>
<volume>38</volume>
<issue>1</issue>
<fpage>83</fpage>
<lpage>90</lpage>
<pub-id pub-id-type="doi">10.1007/BF01242716</pub-id>
</element-citation>
</ref>
<ref id="CR77">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kramer</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>McLaughlin</surname>
<given-names>RL</given-names>
</name>
</person-group>
<article-title>The behavioral ecology of intermittent locomotion</article-title>
<source>Am Zool</source>
<year>2001</year>
<volume>41</volume>
<issue>2</issue>
<fpage>137</fpage>
<lpage>153</lpage>
<pub-id pub-id-type="doi">10.1668/0003-1569(2001)041[0137:TBEOIL]2.0.CO;2</pub-id>
</element-citation>
</ref>
<ref id="CR78">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Larsson</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Possible functions of the octavolateralis system in fish schooling</article-title>
<source>Fish Fish</source>
<year>2009</year>
<volume>10</volume>
<fpage>344</fpage>
<lpage>355</lpage>
<pub-id pub-id-type="doi">10.1111/j.1467-2979.2009.00330.x</pub-id>
</element-citation>
</ref>
<ref id="CR79">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Larsson</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Incidental sounds of locomotion in animal cognition</article-title>
<source>Anim Cognit</source>
<year>2012</year>
<volume>15</volume>
<issue>1</issue>
<fpage>1</fpage>
<lpage>13</lpage>
<pub-id pub-id-type="doi">10.1007/s10071-011-0433-2</pub-id>
<pub-id pub-id-type="pmid">21748447</pub-id>
</element-citation>
</ref>
<ref id="CR80">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Larsson</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Why do fish school?</article-title>
<source>Curr Zool</source>
<year>2012</year>
<volume>58</volume>
<issue>1</issue>
<fpage>116</fpage>
<lpage>128</lpage>
</element-citation>
</ref>
<ref id="CR81">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Leman</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Moelants</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Varewyck</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Styns</surname>
<given-names>F</given-names>
</name>
<name>
<surname>van Noorden</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Martens</surname>
<given-names>JP</given-names>
</name>
</person-group>
<article-title>Activating and relaxing music entrains the speed of beat synchronized walking</article-title>
<source>PLoS ONE</source>
<year>2013</year>
<volume>8</volume>
<issue>7</issue>
<fpage>e67932</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0067932</pub-id>
<pub-id pub-id-type="pmid">23874469</pub-id>
</element-citation>
</ref>
<ref id="CR82">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>XF</given-names>
</name>
<name>
<surname>Logan</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Pastore</surname>
<given-names>RE</given-names>
</name>
</person-group>
<article-title>Perception of acoustic source characteristics: walking sounds</article-title>
<source>J Acoust Soc Am</source>
<year>1991</year>
<volume>90</volume>
<issue>6</issue>
<fpage>3036</fpage>
<lpage>3049</lpage>
<pub-id pub-id-type="doi">10.1121/1.401778</pub-id>
<pub-id pub-id-type="pmid">1787243</pub-id>
</element-citation>
</ref>
<ref id="CR83">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lieberman</surname>
<given-names>DE</given-names>
</name>
</person-group>
<article-title>What we can learn about running from barefoot running: an evolutionary medical perspective</article-title>
<source>Exerc Sport Sci Rev</source>
<year>2012</year>
<volume>40</volume>
<issue>2</issue>
<fpage>63</fpage>
<lpage>72</lpage>
<pub-id pub-id-type="doi">10.1097/JES.0b013e31824ab210</pub-id>
<pub-id pub-id-type="pmid">22257937</pub-id>
</element-citation>
</ref>
<ref id="CR84">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lieberman</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Venkadesan</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Werbel</surname>
<given-names>WA</given-names>
</name>
<name>
<surname>Daoud</surname>
<given-names>AI</given-names>
</name>
<name>
<surname>D’Andrea</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Davis</surname>
<given-names>IS</given-names>
</name>
<name>
<surname>Mang’Eni</surname>
<given-names>RO</given-names>
</name>
<name>
<surname>Pitsiladis</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Foot strike patterns and collision forces in habitually barefoot versus shod runners</article-title>
<source>Nature</source>
<year>2010</year>
<volume>463</volume>
<issue>7280</issue>
<fpage>531</fpage>
<lpage>535</lpage>
<pub-id pub-id-type="doi">10.1038/nature08723</pub-id>
<pub-id pub-id-type="pmid">20111000</pub-id>
</element-citation>
</ref>
<ref id="CR85">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Light</surname>
<given-names>LH</given-names>
</name>
<name>
<surname>McLellan</surname>
<given-names>GE</given-names>
</name>
<name>
<surname>Klenerman</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Skeletal transients on heel strike in normal walking with different footwear</article-title>
<source>J Biomech</source>
<year>1980</year>
<volume>13</volume>
<issue>6</issue>
<fpage>477</fpage>
<lpage>480</lpage>
<pub-id pub-id-type="doi">10.1016/0021-9290(80)90340-1</pub-id>
<pub-id pub-id-type="pmid">6447153</pub-id>
</element-citation>
</ref>
<ref id="CR86">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>MacDougall</surname>
<given-names>HG</given-names>
</name>
<name>
<surname>Moore</surname>
<given-names>ST</given-names>
</name>
</person-group>
<article-title>Marching to the beat of the same drummer: the spontaneous tempo of human locomotion</article-title>
<source>J Appl Physiol</source>
<year>2005</year>
<volume>99</volume>
<issue>3</issue>
<fpage>1164</fpage>
<lpage>1173</lpage>
<pub-id pub-id-type="doi">10.1152/japplphysiol.00138.2005</pub-id>
<pub-id pub-id-type="pmid">15890757</pub-id>
</element-citation>
</ref>
<ref id="CR87">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Madsen</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Persson</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Contagious yawning in domestic dog puppies (
<italic>Canis lupus</italic>
familiaris): the effect of ontogeny and emotional closeness on low-level imitation in dogs</article-title>
<source>Anim Cogn</source>
<year>2013</year>
<volume>16</volume>
<issue>2</issue>
<fpage>233</fpage>
<lpage>240</lpage>
<pub-id pub-id-type="doi">10.1007/s10071-012-0568-9</pub-id>
<pub-id pub-id-type="pmid">23076724</pub-id>
</element-citation>
</ref>
<ref id="CR88">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marler</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Champlin</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Gillam</surname>
<given-names>RB</given-names>
</name>
</person-group>
<article-title>Auditory memory for backward masking signals in children with language impairment</article-title>
<source>Psychophysiology</source>
<year>2002</year>
<volume>39</volume>
<issue>6</issue>
<fpage>767</fpage>
<lpage>780</lpage>
<pub-id pub-id-type="doi">10.1111/1469-8986.3960767</pub-id>
<pub-id pub-id-type="pmid">12462505</pub-id>
</element-citation>
</ref>
<ref id="CR89">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martikainen</surname>
<given-names>MH</given-names>
</name>
<name>
<surname>Kaneko</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Hari</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Suppressed responses to self-triggered sounds in the human auditory cortex</article-title>
<source>Cereb Cortex</source>
<year>2005</year>
<volume>15</volume>
<issue>3</issue>
<fpage>299</fpage>
<lpage>302</lpage>
<pub-id pub-id-type="doi">10.1093/cercor/bhh131</pub-id>
<pub-id pub-id-type="pmid">15238430</pub-id>
</element-citation>
</ref>
<ref id="CR90">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Massen</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Vermunt</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Sterck</surname>
<given-names>EH</given-names>
</name>
</person-group>
<article-title>Male yawning is more contagious than female yawning among chimpanzees (Pan troglodytes)</article-title>
<source>PLoS ONE</source>
<year>2012</year>
<volume>7</volume>
<issue>7</issue>
<fpage>e40697</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0040697</pub-id>
<pub-id pub-id-type="pmid">22808234</pub-id>
</element-citation>
</ref>
<ref id="CR91">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McAuley</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Henry</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Tkach</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Tempo mediates the involvement of motor areas in beat perception</article-title>
<source>Ann N Y Acad Sci</source>
<year>2012</year>
<volume>1252</volume>
<fpage>77</fpage>
<lpage>84</lpage>
<pub-id pub-id-type="doi">10.1111/j.1749-6632.2011.06433.x</pub-id>
<pub-id pub-id-type="pmid">22524343</pub-id>
</element-citation>
</ref>
<ref id="CR92">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>McNeill</surname>
<given-names>WH</given-names>
</name>
</person-group>
<source>Keeping together in time</source>
<year>1995</year>
<publisher-loc>Cambridge, MA</publisher-loc>
<publisher-name>Harvard University Press</publisher-name>
</element-citation>
</ref>
<ref id="CR93">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Merker</surname>
<given-names>B</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Wallin</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Merker</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Synchronous chorusing and humans origins</article-title>
<source>The origins of music</source>
<year>2000</year>
<publisher-loc>London, England</publisher-loc>
<publisher-name>MIT press</publisher-name>
<fpage>315</fpage>
<lpage>327</lpage>
</element-citation>
</ref>
<ref id="CR94">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Merker</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>The liabilities of mobility: a selection pressure for the transition to consciousness in animal evolution</article-title>
<source>Conscious Cogn</source>
<year>2005</year>
<volume>14</volume>
<issue>1</issue>
<fpage>89</fpage>
<lpage>114</lpage>
<pub-id pub-id-type="doi">10.1016/S1053-8100(03)00002-3</pub-id>
<pub-id pub-id-type="pmid">15766892</pub-id>
</element-citation>
</ref>
<ref id="CR95">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meyer</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Elsner</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>How respiration affects auditory sensitivity in the grasshopper
<italic>Chorthippus biguttulus</italic>
(L.)</article-title>
<source>J Comp Physiol</source>
<year>1995</year>
<volume>176</volume>
<issue>4</issue>
<fpage>563</fpage>
<lpage>573</lpage>
<pub-id pub-id-type="doi">10.1007/BF00196421</pub-id>
</element-citation>
</ref>
<ref id="CR96">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meyer</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hedwig</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>The influence of tracheal pressure changes on the responses of the tympanal membrane and auditory receptors in the locust
<italic>Locusta migratoria</italic>
L</article-title>
<source>J Exp Biol</source>
<year>1995</year>
<volume>198</volume>
<issue>6</issue>
<fpage>1327</fpage>
<lpage>1339</lpage>
<pub-id pub-id-type="pmid">9319210</pub-id>
</element-citation>
</ref>
<ref id="CR97">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meyer-Bisch</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Measuring noise</article-title>
<source>M S Med Sci</source>
<year>2005</year>
<volume>21</volume>
<issue>5</issue>
<fpage>546</fpage>
<lpage>550</lpage>
</element-citation>
</ref>
<ref id="CR98">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Miller</surname>
<given-names>GF</given-names>
</name>
</person-group>
<source>The mating mind</source>
<year>2000</year>
<publisher-loc>New York</publisher-loc>
<publisher-name>Doubleday</publisher-name>
</element-citation>
</ref>
<ref id="CR99">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Montgomery</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Bodznick</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>An adaptive filter that cancels self-induced noise in the electrosensory and lateral line mechanosensory systems of fish</article-title>
<source>Neurosci Lett</source>
<year>1994</year>
<volume>174</volume>
<issue>2</issue>
<fpage>145</fpage>
<lpage>148</lpage>
<pub-id pub-id-type="doi">10.1016/0304-3940(94)90007-8</pub-id>
<pub-id pub-id-type="pmid">7970170</pub-id>
</element-citation>
</ref>
<ref id="CR100">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Moore</surname>
<given-names>BJC</given-names>
</name>
</person-group>
<source>An Introduction to the psychology of hearing</source>
<year>2003</year>
<edition>5</edition>
<publisher-loc>San Diego, CA</publisher-loc>
<publisher-name>Academic Press</publisher-name>
</element-citation>
</ref>
<ref id="CR101">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Morgan</surname>
<given-names>CL</given-names>
</name>
</person-group>
<article-title>The origin and development of music</article-title>
<source>Nature</source>
<year>1893</year>
<volume>48</volume>
<issue>1293</issue>
<fpage>290</fpage>
<lpage>291</lpage>
<pub-id pub-id-type="doi">10.1038/048290a0</pub-id>
</element-citation>
</ref>
<ref id="CR102">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Murphey</surname>
<given-names>RK</given-names>
</name>
</person-group>
<article-title>Orientation to calling song by female crickets,
<italic>Scapsipedus marginatus</italic>
(Gryllidae)</article-title>
<source>J Exp Biol</source>
<year>1972</year>
<volume>56</volume>
<issue>2</issue>
<fpage>335</fpage>
<lpage>352</lpage>
<pub-id pub-id-type="pmid">5022835</pub-id>
</element-citation>
</ref>
<ref id="CR103">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nagasaka</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Chao</surname>
<given-names>ZC</given-names>
</name>
<name>
<surname>Hasegawa</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Notoya</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Fujii</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Spontaneous synchronization of arm motion between Japanese macaques</article-title>
<source>Sci Rep</source>
<year>2013</year>
<volume>3</volume>
<fpage>1151</fpage>
<pub-id pub-id-type="doi">10.1038/srep01151</pub-id>
<pub-id pub-id-type="pmid">23359601</pub-id>
</element-citation>
</ref>
<ref id="CR104">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nessler</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Gilliland</surname>
<given-names>SJ</given-names>
</name>
</person-group>
<article-title>Interpersonal synchronization during side by side treadmill walking is influenced by leg length differential and altered sensory feedback</article-title>
<source>Hum Mov Sci</source>
<year>2009</year>
<volume>28</volume>
<issue>6</issue>
<fpage>772</fpage>
<lpage>785</lpage>
<pub-id pub-id-type="doi">10.1016/j.humov.2009.04.007</pub-id>
<pub-id pub-id-type="pmid">19796834</pub-id>
</element-citation>
</ref>
<ref id="CR105">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nessler</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Gilliland</surname>
<given-names>SJ</given-names>
</name>
</person-group>
<article-title>Kinematic analysis of side-by-side stepping with intentional and unintentional synchronization</article-title>
<source>Gait Posture</source>
<year>2010</year>
<volume>31</volume>
<issue>4</issue>
<fpage>527</fpage>
<lpage>529</lpage>
<pub-id pub-id-type="doi">10.1016/j.gaitpost.2010.01.013</pub-id>
<pub-id pub-id-type="pmid">20181481</pub-id>
</element-citation>
</ref>
<ref id="CR106">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nessler</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>De Leone</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Gilliland</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Nonlinear time series analysis of knee and ankle kinematics during side by side treadmill walking</article-title>
<source>Chaos</source>
<year>2009</year>
<volume>19</volume>
<issue>2</issue>
<fpage>026104</fpage>
<pub-id pub-id-type="doi">10.1063/1.3125762</pub-id>
<pub-id pub-id-type="pmid">19566264</pub-id>
</element-citation>
</ref>
<ref id="CR107">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nessler</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Gonzales</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Rhoden</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Steinbrick</surname>
<given-names>M</given-names>
</name>
<name>
<surname>De Leone</surname>
<given-names>CJ</given-names>
</name>
</person-group>
<article-title>Stride interval dynamics are altered when two individuals walk side by side</article-title>
<source>Mot Control</source>
<year>2011</year>
<volume>15</volume>
<issue>3</issue>
<fpage>390</fpage>
<lpage>404</lpage>
</element-citation>
</ref>
<ref id="CR108">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nessler</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Kephart</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Cowell</surname>
<given-names>J</given-names>
</name>
<name>
<surname>De Leone</surname>
<given-names>CJ</given-names>
</name>
</person-group>
<article-title>Varying treadmill speed and inclination affects spontaneous synchronization when two individuals walk side by side</article-title>
<source>J Appl Biomech</source>
<year>2011</year>
<volume>27</volume>
<issue>4</issue>
<fpage>322</fpage>
<lpage>329</lpage>
<pub-id pub-id-type="pmid">21896952</pub-id>
</element-citation>
</ref>
<ref id="CR109">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nessler</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>McMillan</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Schoulten</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Shallow</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Stewart</surname>
<given-names>B</given-names>
</name>
<name>
<surname>De Leone</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Side by side treadmill walking with intentionally desynchronized gait</article-title>
<source>Ann Biomed Eng</source>
<year>2012</year>
<pub-id pub-id-type="pmid">23001358</pub-id>
</element-citation>
</ref>
<ref id="CR110">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Norberg</surname>
<given-names>Å</given-names>
</name>
</person-group>
<article-title>The flappet lark
<italic>Mirafra rufocinnamomea</italic>
doubles its wingbeat rate to 24 Hz in wing-clap display flight: a sexually selected feat</article-title>
<source>J Exp Biol</source>
<year>1991</year>
<volume>159</volume>
<fpage>515</fpage>
<lpage>523</lpage>
</element-citation>
</ref>
<ref id="CR111">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Novacheck</surname>
<given-names>TF</given-names>
</name>
</person-group>
<article-title>The biomechanics of running</article-title>
<source>Gait Posture</source>
<year>1998</year>
<volume>7</volume>
<issue>1</issue>
<fpage>77</fpage>
<lpage>95</lpage>
<pub-id pub-id-type="doi">10.1016/S0966-6362(97)00038-6</pub-id>
<pub-id pub-id-type="pmid">10200378</pub-id>
</element-citation>
</ref>
<ref id="CR112">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>O’Neill</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>The gaits of primates: center of mass mechanics in walking, cantering and galloping ring-tailed lemurs,
<italic>Lemur catta</italic>
</article-title>
<source>J Exp Biol</source>
<year>2012</year>
<volume>215</volume>
<fpage>1728</fpage>
<lpage>1739</lpage>
<pub-id pub-id-type="doi">10.1242/jeb.052340</pub-id>
<pub-id pub-id-type="pmid">22539740</pub-id>
</element-citation>
</ref>
<ref id="CR113">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oullier</surname>
<given-names>O</given-names>
</name>
<name>
<surname>de Guzman</surname>
<given-names>GC</given-names>
</name>
<name>
<surname>Jantzen</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Lagarde</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kelso</surname>
<given-names>JA</given-names>
</name>
</person-group>
<article-title>Social coordination dynamics: measuring human bonding</article-title>
<source>Soc Neurosci</source>
<year>2008</year>
<volume>3</volume>
<issue>2</issue>
<fpage>178</fpage>
<lpage>192</lpage>
<pub-id pub-id-type="doi">10.1080/17470910701563392</pub-id>
<pub-id pub-id-type="pmid">18552971</pub-id>
</element-citation>
</ref>
<ref id="CR114">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Panksepp</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bernatzky</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Emotional sounds and the brain: the neuro-affective foundations of musical appreciation</article-title>
<source>Behav Process</source>
<year>2002</year>
<volume>60</volume>
<issue>2</issue>
<fpage>133</fpage>
<lpage>155</lpage>
<pub-id pub-id-type="doi">10.1016/S0376-6357(02)00080-3</pub-id>
</element-citation>
</ref>
<ref id="CR115">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pastore</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Flint</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Gaston</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Solomon</surname>
<given-names>MJ</given-names>
</name>
</person-group>
<article-title>Auditory event perception: the source-perception loop for posture in human gait</article-title>
<source>Percept Psychophys</source>
<year>2008</year>
<volume>70</volume>
<issue>1</issue>
<fpage>13</fpage>
<lpage>29</lpage>
<pub-id pub-id-type="doi">10.3758/PP.70.1.13</pub-id>
<pub-id pub-id-type="pmid">18306957</pub-id>
</element-citation>
</ref>
<ref id="CR116">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Patel</surname>
<given-names>AD</given-names>
</name>
</person-group>
<article-title>Musical rhythm, linguistic rhythm, and human evolution</article-title>
<source>Music Percept</source>
<year>2006</year>
<volume>24</volume>
<issue>1</issue>
<fpage>99</fpage>
<lpage>103</lpage>
<pub-id pub-id-type="doi">10.1525/mp.2006.24.1.99</pub-id>
</element-citation>
</ref>
<ref id="CR117">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Patel</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Iversen</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Bregman</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Schulz</surname>
<given-names>I</given-names>
</name>
</person-group>
<article-title>Experimental evidence for synchronization to a musical beat in a nonhuman animal</article-title>
<source>Curr Biol</source>
<year>2009</year>
<volume>19</volume>
<issue>10</issue>
<fpage>880</fpage>
<pub-id pub-id-type="doi">10.1016/j.cub.2009.05.023</pub-id>
</element-citation>
</ref>
<ref id="CR118">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Payne</surname>
<given-names>RB</given-names>
</name>
</person-group>
<article-title>Wingflap dialect in flapplet lark
<italic>Mirafra rufocinnamomea</italic>
</article-title>
<source>Ibis</source>
<year>1973</year>
<volume>115</volume>
<issue>2</issue>
<fpage>270</fpage>
<lpage>274</lpage>
<pub-id pub-id-type="doi">10.1111/j.1474-919X.1973.tb02644.x</pub-id>
</element-citation>
</ref>
<ref id="CR119">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Phillips-Silver</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Trainor</surname>
<given-names>LJ</given-names>
</name>
</person-group>
<article-title>Feeling the beat: movement influences infant rhythm perception</article-title>
<source>Science</source>
<year>2005</year>
<volume>308</volume>
<issue>5727</issue>
<fpage>1430</fpage>
<pub-id pub-id-type="doi">10.1126/science.1110922</pub-id>
<pub-id pub-id-type="pmid">15933193</pub-id>
</element-citation>
</ref>
<ref id="CR120">
<mixed-citation publication-type="other">Pinker S (1997) The meaning of life. In: How the mind works. Norton, New York, NY, pp 526–538</mixed-citation>
</ref>
<ref id="CR121">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pitcher</surname>
<given-names>TJ</given-names>
</name>
<name>
<surname>Partridge</surname>
<given-names>BL</given-names>
</name>
<name>
<surname>Wardle</surname>
<given-names>CS</given-names>
</name>
</person-group>
<article-title>Blind fish can school</article-title>
<source>Science</source>
<year>1976</year>
<volume>194</volume>
<issue>4268</issue>
<fpage>963</fpage>
<lpage>965</lpage>
<pub-id pub-id-type="doi">10.1126/science.982056</pub-id>
<pub-id pub-id-type="pmid">982056</pub-id>
</element-citation>
</ref>
<ref id="CR122">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Repp</surname>
<given-names>BH</given-names>
</name>
<name>
<surname>Penel</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Rhythmic movement is attracted more strongly to auditory than to visual rhythms</article-title>
<source>Psychol Res</source>
<year>2004</year>
<volume>68</volume>
<issue>4</issue>
<fpage>252</fpage>
<lpage>270</lpage>
<pub-id pub-id-type="doi">10.1007/s00426-003-0143-8</pub-id>
<pub-id pub-id-type="pmid">12955504</pub-id>
</element-citation>
</ref>
<ref id="CR123">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roberts</surname>
<given-names>BL</given-names>
</name>
<name>
<surname>Russell</surname>
<given-names>IJ</given-names>
</name>
</person-group>
<article-title>Activity of lateral-line efferent neurones in stationary and swimming dogfish</article-title>
<source>J Exp Biol</source>
<year>1972</year>
<volume>57</volume>
<issue>2</issue>
<fpage>435</fpage>
<lpage>448</lpage>
<pub-id pub-id-type="pmid">4634495</pub-id>
</element-citation>
</ref>
<ref id="CR124">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Russell</surname>
<given-names>IJ</given-names>
</name>
</person-group>
<article-title>Influence of efferent fibres on a receptor</article-title>
<source>Nature</source>
<year>1968</year>
<volume>219</volume>
<issue>5150</issue>
<fpage>177</fpage>
<lpage>178</lpage>
<pub-id pub-id-type="doi">10.1038/219177a0</pub-id>
<pub-id pub-id-type="pmid">4298197</pub-id>
</element-citation>
</ref>
<ref id="CR125">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Russell</surname>
<given-names>IJ</given-names>
</name>
</person-group>
<article-title>The role of the lateral-line efferent system in
<italic>Xenopus laevis</italic>
</article-title>
<source>J Exp Biol</source>
<year>1971</year>
<volume>54</volume>
<issue>3</issue>
<fpage>621</fpage>
<lpage>641</lpage>
<pub-id pub-id-type="pmid">5090097</pub-id>
</element-citation>
</ref>
<ref id="CR126">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Russell</surname>
<given-names>IJ</given-names>
</name>
</person-group>
<article-title>Central and peripheral inhibition of lateral line input during the startle response in goldfish</article-title>
<source>Brain Res</source>
<year>1974</year>
<volume>80</volume>
<issue>3</issue>
<fpage>517</fpage>
<lpage>522</lpage>
<pub-id pub-id-type="doi">10.1016/0006-8993(74)91036-1</pub-id>
<pub-id pub-id-type="pmid">4423583</pub-id>
</element-citation>
</ref>
<ref id="CR127">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Russo</surname>
<given-names>FA</given-names>
</name>
<name>
<surname>Pichora-Fuller</surname>
<given-names>MK</given-names>
</name>
</person-group>
<article-title>Tune in or tune out: age-related differences in listening to speech in music</article-title>
<source>Ear Hear</source>
<year>2008</year>
<volume>29</volume>
<issue>5</issue>
<fpage>746</fpage>
<lpage>760</lpage>
<pub-id pub-id-type="doi">10.1097/AUD.0b013e31817bdd1f</pub-id>
<pub-id pub-id-type="pmid">18596643</pub-id>
</element-citation>
</ref>
<ref id="CR128">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sato</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Action observation modulates auditory perception of the consequence of others’ actions</article-title>
<source>Conscious Cogn</source>
<year>2008</year>
<volume>17</volume>
<issue>4</issue>
<fpage>1219</fpage>
<lpage>1227</lpage>
<pub-id pub-id-type="doi">10.1016/j.concog.2008.01.003</pub-id>
<pub-id pub-id-type="pmid">18299207</pub-id>
</element-citation>
</ref>
<ref id="CR129">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schachner</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Brady</surname>
<given-names>TF</given-names>
</name>
<name>
<surname>Pepperberg</surname>
<given-names>IM</given-names>
</name>
<name>
<surname>Hauser</surname>
<given-names>MD</given-names>
</name>
</person-group>
<article-title>Spontaneous motor entrainment to music in multiple vocal mimicking species</article-title>
<source>Curr Biol</source>
<year>2009</year>
<volume>19</volume>
<issue>10</issue>
<fpage>831</fpage>
<lpage>836</lpage>
<pub-id pub-id-type="doi">10.1016/j.cub.2009.03.061</pub-id>
<pub-id pub-id-type="pmid">19409786</pub-id>
</element-citation>
</ref>
<ref id="CR130">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schildberger</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Milde</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Horner</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>The function of auditory neurons in cricket phonotaxis. 2. Modulation of auditory responses during locomotion</article-title>
<source>J Comp Physiol [A]</source>
<year>1988</year>
<volume>163</volume>
<issue>5</issue>
<fpage>633</fpage>
<lpage>640</lpage>
<pub-id pub-id-type="doi">10.1007/BF00603847</pub-id>
</element-citation>
</ref>
<ref id="CR131">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schmitt</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Insights into the evolution of human bipedalism from experimental studies of humans and other primates</article-title>
<source>J Exp Biol</source>
<year>2003</year>
<volume>206</volume>
<issue>9</issue>
<fpage>1437</fpage>
<lpage>1448</lpage>
<pub-id pub-id-type="doi">10.1242/jeb.00279</pub-id>
<pub-id pub-id-type="pmid">12654883</pub-id>
</element-citation>
</ref>
<ref id="CR132">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schmitt</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Cartmill</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Griffin</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Hanna</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Lemelin</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Adaptive value of ambling gaits in primates and other mammals</article-title>
<source>J Exp Biol</source>
<year>2006</year>
<volume>209</volume>
<issue>11</issue>
<fpage>2042</fpage>
<lpage>2049</lpage>
<pub-id pub-id-type="doi">10.1242/jeb.02235</pub-id>
<pub-id pub-id-type="pmid">16709907</pub-id>
</element-citation>
</ref>
<ref id="CR133">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shergill</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Bays</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Frith</surname>
<given-names>CD</given-names>
</name>
<name>
<surname>Wolpert</surname>
<given-names>DM</given-names>
</name>
</person-group>
<article-title>Two eyes for an eye: the neuroscience of force escalation</article-title>
<source>Science</source>
<year>2003</year>
<volume>301</volume>
<issue>5630</issue>
<fpage>187</fpage>
<pub-id pub-id-type="doi">10.1126/science.1085327</pub-id>
<pub-id pub-id-type="pmid">12855800</pub-id>
</element-citation>
</ref>
<ref id="CR134">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sperry</surname>
<given-names>RW</given-names>
</name>
</person-group>
<article-title>Neural basis of the spontaneous optokinetic response produced by visual inversion</article-title>
<source>J Comp Physiol Psychol</source>
<year>1950</year>
<volume>43</volume>
<issue>6</issue>
<fpage>482</fpage>
<lpage>489</lpage>
<pub-id pub-id-type="doi">10.1037/h0055479</pub-id>
<pub-id pub-id-type="pmid">14794830</pub-id>
</element-citation>
</ref>
<ref id="CR135">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stevens</surname>
<given-names>NJ</given-names>
</name>
</person-group>
<article-title>Stability, limb coordination and substrate type: the ecorelevance of gait sequence pattern in primates</article-title>
<source>J Exp Zool A Comp Exp Biol</source>
<year>2006</year>
<volume>305</volume>
<issue>11</issue>
<fpage>953</fpage>
<lpage>963</lpage>
<pub-id pub-id-type="pmid">17029277</pub-id>
</element-citation>
</ref>
<ref id="CR136">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Styns</surname>
<given-names>F</given-names>
</name>
<name>
<surname>van Noorden</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Moelants</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Leman</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Walking on music</article-title>
<source>Hum Mov Sci</source>
<year>2007</year>
<volume>26</volume>
<issue>5</issue>
<fpage>769</fpage>
<lpage>785</lpage>
<pub-id pub-id-type="doi">10.1016/j.humov.2007.07.007</pub-id>
<pub-id pub-id-type="pmid">17910985</pub-id>
</element-citation>
</ref>
<ref id="CR137">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sueur</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>A non-Levy random walk in chacma baboons: what does it mean?</article-title>
<source>PLoS ONE</source>
<year>2011</year>
<volume>6</volume>
<issue>1</issue>
<fpage>e16131</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0016131</pub-id>
<pub-id pub-id-type="pmid">21249200</pub-id>
</element-citation>
</ref>
<ref id="CR138">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sutoo</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Akiyama</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Music improves dopaminergic neurotransmission: demonstration based on the effect of music on blood pressure regulation</article-title>
<source>Brain Res</source>
<year>2004</year>
<volume>1016</volume>
<issue>2</issue>
<fpage>255</fpage>
<lpage>262</lpage>
<pub-id pub-id-type="doi">10.1016/j.brainres.2004.05.018</pub-id>
<pub-id pub-id-type="pmid">15246862</pub-id>
</element-citation>
</ref>
<ref id="CR139">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Terrier</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Turner</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Schutz</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>GPS analysis of human locomotion: further evidence for long-range correlations in stride-to-stride fluctuations of gait parameters</article-title>
<source>Hum Mov Sci</source>
<year>2005</year>
<volume>24</volume>
<issue>1</issue>
<fpage>97</fpage>
<lpage>115</lpage>
<pub-id pub-id-type="doi">10.1016/j.humov.2005.03.002</pub-id>
<pub-id pub-id-type="pmid">15896861</pub-id>
</element-citation>
</ref>
<ref id="CR140">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thorpe</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Holder</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Crompton</surname>
<given-names>RH</given-names>
</name>
</person-group>
<article-title>Orangutans employ unique strategies to control branch flexibility</article-title>
<source>PNAS</source>
<year>2009</year>
<volume>106</volume>
<issue>31</issue>
<fpage>12646</fpage>
<lpage>12651</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0811537106</pub-id>
<pub-id pub-id-type="pmid">19651611</pub-id>
</element-citation>
</ref>
<ref id="CR141">
<mixed-citation publication-type="other">Trevarthen C (1999) Musicality and the intrinsic motive pulse: evidence from human psychobiology and infant communication. Musicae Scientiae 3(Suppl 1):155–215 (Special issue)</mixed-citation>
</ref>
<ref id="CR142">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tsakiris</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Haggard</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Awareness of somatic events associated with a voluntary action</article-title>
<source>Exp Brain Res</source>
<year>2003</year>
<volume>149</volume>
<issue>4</issue>
<fpage>439</fpage>
<lpage>446</lpage>
<pub-id pub-id-type="pmid">12677324</pub-id>
</element-citation>
</ref>
<ref id="CR143">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tudor-Locke</surname>
<given-names>CE</given-names>
</name>
<name>
<surname>Myers</surname>
<given-names>AM</given-names>
</name>
</person-group>
<article-title>Methodological considerations for researchers and practitioners using pedometers to measure physical (ambulatory) activity</article-title>
<source>Res Q Exerc Sport</source>
<year>2001</year>
<volume>72</volume>
<issue>1</issue>
<fpage>1</fpage>
<lpage>12</lpage>
<pub-id pub-id-type="doi">10.1080/02701367.2001.10608926</pub-id>
<pub-id pub-id-type="pmid">11253314</pub-id>
</element-citation>
</ref>
<ref id="CR144">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tytell</surname>
<given-names>ED</given-names>
</name>
<name>
<surname>Alexander</surname>
<given-names>JK</given-names>
</name>
</person-group>
<article-title>Bluegill
<italic>Lepomis macrochirus</italic>
synchronize pectoral fin motion and opercular pumping</article-title>
<source>J Fish Biol</source>
<year>2007</year>
<volume>70</volume>
<issue>4</issue>
<fpage>1268</fpage>
<lpage>1279</lpage>
<pub-id pub-id-type="doi">10.1111/j.1095-8649.2007.01416.x</pub-id>
</element-citation>
</ref>
<ref id="CR145">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van Ulzen</surname>
<given-names>NR</given-names>
</name>
<name>
<surname>Lamoth</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Daffertshofer</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Semin</surname>
<given-names>GR</given-names>
</name>
<name>
<surname>Beek</surname>
<given-names>PJ</given-names>
</name>
</person-group>
<article-title>Characteristics of instructed and uninstructed interpersonal coordination while walking side-by-side</article-title>
<source>Neurosci Lett</source>
<year>2008</year>
<volume>432</volume>
<issue>2</issue>
<fpage>88</fpage>
<lpage>93</lpage>
<pub-id pub-id-type="doi">10.1016/j.neulet.2007.11.070</pub-id>
<pub-id pub-id-type="pmid">18242846</pub-id>
</element-citation>
</ref>
<ref id="CR146">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vet</surname>
<given-names>LEM</given-names>
</name>
<name>
<surname>Bakker</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>A comparative functional approach to the host detection behaviour of parasitic wasps. 2. A quantitative study on eight eucoilid species</article-title>
<source>Oikos</source>
<year>1985</year>
<volume>44</volume>
<issue>3</issue>
<fpage>487</fpage>
<lpage>498</lpage>
<pub-id pub-id-type="doi">10.2307/3565790</pub-id>
</element-citation>
</ref>
<ref id="CR147">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Visell</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Fontana</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Giordano</surname>
<given-names>BL</given-names>
</name>
<name>
<surname>Nordahl</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Serafin</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Bresin</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Sound design and perception in walking interactions</article-title>
<source>Internat J Hum–Comput Stud</source>
<year>2009</year>
<volume>67</volume>
<issue>11</issue>
<fpage>947</fpage>
<lpage>959</lpage>
<pub-id pub-id-type="doi">10.1016/j.ijhcs.2009.07.007</pub-id>
</element-citation>
</ref>
<ref id="CR148">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>von Holst</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Mittelstaedt</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Das Reafferenzprinzip (Wechselwirkungen zwischen Zentralnervensystem und Peripheri.)</article-title>
<source>Naturwissenschaften</source>
<year>1950</year>
<volume>37</volume>
<fpage>464</fpage>
<lpage>476</lpage>
<pub-id pub-id-type="doi">10.1007/BF00622503</pub-id>
</element-citation>
</ref>
<ref id="CR149">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weber</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Thorson</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Huber</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Auditory behavior of the cricket. I. Dynamics of compensated walking and discrimination paradigms on the Kramer treadmill</article-title>
<source>J Comp Physiol</source>
<year>1981</year>
<volume>141</volume>
<issue>2</issue>
<fpage>215</fpage>
<lpage>232</lpage>
<pub-id pub-id-type="doi">10.1007/BF01342668</pub-id>
</element-citation>
</ref>
<ref id="CR150">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wilke</surname>
<given-names>JT</given-names>
</name>
<name>
<surname>Lansing</surname>
<given-names>RW</given-names>
</name>
<name>
<surname>Rogers</surname>
<given-names>CA</given-names>
</name>
</person-group>
<article-title>Entrainment of respiration to repetitive finger tapping</article-title>
<source>Physiol Psychol</source>
<year>1975</year>
<volume>3</volume>
<issue>4</issue>
<fpage>345</fpage>
<lpage>349</lpage>
<pub-id pub-id-type="doi">10.3758/BF03326838</pub-id>
</element-citation>
</ref>
<ref id="CR151">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Wilson</surname>
<given-names>EO</given-names>
</name>
</person-group>
<source>The social conquest of earth</source>
<year>2011</year>
<publisher-loc>New York</publisher-loc>
<publisher-name>Liveright</publisher-name>
</element-citation>
</ref>
<ref id="CR152">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zarco</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Merchant</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Prado</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Mendez</surname>
<given-names>JC</given-names>
</name>
</person-group>
<article-title>Subsecond timing in primates: comparison of interval production between human subjects and rhesus monkeys</article-title>
<source>J Neurophysiol</source>
<year>2009</year>
<volume>102</volume>
<issue>6</issue>
<fpage>3191</fpage>
<lpage>3202</lpage>
<pub-id pub-id-type="doi">10.1152/jn.00066.2009</pub-id>
<pub-id pub-id-type="pmid">19812296</pub-id>
</element-citation>
</ref>
<ref id="CR153">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zatorre</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Penhune</surname>
<given-names>VB</given-names>
</name>
</person-group>
<article-title>When the brain plays music: auditory-motor interactions in music perception and production</article-title>
<source>Nat Rev Neurosci</source>
<year>2007</year>
<volume>8</volume>
<issue>7</issue>
<fpage>547</fpage>
<lpage>558</lpage>
<pub-id pub-id-type="doi">10.1038/nrn2152</pub-id>
<pub-id pub-id-type="pmid">17585307</pub-id>
</element-citation>
</ref>
<ref id="CR154">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zivotofsky</surname>
<given-names>AZ</given-names>
</name>
<name>
<surname>Hausdorff</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>The sensory feedback mechanisms enabling couples to walk synchronously: an initial investigation</article-title>
<source>J Neuroeng Rehabil</source>
<year>2007</year>
<volume>4</volume>
<fpage>28</fpage>
<pub-id pub-id-type="doi">10.1186/1743-0003-4-28</pub-id>
<pub-id pub-id-type="pmid">17686150</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
<region>
<li>Svealand</li>
</region>
<settlement>
<li>Stockholm</li>
</settlement>
</list>
<tree>
<country name="Suède">
<noRegion>
<name sortKey="Larsson, Matz" sort="Larsson, Matz" uniqKey="Larsson M" first="Matz" last="Larsson">Matz Larsson</name>
</noRegion>
<name sortKey="Larsson, Matz" sort="Larsson, Matz" uniqKey="Larsson M" first="Matz" last="Larsson">Matz Larsson</name>
<name sortKey="Larsson, Matz" sort="Larsson, Matz" uniqKey="Larsson M" first="Matz" last="Larsson">Matz Larsson</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002905 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 002905 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     PMC:3889703
   |texte=   Self-generated sounds of locomotion and ventilation and the evolution of human rhythmic abilities
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:23990063" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024