Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

High transconductance organic electrochemical transistors

Identifieur interne : 002802 ( Ncbi/Merge ); précédent : 002801; suivant : 002803

High transconductance organic electrochemical transistors

Auteurs : Dion Khodagholy [France] ; Jonathan Rivnay [France] ; Michele Sessolo [France] ; Moshe Gurfinkel [France] ; Pierre Leleux [France] ; Leslie H. Jimison [France] ; Eleni Stavrinidou [France] ; Thierry Herve [France] ; Sébastien Sanaur [France] ; R Isín M. Owens [France] ; George G. Malliaras [France]

Source :

RBID : PMC:3717497

Abstract

The development of transistors with high gain is essential for applications ranging from switching elements and drivers to transducers for chemical and biological sensing. Organic transistors have become well-established based on their distinct advantages, including ease of fabrication, synthetic freedom for chemical functionalization, and the ability to take on unique form factors. These devices, however, are largely viewed as belonging to the low-end of the performance spectrum. Here we present organic electrochemical transistors with a transconductance in the mS range, outperforming transistors from both traditional and emerging semiconductors. The transconductance of these devices remains fairly constant from DC up to a frequency of the order of 1 kHz, a value determined by the process of ion transport between the electrolyte and the channel. These devices, which continue to work even after being crumpled, are predicted to be highly relevant as transducers in biosensing applications.


Url:
DOI: 10.1038/ncomms3133
PubMed: 23851620
PubMed Central: 3717497

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:3717497

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">High transconductance organic electrochemical transistors</title>
<author>
<name sortKey="Khodagholy, Dion" sort="Khodagholy, Dion" uniqKey="Khodagholy D" first="Dion" last="Khodagholy">Dion Khodagholy</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Department of Bioelectronics, Ecole Nationale Superieure des Mines</institution>
, CMP-EMSE, MOC, 13541 Gardanne,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
<affiliation>
<nlm:aff id="a4">These authors contributed equally to this work</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rivnay, Jonathan" sort="Rivnay, Jonathan" uniqKey="Rivnay J" first="Jonathan" last="Rivnay">Jonathan Rivnay</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Department of Bioelectronics, Ecole Nationale Superieure des Mines</institution>
, CMP-EMSE, MOC, 13541 Gardanne,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
<affiliation>
<nlm:aff id="a4">These authors contributed equally to this work</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sessolo, Michele" sort="Sessolo, Michele" uniqKey="Sessolo M" first="Michele" last="Sessolo">Michele Sessolo</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Department of Bioelectronics, Ecole Nationale Superieure des Mines</institution>
, CMP-EMSE, MOC, 13541 Gardanne,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
<affiliation>
<nlm:aff id="a4">These authors contributed equally to this work</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gurfinkel, Moshe" sort="Gurfinkel, Moshe" uniqKey="Gurfinkel M" first="Moshe" last="Gurfinkel">Moshe Gurfinkel</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Department of Bioelectronics, Ecole Nationale Superieure des Mines</institution>
, CMP-EMSE, MOC, 13541 Gardanne,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Leleux, Pierre" sort="Leleux, Pierre" uniqKey="Leleux P" first="Pierre" last="Leleux">Pierre Leleux</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Department of Bioelectronics, Ecole Nationale Superieure des Mines</institution>
, CMP-EMSE, MOC, 13541 Gardanne,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="a2">
<institution>Microvitae Technologies, Pole d’Activite Y. Morandat</institution>
, 13120 Gardanne,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="a3">
<institution>INSERM UMR 1106, Institut de Neurosciences des Systemes, Faculte de Medecine La Timone</institution>
, 13005 Marseille,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Jimison, Leslie H" sort="Jimison, Leslie H" uniqKey="Jimison L" first="Leslie H." last="Jimison">Leslie H. Jimison</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Department of Bioelectronics, Ecole Nationale Superieure des Mines</institution>
, CMP-EMSE, MOC, 13541 Gardanne,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Stavrinidou, Eleni" sort="Stavrinidou, Eleni" uniqKey="Stavrinidou E" first="Eleni" last="Stavrinidou">Eleni Stavrinidou</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Department of Bioelectronics, Ecole Nationale Superieure des Mines</institution>
, CMP-EMSE, MOC, 13541 Gardanne,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Herve, Thierry" sort="Herve, Thierry" uniqKey="Herve T" first="Thierry" last="Herve">Thierry Herve</name>
<affiliation wicri:level="1">
<nlm:aff id="a2">
<institution>Microvitae Technologies, Pole d’Activite Y. Morandat</institution>
, 13120 Gardanne,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sanaur, Sebastien" sort="Sanaur, Sebastien" uniqKey="Sanaur S" first="Sébastien" last="Sanaur">Sébastien Sanaur</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Department of Bioelectronics, Ecole Nationale Superieure des Mines</institution>
, CMP-EMSE, MOC, 13541 Gardanne,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Owens, R Isin M" sort="Owens, R Isin M" uniqKey="Owens R" first="R Isín M." last="Owens">R Isín M. Owens</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Department of Bioelectronics, Ecole Nationale Superieure des Mines</institution>
, CMP-EMSE, MOC, 13541 Gardanne,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Malliaras, George G" sort="Malliaras, George G" uniqKey="Malliaras G" first="George G." last="Malliaras">George G. Malliaras</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Department of Bioelectronics, Ecole Nationale Superieure des Mines</institution>
, CMP-EMSE, MOC, 13541 Gardanne,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">23851620</idno>
<idno type="pmc">3717497</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3717497</idno>
<idno type="RBID">PMC:3717497</idno>
<idno type="doi">10.1038/ncomms3133</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">000022</idno>
<idno type="wicri:Area/Pmc/Curation">000022</idno>
<idno type="wicri:Area/Pmc/Checkpoint">001222</idno>
<idno type="wicri:Area/Ncbi/Merge">002802</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">High transconductance organic electrochemical transistors</title>
<author>
<name sortKey="Khodagholy, Dion" sort="Khodagholy, Dion" uniqKey="Khodagholy D" first="Dion" last="Khodagholy">Dion Khodagholy</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Department of Bioelectronics, Ecole Nationale Superieure des Mines</institution>
, CMP-EMSE, MOC, 13541 Gardanne,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
<affiliation>
<nlm:aff id="a4">These authors contributed equally to this work</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rivnay, Jonathan" sort="Rivnay, Jonathan" uniqKey="Rivnay J" first="Jonathan" last="Rivnay">Jonathan Rivnay</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Department of Bioelectronics, Ecole Nationale Superieure des Mines</institution>
, CMP-EMSE, MOC, 13541 Gardanne,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
<affiliation>
<nlm:aff id="a4">These authors contributed equally to this work</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sessolo, Michele" sort="Sessolo, Michele" uniqKey="Sessolo M" first="Michele" last="Sessolo">Michele Sessolo</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Department of Bioelectronics, Ecole Nationale Superieure des Mines</institution>
, CMP-EMSE, MOC, 13541 Gardanne,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
<affiliation>
<nlm:aff id="a4">These authors contributed equally to this work</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gurfinkel, Moshe" sort="Gurfinkel, Moshe" uniqKey="Gurfinkel M" first="Moshe" last="Gurfinkel">Moshe Gurfinkel</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Department of Bioelectronics, Ecole Nationale Superieure des Mines</institution>
, CMP-EMSE, MOC, 13541 Gardanne,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Leleux, Pierre" sort="Leleux, Pierre" uniqKey="Leleux P" first="Pierre" last="Leleux">Pierre Leleux</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Department of Bioelectronics, Ecole Nationale Superieure des Mines</institution>
, CMP-EMSE, MOC, 13541 Gardanne,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="a2">
<institution>Microvitae Technologies, Pole d’Activite Y. Morandat</institution>
, 13120 Gardanne,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="a3">
<institution>INSERM UMR 1106, Institut de Neurosciences des Systemes, Faculte de Medecine La Timone</institution>
, 13005 Marseille,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Jimison, Leslie H" sort="Jimison, Leslie H" uniqKey="Jimison L" first="Leslie H." last="Jimison">Leslie H. Jimison</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Department of Bioelectronics, Ecole Nationale Superieure des Mines</institution>
, CMP-EMSE, MOC, 13541 Gardanne,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Stavrinidou, Eleni" sort="Stavrinidou, Eleni" uniqKey="Stavrinidou E" first="Eleni" last="Stavrinidou">Eleni Stavrinidou</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Department of Bioelectronics, Ecole Nationale Superieure des Mines</institution>
, CMP-EMSE, MOC, 13541 Gardanne,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Herve, Thierry" sort="Herve, Thierry" uniqKey="Herve T" first="Thierry" last="Herve">Thierry Herve</name>
<affiliation wicri:level="1">
<nlm:aff id="a2">
<institution>Microvitae Technologies, Pole d’Activite Y. Morandat</institution>
, 13120 Gardanne,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sanaur, Sebastien" sort="Sanaur, Sebastien" uniqKey="Sanaur S" first="Sébastien" last="Sanaur">Sébastien Sanaur</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Department of Bioelectronics, Ecole Nationale Superieure des Mines</institution>
, CMP-EMSE, MOC, 13541 Gardanne,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Owens, R Isin M" sort="Owens, R Isin M" uniqKey="Owens R" first="R Isín M." last="Owens">R Isín M. Owens</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Department of Bioelectronics, Ecole Nationale Superieure des Mines</institution>
, CMP-EMSE, MOC, 13541 Gardanne,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Malliaras, George G" sort="Malliaras, George G" uniqKey="Malliaras G" first="George G." last="Malliaras">George G. Malliaras</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Department of Bioelectronics, Ecole Nationale Superieure des Mines</institution>
, CMP-EMSE, MOC, 13541 Gardanne,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nature Communications</title>
<idno type="eISSN">2041-1723</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The development of transistors with high gain is essential for applications ranging from switching elements and drivers to transducers for chemical and biological sensing. Organic transistors have become well-established based on their distinct advantages, including ease of fabrication, synthetic freedom for chemical functionalization, and the ability to take on unique form factors. These devices, however, are largely viewed as belonging to the low-end of the performance spectrum. Here we present organic electrochemical transistors with a transconductance in the mS range, outperforming transistors from both traditional and emerging semiconductors. The transconductance of these devices remains fairly constant from DC up to a frequency of the order of 1 kHz, a value determined by the process of ion transport between the electrolyte and the channel. These devices, which continue to work even after being crumpled, are predicted to be highly relevant as transducers in biosensing applications.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Arias, A C" uniqKey="Arias A">A. C. Arias</name>
</author>
<author>
<name sortKey="Mackenzie, J D" uniqKey="Mackenzie J">J. D. MacKenzie</name>
</author>
<author>
<name sortKey="Mcculloch, I" uniqKey="Mcculloch I">I. McCulloch</name>
</author>
<author>
<name sortKey="Rivnay, J" uniqKey="Rivnay J">J. Rivnay</name>
</author>
<author>
<name sortKey="Salleo, A" uniqKey="Salleo A">A. Salleo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="White, H S" uniqKey="White H">H. S. White</name>
</author>
<author>
<name sortKey="Kittlesen, G P" uniqKey="Kittlesen G">G. P. Kittlesen</name>
</author>
<author>
<name sortKey="Wrighton, M S" uniqKey="Wrighton M">M. S. Wrighton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Owens, R M" uniqKey="Owens R">R. M. Owens</name>
</author>
<author>
<name sortKey="Malliaras, G G" uniqKey="Malliaras G">G. G. Malliaras</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Berggren, M" uniqKey="Berggren M">M. Berggren</name>
</author>
<author>
<name sortKey="Richter Dahlfors, A" uniqKey="Richter Dahlfors A">A. Richter-Dahlfors</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lin, P" uniqKey="Lin P">P. Lin</name>
</author>
<author>
<name sortKey="Yan, F" uniqKey="Yan F">F. Yan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bolin, M H" uniqKey="Bolin M">M. H. Bolin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lin, P" uniqKey="Lin P">P. Lin</name>
</author>
<author>
<name sortKey="Yan, F" uniqKey="Yan F">F. Yan</name>
</author>
<author>
<name sortKey="Yu, J J" uniqKey="Yu J">J. J. Yu</name>
</author>
<author>
<name sortKey="Chan, H L W" uniqKey="Chan H">H. L. W. Chan</name>
</author>
<author>
<name sortKey="Yang, M" uniqKey="Yang M">M. Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jimison, L H" uniqKey="Jimison L">L. H. Jimison</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Basiric, L" uniqKey="Basiric L">L. Basiricò</name>
</author>
<author>
<name sortKey="Cosseddu, P" uniqKey="Cosseddu P">P. Cosseddu</name>
</author>
<author>
<name sortKey="Scida, A" uniqKey="Scida A">A. Scidà</name>
</author>
<author>
<name sortKey="Fraboni, B" uniqKey="Fraboni B">B. Fraboni</name>
</author>
<author>
<name sortKey="Malliaras, G G" uniqKey="Malliaras G">G. G. Malliaras</name>
</author>
<author>
<name sortKey="Bonfiglio, A" uniqKey="Bonfiglio A">A. Bonfiglio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mattana, G" uniqKey="Mattana G">G. Mattana</name>
</author>
<author>
<name sortKey="Cosseddu, P" uniqKey="Cosseddu P">P. Cosseddu</name>
</author>
<author>
<name sortKey="Fraboni, B" uniqKey="Fraboni B">B. Fraboni</name>
</author>
<author>
<name sortKey="Malliaras, G G" uniqKey="Malliaras G">G. G. Malliaras</name>
</author>
<author>
<name sortKey="Hinestroza, J P" uniqKey="Hinestroza J">J. P. Hinestroza</name>
</author>
<author>
<name sortKey="Bonfiglio, A" uniqKey="Bonfiglio A">A. Bonfiglio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hamedi, M" uniqKey="Hamedi M">M. Hamedi</name>
</author>
<author>
<name sortKey="Herlogsson, L" uniqKey="Herlogsson L">L. Herlogsson</name>
</author>
<author>
<name sortKey="Crispin, X" uniqKey="Crispin X">X. Crispin</name>
</author>
<author>
<name sortKey="Marcilla, R" uniqKey="Marcilla R">R. Marcilla</name>
</author>
<author>
<name sortKey="Berggren, M" uniqKey="Berggren M">M. Berggren</name>
</author>
<author>
<name sortKey="Inganas, O" uniqKey="Inganas O">O. Inganas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, S H" uniqKey="Kim S">S. H. Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Berggren, M" uniqKey="Berggren M">M. Berggren</name>
</author>
<author>
<name sortKey="Nilsson, D" uniqKey="Nilsson D">D. Nilsson</name>
</author>
<author>
<name sortKey="Robinson, N D" uniqKey="Robinson N">N. D. Robinson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zirkl, M" uniqKey="Zirkl M">M. Zirkl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Braga, D" uniqKey="Braga D">D. Braga</name>
</author>
<author>
<name sortKey="Erickson, N C" uniqKey="Erickson N">N. C. Erickson</name>
</author>
<author>
<name sortKey="Renn, M J" uniqKey="Renn M">M. J. Renn</name>
</author>
<author>
<name sortKey="Holmes, R J" uniqKey="Holmes R">R. J. Holmes</name>
</author>
<author>
<name sortKey="Frisbie, C D" uniqKey="Frisbie C">C. D. Frisbie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bernards, D A" uniqKey="Bernards D">D. A. Bernards</name>
</author>
<author>
<name sortKey="Malliaras, G G" uniqKey="Malliaras G">G. G. Malliaras</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hess, L H" uniqKey="Hess L">L. H. Hess</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ohno, Y" uniqKey="Ohno Y">Y. Ohno</name>
</author>
<author>
<name sortKey="Maehashi, K" uniqKey="Maehashi K">K. Maehashi</name>
</author>
<author>
<name sortKey="Yamashiro, Y" uniqKey="Yamashiro Y">Y. Yamashiro</name>
</author>
<author>
<name sortKey="Matsumoto, K" uniqKey="Matsumoto K">K. Matsumoto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dankerl, M" uniqKey="Dankerl M">M. Dankerl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Felderer, F" uniqKey="Felderer F">F. Felderer</name>
</author>
<author>
<name sortKey="Fromherz, P" uniqKey="Fromherz P">P. Fromherz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, B R" uniqKey="Li B">B.-R. Li</name>
</author>
<author>
<name sortKey="Chen, C W" uniqKey="Chen C">C.-W. Chen</name>
</author>
<author>
<name sortKey="Yang, W L" uniqKey="Yang W">W.-L. Yang</name>
</author>
<author>
<name sortKey="Lin, T Y" uniqKey="Lin T">T.-Y. Lin</name>
</author>
<author>
<name sortKey="Pan, C Y" uniqKey="Pan C">C.-Y. Pan</name>
</author>
<author>
<name sortKey="Chen, Y T" uniqKey="Chen Y">Y.-T. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yuan, H" uniqKey="Yuan H">H. Yuan</name>
</author>
<author>
<name sortKey="Shimotani, H" uniqKey="Shimotani H">H. Shimotani</name>
</author>
<author>
<name sortKey="Tsukazaki, A" uniqKey="Tsukazaki A">A. Tsukazaki</name>
</author>
<author>
<name sortKey="Ohtomo, A" uniqKey="Ohtomo A">A. Ohtomo</name>
</author>
<author>
<name sortKey="Kawasaki, M" uniqKey="Kawasaki M">M. Kawasaki</name>
</author>
<author>
<name sortKey="Iwasa, Y" uniqKey="Iwasa Y">Y. Iwasa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nasr, B" uniqKey="Nasr B">B. Nasr</name>
</author>
<author>
<name sortKey="Wang, D" uniqKey="Wang D">D. Wang</name>
</author>
<author>
<name sortKey="Kruk, R" uniqKey="Kruk R">R. Kruk</name>
</author>
<author>
<name sortKey="Rosner, H" uniqKey="Rosner H">H. Rösner</name>
</author>
<author>
<name sortKey="Hahn, H" uniqKey="Hahn H">H. Hahn</name>
</author>
<author>
<name sortKey="Dasgupta, S" uniqKey="Dasgupta S">S. Dasgupta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cho, J H" uniqKey="Cho J">J. H. Cho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sasa, S" uniqKey="Sasa S">S. Sasa</name>
</author>
<author>
<name sortKey="Ozaki, M" uniqKey="Ozaki M">M. Ozaki</name>
</author>
<author>
<name sortKey="Koike, K" uniqKey="Koike K">K. Koike</name>
</author>
<author>
<name sortKey="Yano, M" uniqKey="Yano M">M. Yano</name>
</author>
<author>
<name sortKey="Inoue, M" uniqKey="Inoue M">M. Inoue</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Siddiqui, J" uniqKey="Siddiqui J">J. Siddiqui</name>
</author>
<author>
<name sortKey="Cagin, E" uniqKey="Cagin E">E. Cagin</name>
</author>
<author>
<name sortKey="Chen, D" uniqKey="Chen D">D. Chen</name>
</author>
<author>
<name sortKey="Phillips, J D" uniqKey="Phillips J">J. D. Phillips</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, H" uniqKey="Xu H">H. Xu</name>
</author>
<author>
<name sortKey="Zhang, Z" uniqKey="Zhang Z">Z. Zhang</name>
</author>
<author>
<name sortKey="Xu, H" uniqKey="Xu H">H. Xu</name>
</author>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z. Wang</name>
</author>
<author>
<name sortKey="Wang, S" uniqKey="Wang S">S. Wang</name>
</author>
<author>
<name sortKey="Peng, L M" uniqKey="Peng L">L.-M. Peng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moon, J" uniqKey="Moon J">J. Moon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meric, I" uniqKey="Meric I">I. Meric</name>
</author>
<author>
<name sortKey="Han, M Y" uniqKey="Han M">M. Y. Han</name>
</author>
<author>
<name sortKey="Young, A F" uniqKey="Young A">A. F. Young</name>
</author>
<author>
<name sortKey="Ozyilmaz, B" uniqKey="Ozyilmaz B">B. Ozyilmaz</name>
</author>
<author>
<name sortKey="Kim, P" uniqKey="Kim P">P. Kim</name>
</author>
<author>
<name sortKey="Shepard, K L" uniqKey="Shepard K">K. L. Shepard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Do, Q T" uniqKey="Do Q">Q. T. Do</name>
</author>
<author>
<name sortKey="Blekker, K" uniqKey="Blekker K">K. Blekker</name>
</author>
<author>
<name sortKey="Regolin, I" uniqKey="Regolin I">I. Regolin</name>
</author>
<author>
<name sortKey="Prost, W" uniqKey="Prost W">W. Prost</name>
</author>
<author>
<name sortKey="Tegude, F J" uniqKey="Tegude F">F. J. Tegude</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tomioka, K" uniqKey="Tomioka K">K. Tomioka</name>
</author>
<author>
<name sortKey="Yoshimura, M" uniqKey="Yoshimura M">M. Yoshimura</name>
</author>
<author>
<name sortKey="Fukui, T" uniqKey="Fukui T">T. Fukui</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nidhi Dasgupta, S" uniqKey="Nidhi Dasgupta S">S. Nidhi Dasgupta</name>
</author>
<author>
<name sortKey="Jing, L" uniqKey="Jing L">L. Jing</name>
</author>
<author>
<name sortKey="Speck, J S" uniqKey="Speck J">J. S. Speck</name>
</author>
<author>
<name sortKey="Mishra, U K" uniqKey="Mishra U">U. K. Mishra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bouzid Driad, S" uniqKey="Bouzid Driad S">S. Bouzid-Driad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hill, R J W" uniqKey="Hill R">R. J. W. Hill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cao, Q" uniqKey="Cao Q">Q. Cao</name>
</author>
<author>
<name sortKey="Han, S J" uniqKey="Han S">S.-J. Han</name>
</author>
<author>
<name sortKey="Tulevski, G S" uniqKey="Tulevski G">G. S. Tulevski</name>
</author>
<author>
<name sortKey="Zhu, Y" uniqKey="Zhu Y">Y. Zhu</name>
</author>
<author>
<name sortKey="Lu, D D" uniqKey="Lu D">D. D. Lu</name>
</author>
<author>
<name sortKey="Haensch, W" uniqKey="Haensch W">W. Haensch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cao, Q" uniqKey="Cao Q">Q. Cao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zschieschang, U" uniqKey="Zschieschang U">U. Zschieschang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Klauk, H" uniqKey="Klauk H">H. Klauk</name>
</author>
<author>
<name sortKey="Zschieschang, U" uniqKey="Zschieschang U">U. Zschieschang</name>
</author>
<author>
<name sortKey="Halik, M" uniqKey="Halik M">M. Halik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yokota, T" uniqKey="Yokota T">T. Yokota</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cui, Y" uniqKey="Cui Y">Y. Cui</name>
</author>
<author>
<name sortKey="Zhong, Z" uniqKey="Zhong Z">Z. Zhong</name>
</author>
<author>
<name sortKey="Wang, D" uniqKey="Wang D">D. Wang</name>
</author>
<author>
<name sortKey="Wang, W U" uniqKey="Wang W">W. U. Wang</name>
</author>
<author>
<name sortKey="Lieber, C M" uniqKey="Lieber C">C. M. Lieber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Elschner, A" uniqKey="Elschner A">A. Elschner</name>
</author>
<author>
<name sortKey="Kirchmeyer, S" uniqKey="Kirchmeyer S">S. Kirchmeyer</name>
</author>
<author>
<name sortKey="Lovenich, W" uniqKey="Lovenich W">W. Lövenich</name>
</author>
<author>
<name sortKey="Merker, U" uniqKey="Merker U">U. Merker</name>
</author>
<author>
<name sortKey="Reuter, K" uniqKey="Reuter K">K. Reuter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abruna, H D" uniqKey="Abruna H">H. D. Abruna</name>
</author>
<author>
<name sortKey="Kiya, Y" uniqKey="Kiya Y">Y. Kiya</name>
</author>
<author>
<name sortKey="Henderson, J C" uniqKey="Henderson J">J. C. Henderson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stavrinidou, E" uniqKey="Stavrinidou E">E. Stavrinidou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khodagholy, D" uniqKey="Khodagholy D">D. Khodagholy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sessolo, M" uniqKey="Sessolo M">M. Sessolo</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Nat Commun</journal-id>
<journal-id journal-id-type="iso-abbrev">Nat Commun</journal-id>
<journal-title-group>
<journal-title>Nature Communications</journal-title>
</journal-title-group>
<issn pub-type="epub">2041-1723</issn>
<publisher>
<publisher-name>Nature Pub. Group</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">23851620</article-id>
<article-id pub-id-type="pmc">3717497</article-id>
<article-id pub-id-type="pii">ncomms3133</article-id>
<article-id pub-id-type="doi">10.1038/ncomms3133</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>High transconductance organic electrochemical transistors</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Khodagholy</surname>
<given-names>Dion</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
<xref ref-type="aff" rid="a4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Rivnay</surname>
<given-names>Jonathan</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
<xref ref-type="aff" rid="a4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sessolo</surname>
<given-names>Michele</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
<xref ref-type="aff" rid="a4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Gurfinkel</surname>
<given-names>Moshe</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Leleux</surname>
<given-names>Pierre</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
<xref ref-type="aff" rid="a2">2</xref>
<xref ref-type="aff" rid="a3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Jimison</surname>
<given-names>Leslie H.</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Stavrinidou</surname>
<given-names>Eleni</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Herve</surname>
<given-names>Thierry</given-names>
</name>
<xref ref-type="aff" rid="a2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sanaur</surname>
<given-names>Sébastien</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Owens</surname>
<given-names>Róisín M.</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Malliaras</surname>
<given-names>George G.</given-names>
</name>
<xref ref-type="corresp" rid="c1">a</xref>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<aff id="a1">
<label>1</label>
<institution>Department of Bioelectronics, Ecole Nationale Superieure des Mines</institution>
, CMP-EMSE, MOC, 13541 Gardanne,
<country>France</country>
</aff>
<aff id="a2">
<label>2</label>
<institution>Microvitae Technologies, Pole d’Activite Y. Morandat</institution>
, 13120 Gardanne,
<country>France</country>
</aff>
<aff id="a3">
<label>3</label>
<institution>INSERM UMR 1106, Institut de Neurosciences des Systemes, Faculte de Medecine La Timone</institution>
, 13005 Marseille,
<country>France</country>
</aff>
<aff id="a4">
<label>4</label>
These authors contributed equally to this work</aff>
</contrib-group>
<author-notes>
<corresp id="c1">
<label>a</label>
<email>malliaras@emse.fr</email>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>12</day>
<month>07</month>
<year>2013</year>
</pub-date>
<volume>4</volume>
<elocation-id>2133</elocation-id>
<history>
<date date-type="received">
<day>06</day>
<month>02</month>
<year>2013</year>
</date>
<date date-type="accepted">
<day>08</day>
<month>06</month>
<year>2013</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2013, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</copyright-statement>
<copyright-year>2013</copyright-year>
<copyright-holder>Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by-nc-nd/3.0/">
<pmc-comment>author-paid</pmc-comment>
<license-p>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/</license-p>
</license>
</permissions>
<abstract>
<p>The development of transistors with high gain is essential for applications ranging from switching elements and drivers to transducers for chemical and biological sensing. Organic transistors have become well-established based on their distinct advantages, including ease of fabrication, synthetic freedom for chemical functionalization, and the ability to take on unique form factors. These devices, however, are largely viewed as belonging to the low-end of the performance spectrum. Here we present organic electrochemical transistors with a transconductance in the mS range, outperforming transistors from both traditional and emerging semiconductors. The transconductance of these devices remains fairly constant from DC up to a frequency of the order of 1 kHz, a value determined by the process of ion transport between the electrolyte and the channel. These devices, which continue to work even after being crumpled, are predicted to be highly relevant as transducers in biosensing applications.</p>
</abstract>
<abstract abstract-type="web-summary">
<p>
<inline-graphic id="i1" xlink:href="ncomms3133-i1.jpg"></inline-graphic>
Although organic transistors have many advantages, they are not typically known for their high performance. Khodagholy
<italic>et al</italic>
. report the fabrication of organic electrochemical transistors that combine high transconductance with mechanical flexibility, and are attractive for biosensor applications.</p>
</abstract>
</article-meta>
</front>
<body>
<p>High gain is a requirement for transistors in a broad range of applications. In sensors, for example, high gain is associated with high sensitivity, as a small signal in the transistor input yields a large response in the output. There is a tremendous effort to make these devices from soft materials, where low-cost or high-throughput fabrication is desired or where mechanical compatibility with soft tissue is required. The advantageous properties of organic electronic materials, including versatility in processing and synthetic tunability, have allowed for a variety of applications where organic electronic devices are poised to disruptively overtake existing technologies
<xref ref-type="bibr" rid="b1">1</xref>
. A particular organic transistor configuration that is currently attracting a great deal of attention is the organic electrochemical transistor (OECT). Originally developed by White
<italic>et al</italic>
.
<xref ref-type="bibr" rid="b2">2</xref>
, OECTs use an electrolyte as an integral part of their device structure. These devices hold considerable promise for technologies such as medical diagnostics and bioelectronic implants due to improved biological and mechanical compatibility with tissue compared with traditional ‘hard’ electronic materials
<xref ref-type="bibr" rid="b3">3</xref>
<xref ref-type="bibr" rid="b4">4</xref>
. OECTs have recently been employed in chemical and biological sensing
<xref ref-type="bibr" rid="b5">5</xref>
, and have also been interfaced with cells to control cell adhesion
<xref ref-type="bibr" rid="b6">6</xref>
, and to monitor cell viability
<xref ref-type="bibr" rid="b7">7</xref>
and barrier tissue integrity
<xref ref-type="bibr" rid="b8">8</xref>
. OECTs have been fabricated using low-cost printing techniques
<xref ref-type="bibr" rid="b9">9</xref>
, and integrated with natural
<xref ref-type="bibr" rid="b10">10</xref>
and synthetic fibres
<xref ref-type="bibr" rid="b11">11</xref>
in powerful demonstrations of the unique form factors that can be achieved with these devices. In addition, OECTs utilizing solid or gel electrolytes have widened the scope of application
<xref ref-type="bibr" rid="b12">12</xref>
, showing promise as printable logic circuits
<xref ref-type="bibr" rid="b13">13</xref>
, and drivers for haptic sensors
<xref ref-type="bibr" rid="b14">14</xref>
and flat panel display pixels
<xref ref-type="bibr" rid="b15">15</xref>
.</p>
<p>In most of these applications, transistors convert a modulation in the gate voltage Δ
<italic>V</italic>
<sub>G</sub>
to a modulation in the drain current Δ
<italic>I</italic>
<sub>D</sub>
. The figure-of-merit that determines this conversion is the transconductance, defined as
<italic>g</italic>
<sub>m</sub>
<italic>I</italic>
<sub>D</sub>
<italic>/</italic>
Δ
<italic>V</italic>
<sub>G</sub>
. The transconductance is the main transistor parameter that governs signal amplification: a simple voltage amplifier, for example, can be built by connecting a resistor
<italic>R</italic>
in series with the drain. The voltage amplification (voltage modulation across the resistor versus voltage modulation at the gate) is equal to
<italic>g</italic>
<sub>m</sub>
<italic>R</italic>
. Despite their many attractive characteristics, transistors based on organic semiconductors are generally not known for their high transconductance, but are instead dismissed in favour of traditional inorganic semiconductors, and, more recently, oxide and graphene-based devices. In this work, we present mechanically flexible OECTs with a transconductance that exceeds that of all other electrolyte-gated transistors and most solid-state devices made of inorganic and low-dimensional nanowire and carbon-based semiconductors.</p>
<sec disp-level="1" sec-type="results">
<title>Results</title>
<sec disp-level="2">
<title>Structure of the transistors</title>
<p>The device architecture of the OECTs developed for this work is shown in
<xref ref-type="fig" rid="f1">Fig. 1</xref>
. The channel consists of a 400-nm thick film of the conducting polymer poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulphonate) (PEDOT:PSS), deposited from a commercially available aqueous dispersion and patterned using photolithography. In this material, PEDOT is a semiconductor, which is degenerately doped
<italic>p-</italic>
type by PSS to reach conductivities as high as 1,000 S cm
<sup>−1</sup>
. Gold source and drain contacts, also patterned photolithographically, define the channel length. The channel length,
<italic>L</italic>
, is varied between 5 and 10 μm, and the width,
<italic>W</italic>
, is 10 μm. A 2-μm-thick parylene-C film insulates the contacts from the electrolyte solution, and defines an opening where the channel is in direct contact with the electrolyte (a 100-mM NaCl solution). A Ag/AgCl wire immersed in the electrolyte is used as the gate electrode.</p>
</sec>
<sec disp-level="2">
<title>Steady-state characteristics</title>
<p>
<xref ref-type="fig" rid="f2">Figure 2</xref>
shows the output characteristics of a typical OECT (
<italic>L</italic>
=5 μm,
<italic>W</italic>
=10 μm) with negative bias at the drain,
<italic>V</italic>
<sub>D</sub>
, and for gate bias,
<italic>V</italic>
<sub>G</sub>
, varying from 0 to +0.5 V. These characteristics show the low voltage operation that is the hallmark of electrolyte-gated transistors. The time delay between sourcing
<italic>V</italic>
<sub>D</sub>
and
<italic>V</italic>
<sub>G</sub>
and measuring the drain current (
<italic>I</italic>
<sub>D</sub>
) was 100 ms, which was found to be significantly longer than the time required for the drain current to reach steady-state. The gate current, also measured after the same delay, was <10 nA for
<italic>V</italic>
<sub>D</sub>
=−0.6 V and
<italic>V</italic>
<sub>G</sub>
=+0.5 V. The corresponding transfer curve for
<italic>V</italic>
<sub>D</sub>
=−0.6 V is shown in
<xref ref-type="fig" rid="f2">Fig. 2</xref>
. The drain current decreases with gate voltage, consistent with operation in the depletion regime. This behaviour is in agreement with our current understanding of the operation mechanism of OECTs
<xref ref-type="bibr" rid="b16">16</xref>
: when a positive bias is applied at the gate, cations from the electrolyte enter the PEDOT:PSS film and compensate the pendant sulphonate anions on the PSS. This leads to a decrease of the hole density in the PEDOT, as holes extracted at the drain are not re-injected at the source. The end result is the decrease of the drain current seen in
<xref ref-type="fig" rid="f2">Fig. 2</xref>
. This effect is analogous to compensation doping of a
<italic>p-</italic>
type semiconductor upon the implantation of donors, but occurs in OECTs at room temperature and at a low applied bias.</p>
<p>The transconductance is shown in
<xref ref-type="fig" rid="f2">Fig. 2</xref>
to stay above 1 mS over the entire range of applied gate voltage and to reach a peak value of
<italic>g</italic>
<sub>m</sub>
=2.7 mS at
<italic>V</italic>
<sub>G</sub>
=0.275 V. Devices of similar channel dimensions show a peak
<italic>g</italic>
<sub>m</sub>
=2.2±0.8 mS (
<italic>N</italic>
=12). The OECT of
<xref ref-type="fig" rid="f2">Fig. 2</xref>
is therefore typical and all subsequent data presented here are for this device, unless otherwise mentioned. The best performing device (
<italic>L</italic>
=10 μm,
<italic>W</italic>
=10 μm) shows a transconductance of 4.0 mS (
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. S1</xref>
).
<xref ref-type="table" rid="t1">Table 1</xref>
contains a comparison of different transistor technologies
<xref ref-type="bibr" rid="b15">15</xref>
<xref ref-type="bibr" rid="b17">17</xref>
<xref ref-type="bibr" rid="b18">18</xref>
<xref ref-type="bibr" rid="b19">19</xref>
<xref ref-type="bibr" rid="b20">20</xref>
<xref ref-type="bibr" rid="b21">21</xref>
<xref ref-type="bibr" rid="b22">22</xref>
<xref ref-type="bibr" rid="b23">23</xref>
<xref ref-type="bibr" rid="b24">24</xref>
<xref ref-type="bibr" rid="b25">25</xref>
<xref ref-type="bibr" rid="b26">26</xref>
<xref ref-type="bibr" rid="b27">27</xref>
<xref ref-type="bibr" rid="b28">28</xref>
<xref ref-type="bibr" rid="b29">29</xref>
<xref ref-type="bibr" rid="b30">30</xref>
<xref ref-type="bibr" rid="b31">31</xref>
<xref ref-type="bibr" rid="b32">32</xref>
<xref ref-type="bibr" rid="b33">33</xref>
<xref ref-type="bibr" rid="b34">34</xref>
<xref ref-type="bibr" rid="b35">35</xref>
<xref ref-type="bibr" rid="b36">36</xref>
<xref ref-type="bibr" rid="b37">37</xref>
<xref ref-type="bibr" rid="b38">38</xref>
<xref ref-type="bibr" rid="b39">39</xref>
<xref ref-type="bibr" rid="b40">40</xref>
based on their transconductance. The best PEDOT:PSS-based OECT outperforms all electrolyte- and ionic liquid-gated transistors: it outpaces the highest performing electrolyte-gated graphene transistor by one order of magnitude and silicon transistor by two orders of magnitude. It also performs favourably compared with most solid-state technologies, including, amongst others, oxide-gated graphene
<xref ref-type="bibr" rid="b27">27</xref>
<xref ref-type="bibr" rid="b28">28</xref>
and ZnO
<xref ref-type="bibr" rid="b25">25</xref>
. It is only surpassed by III–V semiconductor bulk devices, which, for large channel widths, can yield transconductance values of 30–50 mS
<xref ref-type="bibr" rid="b33">33</xref>
<xref ref-type="bibr" rid="b34">34</xref>
. These devices, which require complex multi-layer fabrication, address a different end of the application’s spectrum. Transconductance is often normalized, depending on the device application or materials family. Normalized to the channel width, the OECT reaches 402 S m
<sup>−1</sup>
, a value only eclipsed by solid-state III–V semiconductor devices,
<xref ref-type="bibr" rid="b30">30</xref>
<xref ref-type="bibr" rid="b31">31</xref>
<xref ref-type="bibr" rid="b32">32</xref>
<xref ref-type="bibr" rid="b33">33</xref>
<xref ref-type="bibr" rid="b34">34</xref>
and is on the same order of magnitude as oxide-gated graphene transistors
<xref ref-type="bibr" rid="b27">27</xref>
<xref ref-type="bibr" rid="b28">28</xref>
. Finally, when the applied voltage is of importance, normalization with respect to
<italic>V</italic>
<sub>D</sub>
is used for comparison. The OECT (6,700 μS V
<sup>−1</sup>
) again compares favourably with all other devices.</p>
</sec>
<sec disp-level="2">
<title>Frequency dependence of the transconductance</title>
<p>The frequency response of the device shown in
<xref ref-type="fig" rid="f2">Fig. 2</xref>
was obtained by measuring the small-signal transconductance. A 100 mV peak-to-peak oscillation was superimposed on the gate bias, and the transconductance was determined by the amplitude ratio between the drain current oscillations and the corresponding input sine wave.
<xref ref-type="fig" rid="f3">Figure 3</xref>
shows that the small-signal transconductance stays close to the DC value up to a frequency of ~1 kHz. This is consistent with the temporal response of the drain current upon the application of a voltage pulse at the gate, which is of the order of 100 μs (
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. S2</xref>
). This behaviour can be understood by considering the fact that OECTs consist of two circuits
<xref ref-type="bibr" rid="b16">16</xref>
: the ionic one, in which ions are transported between the electrolyte and the channel, and the electronic one, in which holes are transported in the PEDOT:PSS channel between the source and the drain. Accordingly, the response time of an OECT can be limited either by ion transport in the ionic circuit, or by the transit time of holes in the PEDOT:PSS channel. The latter was estimated by driving the OECT with constant gate current,
<italic>I</italic>
<sub>G</sub>
, and measuring its response time, which, in this case, is solely dependent on the hole transit time, τ
<sub>
<italic>e</italic>
</sub>
(ref.
<xref ref-type="bibr" rid="b16">16</xref>
):</p>
<p>
<disp-formula id="eq1">
<inline-graphic id="d33e469" xlink:href="ncomms3133-m1.jpg"></inline-graphic>
</disp-formula>
</p>
<p>This relationship was found to hold in the OECTs presented here (
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. S3</xref>
), yielding
<italic>τ</italic>
<sub>
<italic>e</italic>
</sub>
=12.6 μs, a value that indicates that hole transport in the channel is not the limiting factor. This is also consistent with the fact that the response time of the OECTs was found to be dependent on the type of ion in the electrolyte (
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. S4</xref>
). It should be noted that the hole drift mobility that corresponds to this transit time is 0.05 cm
<sup>2</sup>
 V
<sup>−1</sup>
 s
<sup>−1</sup>
.</p>
<p>The temporal response of the ionic circuit was evaluated by measuring the impedance,
<italic>Z</italic>
, of the channel/electrolyte interface (
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. S5</xref>
) and calculating the ionic charge,
<italic>Q</italic>
, injected in the channel. The latter was derived as:</p>
<p>
<disp-formula id="eq2">
<inline-graphic id="d33e507" xlink:href="ncomms3133-m2.jpg"></inline-graphic>
</disp-formula>
</p>
<p>where
<italic>I</italic>
<sub>G</sub>
<italic>=V</italic>
<sub>G</sub>
<italic>/|Z|</italic>
, and
<italic>V</italic>
<sub>G</sub>
was taken to be the same sinusoidal excitation used to measure the small-signal transconductance (100 mV peak-to-peak). The injected ionic charge is shown in
<xref ref-type="fig" rid="f3">Fig. 3</xref>
as a solid line. It shows the same behaviour as the transconductance, signifying that the frequency response of the OECT is dominated by the process of ion transport between the electrolyte and the channel. The agreement between
<italic>g</italic>
<sub>m</sub>
and
<italic>Q</italic>
is not accidental: Bernards
<italic>et al</italic>
.
<xref ref-type="bibr" rid="b16">16</xref>
showed that the drain current in an OECT is proportional to the ionic charge injected in the channel. A modulation of the gate voltage will lead to a modulation of this charge, and hence,
<italic>g</italic>
<sub>m</sub>
will be proportional to
<italic>Q</italic>
.</p>
</sec>
<sec disp-level="2">
<title>Resistance to mechanical deformation</title>
<p>In addition to showing a high transconductance, OECTs display a broad range of practically desirable traits that many of the other technologies cannot achieve, such as ease of fabrication, compatibility with mechanically flexible substrates and resistance to aggressive mechanical deformation.
<xref ref-type="fig" rid="f4">Figure 4</xref>
shows an array of devices that was peeled-off from its glass sacrificial substrate, crumpled, and then un-crumpled back to a flat sheet. The peeled-off devices had a thickness of ~4 μm, with the PEDOT:PSS channel and the Au interconnects in the neutral mechanical plane. Characterization before and after crumpling showed that the devices could withstand the trial without a significant change in performance.
<xref ref-type="fig" rid="f4">Figure 4d</xref>
shows the electrical characteristics of one of the devices in this array (
<italic>L</italic>
=10 μm,
<italic>W</italic>
=10 μm) as-prepared (black), after peel-off from its glass sacrificial substrate (red), and after crumpling (blue), revealing that the transconductance remains practically unchanged. Over 16 devices tested on three different substrates showed little variation in transconductance and time response when exposed to such a harsh handling (
<xref ref-type="fig" rid="f4">Fig. 4f</xref>
).</p>
</sec>
</sec>
<sec disp-level="1" sec-type="discussion">
<title>Discussion</title>
<p>The absence of a dielectric between channel and electrolyte in OECTs allows ions to be injected into the former and gives rise to a response that is determined by the volume of the channel. This is in contrast to electrolyte-gated field-effect transistors, where accumulation of charge at the interface between electrolyte and gate insulator (or semiconducting channel) determines the response. This fact is reflected in the magnitude of the charge injected in the channel, which, at low frequencies, is equal to ~2.5 nC (
<xref ref-type="fig" rid="f3">Fig. 3</xref>
). This corresponds to 7.8 × 10
<sup>20</sup>
 ions. cm
<sup>−3</sup>
, a value within the range of the doping level of PEDOT:PSS (ref.
<xref ref-type="bibr" rid="b41">41</xref>
), indicating that the transistor operates close to limit of complete dedoping. As expected, the transistor performance can be tuned by adjusting the channel volume. Making the channel thinner, for example, can lead to faster response, as dedoping it requires a smaller number of ions. At the same time, the drain current (hence its modulation upon gating) decreases, leading to a lower transconductance. Indeed, a device with a PEDOT:PSS channel (
<italic>L</italic>
=5 μm,
<italic>W</italic>
=10 μm) that was 100 nm thick had a response time of 37 μs and a transconductance of 1.6 mS (
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. S6</xref>
).</p>
<p>In addition to adjusting channel volume, OECT performance can potentially be further improved through the synthesis of new materials. Conducting polymers with a higher capacity to store charge, for example, would lead to devices with a higher transconductance. The design of such polymers is also the focus of contemporary research on batteries
<xref ref-type="bibr" rid="b42">42</xref>
, a synergy that has the chance to lead to the development of new high-performance materials for electrochemical devices. In terms of response time, little is known about ion transport in conducting polymers. Recent measurements by Stavrinidou
<italic>et al</italic>
.
<xref ref-type="bibr" rid="b43">43</xref>
showed that ion mobility in PEDOT:PSS depends on water uptake: pristine PEDOT:PSS films in contact with aqueous electrolytes were found to swell and support transport of small ions with the same mobility as in water. Cross-linking the films diminished their ability to uptake water and decreased ion mobilities. As the relationships between conducting polymer structure and ion transport properties become more established in the future, synthesis of new materials might yield OECTs that operate at higher frequencies. Finally, beyond geometry and materials, the application of a higher drain voltage increases transconductance, but there is a limit of ~1 V to the voltage that can be applied in an aqueous electrolyte before electrolysis takes place. Some ionic liquids and gels enable higher voltage operation, hence higher performance
<xref ref-type="bibr" rid="b12">12</xref>
.</p>
<p>The OECT, when biased as shown in
<xref ref-type="fig" rid="f1">Fig. 1</xref>
, acts as a transconductance amplifier that converts a voltage modulation at the gate to a modulation of the drain current. Considering a biasing point of
<italic>V</italic>
<sub>D</sub>
=−0.6 V and
<italic>V</italic>
<sub>G</sub>
=0.275 V for the device of
<xref ref-type="fig" rid="f2">Fig. 2</xref>
, an increase of the input (gate) voltage of 100 mV will result in a change of 270 μA in the output (drain) current. At the same time, the input current remains below 10 nA, increasing by only 2 nA. Therefore, the input signal power is 100 mV × 2 nA=200 pW and the output signal power is 0.6 V × 270 μA=162 μW, yielding a power amplification of 59 dB. Such high power amplification can be harnessed in biosensing applications, which require operation in an aqueous electrolyte and are operated in a DC mode. Interfacing with electrically active cells and tissues is another potential application for OECTs. Extracellular signals, which are of order of 100 μV, can be easily discernible by the OECT, whose transconductance at the frequency of action potentials (1 kHz) is still sufficiently large to ensure significant power amplification. In all these applications, a significant advantage of OECTs as a first stage amplifier is that the input signal is transduced and amplified right at the interface and is hence not corrupted by noise from external wiring and circuitry. In fact, we recently showed that OECTs can record brain activity
<italic>in vivo</italic>
with a higher signal-to-noise ratio than electrodes
<xref ref-type="bibr" rid="b44">44</xref>
. Moreover, the fact that OECTs work even after being mechanically deformed opens up a new world of opportunities for devices ranging from smart bandages to intelligent clothing.</p>
</sec>
<sec disp-level="1" sec-type="methods">
<title>Methods</title>
<sec disp-level="2">
<title>Device fabrication</title>
<p>The fabrication process, similar to that reported previously
<xref ref-type="bibr" rid="b45">45</xref>
, included the deposition and patterning of parylene, metal and PEDOT:PSS. A parylene-C film was deposited on a glass slide using a SCS Labcoater 2 to a thickness of 2 μm (at which the layer is pinhole-free). This layer of parylene was fixed on the glass slide using 3-(trimethoxysilyl)propyl methacrylate as an adhesion promoter. Avoiding the adhesion promoter allowed the devices to be peeled-off after fabrication. An additional 2 μm thick layer of parylene was used to insulate the metal pads from the electrolyte. It was patterned with AZ9260 photoresist and reactive ion etching by an O
<sub>2</sub>
plasma using an Oxford 80 plus. Metal pads and interconnects were patterned by a lift-off process, using S1813 photoresist, exposed to UV light using a SUSS MBJ4 contact aligner, and developed using MF-26 developer. Five nanometre of titanium and 100 nm of gold were then deposited using a metal evaporator, and metal lift-off was performed using acetone. For the preparation of the PEDOT:PSS films, 20 ml of aqueous dispersion (PH-1000 from Heraeus Clevios GmbH), 1 ml of ethylene glycol, 50 μl of dodecyl benzene sulphonic acid were mixed and sonicated before spin-coating. The films were subsequently baked at 140 °C for 1 h and were immersed in deionized water to remove any excess low molecular weight compounds.</p>
</sec>
<sec disp-level="2">
<title>Electrical characterization</title>
<p>All characterization was done using a solution of 100 mM NaCl in DI water as the electrolyte and a Ag/AgCl wire (Warner Instruments) as the gate electrode. The electrical characteristics of the OECTs were measured with two VA10 transimpedance amplifiers (NPI) and customized LabVIEW software. Impedance measurements were carried out using an Autolab PGSTAT 128N. The OECT channel was used as the working electrode (source and drain connected together), while a bridge electrode was used as the reference and a Pt foil was used as the counter electrode. The electrolyte was the same as for the OECT characterization. A modulation with amplitude of 10 mV was applied, while the bias was varied between 0.4 V and −0.4 V, and found to make no difference in the recorded impedance.</p>
</sec>
</sec>
<sec disp-level="1">
<title>Author contributions</title>
<p>D.K. and G.G.M. conceived the project. D.K., J.R., M.S. fabricated and tested the devices. D.K., J.R., M.G., and P.L. analysed electrical data. D.K., J.R., M.S., M.G., E.S. and L.H.J. developed working mechanism model. T.H., S.S., R.M.O. and G.G.M. supervised the project. D.K., J.R. and G.G.M. wrote the paper.</p>
</sec>
<sec disp-level="1">
<title>Additional information</title>
<p>
<bold>How to cite this article:</bold>
Khodagholy, D.
<italic>et al</italic>
. High transconductance organic electrochemical transistors.
<italic>Nat. Commun.</italic>
4:2133 doi: 10.1038/ncomms3133 (2013).</p>
</sec>
<sec sec-type="supplementary-material" id="S1">
<title>Supplementary Material</title>
<supplementary-material id="d33e18" content-type="local-data">
<caption>
<title>Supplementary Information</title>
<p>Supplementary Figures S1-S6</p>
</caption>
<media xlink:href="ncomms3133-s1.pdf" mimetype="application" mime-subtype="pdf"></media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<p>This work was supported by the ANR, the European Research Council, and through additional grants from région PACA, and Microvitae Technologies. J.R., M.G. and M.S. were supported through Marie CURIE Fellowships. The authors acknowledge funding from the Partner University Fund (a program of French American Cultural Exchange). We would like to thank Dan Bernards (UCSF), John Kymissis (Columbia) and Dieter Ast (Cornell) for discussions.</p>
</ack>
<ref-list>
<ref id="b1">
<mixed-citation publication-type="journal">
<name>
<surname>Arias</surname>
<given-names>A. C.</given-names>
</name>
,
<name>
<surname>MacKenzie</surname>
<given-names>J. D.</given-names>
</name>
,
<name>
<surname>McCulloch</surname>
<given-names>I.</given-names>
</name>
,
<name>
<surname>Rivnay</surname>
<given-names>J.</given-names>
</name>
&
<name>
<surname>Salleo</surname>
<given-names>A.</given-names>
</name>
<article-title>Materials and applications for large area electronics: solution-based approaches</article-title>
.
<source>Chem. Rev.</source>
<volume>110</volume>
,
<fpage>3</fpage>
<lpage>24</lpage>
(
<year>2010</year>
).
<pub-id pub-id-type="pmid">20070114</pub-id>
</mixed-citation>
</ref>
<ref id="b2">
<mixed-citation publication-type="journal">
<name>
<surname>White</surname>
<given-names>H. S.</given-names>
</name>
,
<name>
<surname>Kittlesen</surname>
<given-names>G. P.</given-names>
</name>
&
<name>
<surname>Wrighton</surname>
<given-names>M. S.</given-names>
</name>
<article-title>Chemical derivatization of an array of 3 gold microelectrodes with polypyrrole - fabrication of a molecule-based transistor</article-title>
.
<source>J. Am. Chem. Soc.</source>
<volume>106</volume>
,
<fpage>5375</fpage>
<lpage>5377</lpage>
(
<year>1984</year>
).</mixed-citation>
</ref>
<ref id="b3">
<mixed-citation publication-type="journal">
<name>
<surname>Owens</surname>
<given-names>R. M.</given-names>
</name>
&
<name>
<surname>Malliaras</surname>
<given-names>G. G.</given-names>
</name>
<article-title>Organic electronics at the interface with biology</article-title>
.
<source>MRS. Bull.</source>
<volume>35</volume>
,
<fpage>449</fpage>
<lpage>456</lpage>
(
<year>2010</year>
).</mixed-citation>
</ref>
<ref id="b4">
<mixed-citation publication-type="journal">
<name>
<surname>Berggren</surname>
<given-names>M.</given-names>
</name>
&
<name>
<surname>Richter-Dahlfors</surname>
<given-names>A.</given-names>
</name>
<article-title>Organic bioelectronics</article-title>
.
<source>Adv. Mater.</source>
<volume>19</volume>
,
<fpage>3201</fpage>
<lpage>3213</lpage>
(
<year>2007</year>
).</mixed-citation>
</ref>
<ref id="b5">
<mixed-citation publication-type="journal">
<name>
<surname>Lin</surname>
<given-names>P.</given-names>
</name>
&
<name>
<surname>Yan</surname>
<given-names>F.</given-names>
</name>
<article-title>Organic thin-film transistors for chemical and biological sensing</article-title>
.
<source>Adv. Mater</source>
<volume>24</volume>
,
<fpage>34</fpage>
<lpage>51</lpage>
(
<year>2012</year>
).
<pub-id pub-id-type="pmid">22102447</pub-id>
</mixed-citation>
</ref>
<ref id="b6">
<mixed-citation publication-type="journal">
<name>
<surname>Bolin</surname>
<given-names>M. H.</given-names>
</name>
<etal></etal>
.
<article-title>Active control of epithelial cell-density gradients grown along the channel of an organic electrochemical transistor</article-title>
.
<source>Adv. Mater</source>
<volume>21</volume>
,
<fpage>4379</fpage>
<lpage>4382</lpage>
(
<year>2009</year>
).</mixed-citation>
</ref>
<ref id="b7">
<mixed-citation publication-type="journal">
<name>
<surname>Lin</surname>
<given-names>P.</given-names>
</name>
,
<name>
<surname>Yan</surname>
<given-names>F.</given-names>
</name>
,
<name>
<surname>Yu</surname>
<given-names>J. J.</given-names>
</name>
,
<name>
<surname>Chan</surname>
<given-names>H. L. W.</given-names>
</name>
&
<name>
<surname>Yang</surname>
<given-names>M.</given-names>
</name>
<article-title>The application of organic electrochemical transistors in cell-based biosensors</article-title>
.
<source>Adv. Mater</source>
<volume>22</volume>
,
<fpage>3655</fpage>
<lpage>3660</lpage>
(
<year>2010</year>
).
<pub-id pub-id-type="pmid">20661950</pub-id>
</mixed-citation>
</ref>
<ref id="b8">
<mixed-citation publication-type="journal">
<name>
<surname>Jimison</surname>
<given-names>L. H.</given-names>
</name>
<etal></etal>
.
<article-title>Measurement of barrier tissue integrity with an organic electrochemical transistor</article-title>
.
<source>Adv. Mater.</source>
<volume>24</volume>
,
<fpage>5919</fpage>
<lpage>5923</lpage>
(
<year>2012</year>
).
<pub-id pub-id-type="pmid">22949380</pub-id>
</mixed-citation>
</ref>
<ref id="b9">
<mixed-citation publication-type="journal">
<name>
<surname>Basiricò</surname>
<given-names>L.</given-names>
</name>
,
<name>
<surname>Cosseddu</surname>
<given-names>P.</given-names>
</name>
,
<name>
<surname>Scidà</surname>
<given-names>A.</given-names>
</name>
,
<name>
<surname>Fraboni</surname>
<given-names>B.</given-names>
</name>
,
<name>
<surname>Malliaras</surname>
<given-names>G. G.</given-names>
</name>
&
<name>
<surname>Bonfiglio</surname>
<given-names>A.</given-names>
</name>
<article-title>Electrical characteristics of ink-jet printed, all-polymer electrochemical transistors</article-title>
.
<source>Organic Electron.</source>
<volume>13</volume>
,
<fpage>244</fpage>
<lpage>248</lpage>
(
<year>2012</year>
).</mixed-citation>
</ref>
<ref id="b10">
<mixed-citation publication-type="journal">
<name>
<surname>Mattana</surname>
<given-names>G.</given-names>
</name>
,
<name>
<surname>Cosseddu</surname>
<given-names>P.</given-names>
</name>
,
<name>
<surname>Fraboni</surname>
<given-names>B.</given-names>
</name>
,
<name>
<surname>Malliaras</surname>
<given-names>G. G.</given-names>
</name>
,
<name>
<surname>Hinestroza</surname>
<given-names>J. P.</given-names>
</name>
&
<name>
<surname>Bonfiglio</surname>
<given-names>A.</given-names>
</name>
<article-title>Organic electronics on natural cotton fibres</article-title>
.
<source>Organic Electron.</source>
<volume>12</volume>
,
<fpage>2033</fpage>
<lpage>2039</lpage>
(
<year>2011</year>
).</mixed-citation>
</ref>
<ref id="b11">
<mixed-citation publication-type="journal">
<name>
<surname>Hamedi</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Herlogsson</surname>
<given-names>L.</given-names>
</name>
,
<name>
<surname>Crispin</surname>
<given-names>X.</given-names>
</name>
,
<name>
<surname>Marcilla</surname>
<given-names>R.</given-names>
</name>
,
<name>
<surname>Berggren</surname>
<given-names>M.</given-names>
</name>
&
<name>
<surname>Inganas</surname>
<given-names>O.</given-names>
</name>
<article-title>Fiber-embedded electrolyte-gated field-effect transistors for e-textiles</article-title>
.
<source>Adv. Mater.</source>
<volume>21</volume>
,
<fpage>573</fpage>
<lpage>577</lpage>
(
<year>2009</year>
).
<pub-id pub-id-type="pmid">21161984</pub-id>
</mixed-citation>
</ref>
<ref id="b12">
<mixed-citation publication-type="journal">
<name>
<surname>Kim</surname>
<given-names>S. H.</given-names>
</name>
<etal></etal>
.
<article-title>Electrolyte-gated transistors for organic and printed electronics</article-title>
.
<source>Adv. Mater.</source>
<volume>25</volume>
,
<fpage>1822</fpage>
<lpage>1846</lpage>
(
<year>2013</year>
).
<pub-id pub-id-type="pmid">23203564</pub-id>
</mixed-citation>
</ref>
<ref id="b13">
<mixed-citation publication-type="journal">
<name>
<surname>Berggren</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Nilsson</surname>
<given-names>D.</given-names>
</name>
&
<name>
<surname>Robinson</surname>
<given-names>N. D.</given-names>
</name>
<article-title>Organic materials for printed electronics</article-title>
.
<source>Nat. Mater.</source>
<volume>6</volume>
,
<fpage>3</fpage>
<lpage>5</lpage>
(
<year>2007</year>
).
<pub-id pub-id-type="pmid">17199114</pub-id>
</mixed-citation>
</ref>
<ref id="b14">
<mixed-citation publication-type="journal">
<name>
<surname>Zirkl</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
.
<article-title>An all-printed ferroelectric active matrix sensor network based on only five functional materials forming a touchless control interface</article-title>
.
<source>Adv. Mater.</source>
<volume>23</volume>
,
<fpage>2069</fpage>
<lpage>2074</lpage>
(
<year>2011</year>
).
<pub-id pub-id-type="pmid">21438036</pub-id>
</mixed-citation>
</ref>
<ref id="b15">
<mixed-citation publication-type="journal">
<name>
<surname>Braga</surname>
<given-names>D.</given-names>
</name>
,
<name>
<surname>Erickson</surname>
<given-names>N. C.</given-names>
</name>
,
<name>
<surname>Renn</surname>
<given-names>M. J.</given-names>
</name>
,
<name>
<surname>Holmes</surname>
<given-names>R. J.</given-names>
</name>
&
<name>
<surname>Frisbie</surname>
<given-names>C. D.</given-names>
</name>
<article-title>High-transconductance organic thin-film electrochemical transistors for driving low-voltage red-green-blue active matrix organic light-emitting devices</article-title>
.
<source>Adv. Funct. Mater.</source>
<volume>22</volume>
,
<fpage>1623</fpage>
<lpage>1631</lpage>
(
<year>2012</year>
).</mixed-citation>
</ref>
<ref id="b16">
<mixed-citation publication-type="journal">
<name>
<surname>Bernards</surname>
<given-names>D. A.</given-names>
</name>
&
<name>
<surname>Malliaras</surname>
<given-names>G. G.</given-names>
</name>
<article-title>Steady-state and transient behavior of organic electrochemical transistors</article-title>
.
<source>Adv. Funct. Mater.</source>
<volume>17</volume>
,
<fpage>3538</fpage>
<lpage>3544</lpage>
(
<year>2007</year>
).</mixed-citation>
</ref>
<ref id="b17">
<mixed-citation publication-type="journal">
<name>
<surname>Hess</surname>
<given-names>L. H.</given-names>
</name>
<etal></etal>
.
<article-title>High-transconductance graphene solution-gated field effect transistors</article-title>
.
<source>Appl. Phys. Lett.</source>
<volume>99</volume>
,
<fpage>033503</fpage>
(
<year>2011</year>
).</mixed-citation>
</ref>
<ref id="b18">
<mixed-citation publication-type="journal">
<name>
<surname>Ohno</surname>
<given-names>Y.</given-names>
</name>
,
<name>
<surname>Maehashi</surname>
<given-names>K.</given-names>
</name>
,
<name>
<surname>Yamashiro</surname>
<given-names>Y.</given-names>
</name>
&
<name>
<surname>Matsumoto</surname>
<given-names>K.</given-names>
</name>
<article-title>Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption</article-title>
.
<source>Nano. Lett.</source>
<volume>9</volume>
,
<fpage>3318</fpage>
<lpage>3322</lpage>
(
<year>2009</year>
).
<pub-id pub-id-type="pmid">19637913</pub-id>
</mixed-citation>
</ref>
<ref id="b19">
<mixed-citation publication-type="journal">
<name>
<surname>Dankerl</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
.
<article-title>Diamond transistor array for extracellular recording from electrogenic cells</article-title>
.
<source>Adv. Funct. Mater.</source>
<volume>19</volume>
,
<fpage>2915</fpage>
<lpage>2923</lpage>
(
<year>2009</year>
).</mixed-citation>
</ref>
<ref id="b20">
<mixed-citation publication-type="journal">
<name>
<surname>Felderer</surname>
<given-names>F.</given-names>
</name>
&
<name>
<surname>Fromherz</surname>
<given-names>P.</given-names>
</name>
<article-title>Transistor needle chip for recording in brain tissue</article-title>
.
<source>Appl. Phys. A</source>
<volume>104</volume>
,
<fpage>1</fpage>
<lpage>6</lpage>
(
<year>2011</year>
).</mixed-citation>
</ref>
<ref id="b21">
<mixed-citation publication-type="journal">
<name>
<surname>Li</surname>
<given-names>B.-R.</given-names>
</name>
,
<name>
<surname>Chen</surname>
<given-names>C.-W.</given-names>
</name>
,
<name>
<surname>Yang</surname>
<given-names>W.-L.</given-names>
</name>
,
<name>
<surname>Lin</surname>
<given-names>T.-Y.</given-names>
</name>
,
<name>
<surname>Pan</surname>
<given-names>C.-Y.</given-names>
</name>
&
<name>
<surname>Chen</surname>
<given-names>Y.-T.</given-names>
</name>
<article-title>Biomolecular recognition with a sensitivity-enhanced nanowire transistor biosensor</article-title>
.
<source>Biosensors Bioelectron</source>
<volume>45</volume>
,
<fpage>252</fpage>
<lpage>259</lpage>
(
<year>2013</year>
).</mixed-citation>
</ref>
<ref id="b22">
<mixed-citation publication-type="journal">
<name>
<surname>Yuan</surname>
<given-names>H.</given-names>
</name>
,
<name>
<surname>Shimotani</surname>
<given-names>H.</given-names>
</name>
,
<name>
<surname>Tsukazaki</surname>
<given-names>A.</given-names>
</name>
,
<name>
<surname>Ohtomo</surname>
<given-names>A.</given-names>
</name>
,
<name>
<surname>Kawasaki</surname>
<given-names>M.</given-names>
</name>
&
<name>
<surname>Iwasa</surname>
<given-names>Y.</given-names>
</name>
<article-title>High-density carrier accumulation in ZnO field-effect transistors gated by electric double layers of ionic liquids</article-title>
.
<source>Adv. Funct. Mater.</source>
<volume>19</volume>
,
<fpage>1046</fpage>
<lpage>1053</lpage>
(
<year>2009</year>
).</mixed-citation>
</ref>
<ref id="b23">
<mixed-citation publication-type="journal">
<name>
<surname>Nasr</surname>
<given-names>B.</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>D.</given-names>
</name>
,
<name>
<surname>Kruk</surname>
<given-names>R.</given-names>
</name>
,
<name>
<surname>Rösner</surname>
<given-names>H.</given-names>
</name>
,
<name>
<surname>Hahn</surname>
<given-names>H.</given-names>
</name>
&
<name>
<surname>Dasgupta</surname>
<given-names>S.</given-names>
</name>
<article-title>High-speed, low-voltage, and environmentally stable operation of electrochemically-gated zinc oxide nanowire field-effect transistors</article-title>
.
<source>Adv. Funct. Mater</source>
<volume>23</volume>
,
<fpage>1750</fpage>
<lpage>1758</lpage>
(
<year>2013</year>
).</mixed-citation>
</ref>
<ref id="b24">
<mixed-citation publication-type="journal">
<name>
<surname>Cho</surname>
<given-names>J. H.</given-names>
</name>
<etal></etal>
.
<article-title>Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic</article-title>
.
<source>Nat. Mater.</source>
<volume>7</volume>
,
<fpage>900</fpage>
<lpage>906</lpage>
(
<year>2008</year>
).
<pub-id pub-id-type="pmid">18931674</pub-id>
</mixed-citation>
</ref>
<ref id="b25">
<mixed-citation publication-type="journal">
<name>
<surname>Sasa</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Ozaki</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Koike</surname>
<given-names>K.</given-names>
</name>
,
<name>
<surname>Yano</surname>
<given-names>M.</given-names>
</name>
&
<name>
<surname>Inoue</surname>
<given-names>M.</given-names>
</name>
<article-title>High-performance ZnO/ZnMgO field-effect transistors using a hetero-metal-insulator-semiconductor structure</article-title>
.
<source>Appl. Phys. Lett.</source>
<volume>89</volume>
,
<fpage>053502</fpage>
(
<year>2006</year>
).</mixed-citation>
</ref>
<ref id="b26">
<mixed-citation publication-type="journal">
<name>
<surname>Siddiqui</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Cagin</surname>
<given-names>E.</given-names>
</name>
,
<name>
<surname>Chen</surname>
<given-names>D.</given-names>
</name>
&
<name>
<surname>Phillips</surname>
<given-names>J. D.</given-names>
</name>
<article-title>ZnO thin-film transistors with polycrystalline (Ba,Sr)TiO
<sub>3</sub>
gate insulators</article-title>
.
<source>Appl. Phys. Lett.</source>
<volume>88</volume>
,
<fpage>212903</fpage>
(
<year>2006</year>
).</mixed-citation>
</ref>
<ref id="b27">
<mixed-citation publication-type="journal">
<name>
<surname>Xu</surname>
<given-names>H.</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>Z.</given-names>
</name>
,
<name>
<surname>Xu</surname>
<given-names>H.</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>Z.</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>S.</given-names>
</name>
&
<name>
<surname>Peng</surname>
<given-names>L.-M.</given-names>
</name>
<article-title>Top-gated graphene field-effect transistors with high normalized transconductance and designable dirac point voltage</article-title>
.
<source>ACS Nano</source>
<volume>5</volume>
,
<fpage>5031</fpage>
<lpage>5037</lpage>
(
<year>2011</year>
).
<pub-id pub-id-type="pmid">21528892</pub-id>
</mixed-citation>
</ref>
<ref id="b28">
<mixed-citation publication-type="journal">
<name>
<surname>Moon</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
.
<article-title>Top-gated epitaxial graphene FETs on Si-face SiC wafers with a peak transconductance of 600 mS/mm</article-title>
.
<source>Electron Device Lett. IEEE</source>
<volume>31</volume>
,
<fpage>260</fpage>
<lpage>262</lpage>
(
<year>2010</year>
).</mixed-citation>
</ref>
<ref id="b29">
<mixed-citation publication-type="journal">
<name>
<surname>Meric</surname>
<given-names>I.</given-names>
</name>
,
<name>
<surname>Han</surname>
<given-names>M. Y.</given-names>
</name>
,
<name>
<surname>Young</surname>
<given-names>A. F.</given-names>
</name>
,
<name>
<surname>Ozyilmaz</surname>
<given-names>B.</given-names>
</name>
,
<name>
<surname>Kim</surname>
<given-names>P.</given-names>
</name>
&
<name>
<surname>Shepard</surname>
<given-names>K. L.</given-names>
</name>
<article-title>Current saturation in zero-bandgap, top-gated graphene field-effect transistors</article-title>
.
<source>Nat. Nanotechnol.</source>
<volume>3</volume>
,
<fpage>654</fpage>
<lpage>659</lpage>
(
<year>2008</year>
).
<pub-id pub-id-type="pmid">18989330</pub-id>
</mixed-citation>
</ref>
<ref id="b30">
<mixed-citation publication-type="journal">
<name>
<surname>Do</surname>
<given-names>Q. T.</given-names>
</name>
,
<name>
<surname>Blekker</surname>
<given-names>K.</given-names>
</name>
,
<name>
<surname>Regolin</surname>
<given-names>I.</given-names>
</name>
,
<name>
<surname>Prost</surname>
<given-names>W.</given-names>
</name>
&
<name>
<surname>Tegude</surname>
<given-names>F. J.</given-names>
</name>
<article-title>High transconductance MISFET with a single inas nanowire channel</article-title>
.
<source>Electron Device Lett. IEEE</source>
<volume>28</volume>
,
<fpage>682</fpage>
<lpage>684</lpage>
(
<year>2007</year>
).</mixed-citation>
</ref>
<ref id="b31">
<mixed-citation publication-type="journal">
<name>
<surname>Tomioka</surname>
<given-names>K.</given-names>
</name>
,
<name>
<surname>Yoshimura</surname>
<given-names>M.</given-names>
</name>
&
<name>
<surname>Fukui</surname>
<given-names>T.</given-names>
</name>
<article-title>A III-V nanowire channel on silicon for high-performance vertical transistors</article-title>
.
<source>Nature</source>
<volume>488</volume>
,
<fpage>189</fpage>
<lpage>192</lpage>
(
<year>2012</year>
).
<pub-id pub-id-type="pmid">22854778</pub-id>
</mixed-citation>
</ref>
<ref id="b32">
<mixed-citation publication-type="journal">
<name>
<surname>Nidhi Dasgupta</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Jing</surname>
<given-names>L.</given-names>
</name>
,
<name>
<surname>Speck</surname>
<given-names>J. S.</given-names>
</name>
&
<name>
<surname>Mishra</surname>
<given-names>U. K.</given-names>
</name>
<article-title>Self-aligned N-polar GaN/InAlN MIS-HEMTs with record extrinsic transconductance of 1105, mS/mm</article-title>
.
<source>Electron Device Lett. IEEE</source>
<volume>33</volume>
,
<fpage>794</fpage>
<lpage>796</lpage>
(
<year>2012</year>
).</mixed-citation>
</ref>
<ref id="b33">
<mixed-citation publication-type="journal">
<name>
<surname>Bouzid-Driad</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
.
<article-title>AlGaN/GaN HEMTs on silicon substrate with 206-GHz FMAX</article-title>
.
<source>Electron Device Lett. IEEE</source>
<volume>34</volume>
,
<fpage>36</fpage>
<lpage>38</lpage>
(
<year>2013</year>
).</mixed-citation>
</ref>
<ref id="b34">
<mixed-citation publication-type="journal">
<name>
<surname>Hill</surname>
<given-names>R. J. W.</given-names>
</name>
<etal></etal>
.
<article-title>Enhancement-mode GaAs MOSFETs with an In 0.3 Ga 0.7 As channel, a mobility of over 5,000 cm 2/V·s, and transconductance of over 475 μS/μm</article-title>
.
<source>Electron Device Lett. IEEE</source>
<volume>28</volume>
,
<fpage>1080</fpage>
<lpage>1082</lpage>
(
<year>2007</year>
).</mixed-citation>
</ref>
<ref id="b35">
<mixed-citation publication-type="journal">
<name>
<surname>Cao</surname>
<given-names>Q.</given-names>
</name>
,
<name>
<surname>Han</surname>
<given-names>S.-J.</given-names>
</name>
,
<name>
<surname>Tulevski</surname>
<given-names>G. S.</given-names>
</name>
,
<name>
<surname>Zhu</surname>
<given-names>Y.</given-names>
</name>
,
<name>
<surname>Lu</surname>
<given-names>D. D.</given-names>
</name>
&
<name>
<surname>Haensch</surname>
<given-names>W.</given-names>
</name>
<article-title>Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics</article-title>
.
<source>Nat. Nanotechnol.</source>
<volume>8</volume>
,
<fpage>180</fpage>
<lpage>186</lpage>
(
<year>2013</year>
).
<pub-id pub-id-type="pmid">23353673</pub-id>
</mixed-citation>
</ref>
<ref id="b36">
<mixed-citation publication-type="journal">
<name>
<surname>Cao</surname>
<given-names>Q.</given-names>
</name>
<etal></etal>
.
<article-title>Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates</article-title>
.
<source>Nature</source>
<volume>454</volume>
,
<fpage>495</fpage>
<lpage>500</lpage>
(
<year>2008</year>
).
<pub-id pub-id-type="pmid">18650920</pub-id>
</mixed-citation>
</ref>
<ref id="b37">
<mixed-citation publication-type="journal">
<name>
<surname>Zschieschang</surname>
<given-names>U.</given-names>
</name>
<etal></etal>
.
<article-title>Megahertz operation of flexible low-voltage organic thin-film transistors</article-title>
.
<source>Org. Electron</source>
<volume>14</volume>
,
<fpage>1516</fpage>
<lpage>1520</lpage>
(
<year>2013</year>
).</mixed-citation>
</ref>
<ref id="b38">
<mixed-citation publication-type="journal">
<name>
<surname>Klauk</surname>
<given-names>H.</given-names>
</name>
,
<name>
<surname>Zschieschang</surname>
<given-names>U.</given-names>
</name>
&
<name>
<surname>Halik</surname>
<given-names>M.</given-names>
</name>
<article-title>Low-voltage organic thin-film transistors with large transconductance</article-title>
.
<source>J. Appl. Phys.</source>
<volume>102</volume>
,
<fpage>074514</fpage>
(
<year>2007</year>
).</mixed-citation>
</ref>
<ref id="b39">
<mixed-citation publication-type="journal">
<name>
<surname>Yokota</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
.
<article-title>Low-voltage organic transistor with subfemtoliter inkjet source–drain contacts</article-title>
.
<source>MRS Commun.</source>
<volume>1</volume>
,
<fpage>3</fpage>
<lpage>6</lpage>
(
<year>2011</year>
).</mixed-citation>
</ref>
<ref id="b40">
<mixed-citation publication-type="journal">
<name>
<surname>Cui</surname>
<given-names>Y.</given-names>
</name>
,
<name>
<surname>Zhong</surname>
<given-names>Z.</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>D.</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>W. U.</given-names>
</name>
&
<name>
<surname>Lieber</surname>
<given-names>C. M.</given-names>
</name>
<article-title>High performance silicon nanowire field effect transistors</article-title>
.
<source>Nano. Lett.</source>
<volume>3</volume>
,
<fpage>149</fpage>
<lpage>152</lpage>
(
<year>2003</year>
).</mixed-citation>
</ref>
<ref id="b41">
<mixed-citation publication-type="journal">
<name>
<surname>Elschner</surname>
<given-names>A.</given-names>
</name>
,
<name>
<surname>Kirchmeyer</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Lövenich</surname>
<given-names>W.</given-names>
</name>
,
<name>
<surname>Merker</surname>
<given-names>U.</given-names>
</name>
&
<name>
<surname>Reuter</surname>
<given-names>K.</given-names>
</name>
<article-title>PEDOT:PSS</article-title>
.
<source>PEDOT, Principles and Applications of an Intrinsically Conductive Polymer.</source>
<fpage>113</fpage>
<lpage>166</lpage>
CRC Press (
<year>2010</year>
).</mixed-citation>
</ref>
<ref id="b42">
<mixed-citation publication-type="journal">
<name>
<surname>Abruna</surname>
<given-names>H. D.</given-names>
</name>
,
<name>
<surname>Kiya</surname>
<given-names>Y.</given-names>
</name>
&
<name>
<surname>Henderson</surname>
<given-names>J. C.</given-names>
</name>
<article-title>Batteries and electrochemical capacitors</article-title>
.
<source>Phys. Today</source>
<volume>61</volume>
,
<fpage>43</fpage>
<lpage>47</lpage>
(
<year>2008</year>
).</mixed-citation>
</ref>
<ref id="b43">
<mixed-citation publication-type="journal">
<name>
<surname>Stavrinidou</surname>
<given-names>E.</given-names>
</name>
<etal></etal>
.
<article-title>Direct measurement of ion mobility in a conducting polymer</article-title>
.
<source>Adv. Mater</source>
in press, doi:10.1002/adma.201301240 (
<year>2013</year>
).</mixed-citation>
</ref>
<ref id="b44">
<mixed-citation publication-type="journal">
<name>
<surname>Khodagholy</surname>
<given-names>D.</given-names>
</name>
<etal></etal>
.
<article-title>
<italic>In vivo</italic>
recordings of brain activity using organic transistors</article-title>
.
<source>Nat. Commun.</source>
<volume>4</volume>
,
<fpage>1575</fpage>
(
<year>2013</year>
).
<pub-id pub-id-type="pmid">23481383</pub-id>
</mixed-citation>
</ref>
<ref id="b45">
<mixed-citation publication-type="journal">
<name>
<surname>Sessolo</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
.
<article-title>Easy-to-fabricate conducting polymer microelectrode arrays</article-title>
.
<source>Adv. Mater.</source>
<volume>25</volume>
,
<fpage>2135</fpage>
<lpage>2139</lpage>
(
<year>2013</year>
).
<pub-id pub-id-type="pmid">23417987</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="f1">
<label>Figure 1</label>
<caption>
<title>Active material and structure of the transistor.</title>
<p>(
<bold>a</bold>
) Chemical structure of PEDOT and PSS. A hole, indicated as a positive polaron on the PEDOT chain, is compensated by a sulphonate ion on the PSS chain. (
<bold>b</bold>
) Schematic of an OECT cross-section and the wiring diagram for device operation. (
<bold>c</bold>
) Optical micrograph of an individual transistor. Scale bar, 10 μm.</p>
</caption>
<graphic xlink:href="ncomms3133-f1"></graphic>
</fig>
<fig id="f2">
<label>Figure 2</label>
<caption>
<title>Steady-state characteristics.</title>
<p>(
<bold>a</bold>
) Output characteristics for
<italic>V</italic>
<sub>G</sub>
varying from 0 (top curve) to +0.5 V (bottom curve) with a step of +0.1 V. (
<bold>b</bold>
) Transfer curve for
<italic>V</italic>
<sub>D</sub>
=−0.6 V, and the associated transconductance.</p>
</caption>
<graphic xlink:href="ncomms3133-f2"></graphic>
</fig>
<fig id="f3">
<label>Figure 3</label>
<caption>
<title>Frequency dependence of the transconductance.</title>
<p>The device was biased with
<italic>V</italic>
<sub>D</sub>
=−0.6 V and
<italic>V</italic>
<sub>G</sub>
=0.3 V, and an additional 100 mV peak-to-peak gate voltage oscillation was applied to measure the small-signal transconductance (open squares). The solid line shows the ionic charge injected in the channel.</p>
</caption>
<graphic xlink:href="ncomms3133-f3"></graphic>
</fig>
<fig id="f4">
<label>Figure 4</label>
<caption>
<title>Resistance to mechanical deformation.</title>
<p>(
<bold>a</bold>
) An array of devices removed from the sacrificial glass substrate (active area shown as boxed region). (
<bold>b</bold>
) The array aggressively crumpled. (
<bold>c</bold>
) The array un-crumpled back to a flat sheet. Scale bar, 1 cm. (
<bold>d</bold>
) Output characteristics and (
<bold>e</bold>
) transfer characteristics for the same device as-prepared (black), after peeling (red) and after crumpling (blue). (
<bold>f</bold>
) Transconductance and time response for devices after peeling (red), and after crumpling (blue), normalized to the performance of each device as-prepared (Error bars represent standard deviation of normalized values for
<italic>N</italic>
=16 devices, on three different substrates).</p>
</caption>
<graphic xlink:href="ncomms3133-f4"></graphic>
</fig>
<table-wrap position="float" id="t1">
<label>Table 1</label>
<caption>
<title>Comparison of the transconductance of various transistors.</title>
</caption>
<table frame="hsides" rules="groups" border="1">
<colgroup>
<col align="left"></col>
<col align="center"></col>
<col align="center"></col>
<col align="center"></col>
<col align="center"></col>
<col align="center"></col>
<col align="center"></col>
<col align="center"></col>
<col align="center"></col>
</colgroup>
<thead valign="bottom">
<tr>
<th align="left" valign="top" charoff="50">
<bold>Active material</bold>
</th>
<th align="center" valign="top" charoff="50">
<bold>Dielectric material</bold>
</th>
<th align="center" valign="top" charoff="50">
<italic>
<bold>W</bold>
</italic>
<bold>(μm)</bold>
</th>
<th align="center" valign="top" charoff="50">
<italic>
<bold>L</bold>
</italic>
<bold>(μm)</bold>
</th>
<th align="center" valign="top" charoff="50">
<bold>|</bold>
<italic>
<bold>V</bold>
</italic>
<sub>
<bold>G</bold>
</sub>
<bold>| (V)</bold>
</th>
<th align="center" valign="top" charoff="50">
<bold>|</bold>
<italic>
<bold>V</bold>
</italic>
<sub>
<bold>D</bold>
</sub>
<bold>| (V)</bold>
</th>
<th align="center" valign="top" charoff="50">
<italic>
<bold>g</bold>
</italic>
<sub>
<bold>m</bold>
</sub>
<bold>(μS)</bold>
</th>
<th align="center" valign="top" charoff="50">
<italic>
<bold>g</bold>
</italic>
<sub>
<italic>
<bold>m</bold>
</italic>
</sub>
<bold>/</bold>
<italic>
<bold>W</bold>
</italic>
<bold>(S m
<sup>−1</sup>
)</bold>
</th>
<th align="center" valign="top" charoff="50">
<italic>
<bold>g</bold>
</italic>
<sub>
<bold>m</bold>
</sub>
<bold>/|</bold>
<italic>
<bold>V</bold>
</italic>
<sub>
<bold>D</bold>
</sub>
<bold>| (μS V
<sup>−1</sup>
)</bold>
</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td colspan="9" align="left" valign="top" charoff="50">
<italic>Aqueous electrolyte</italic>
</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50"> PEDOT:PSS (best)</td>
<td align="center" valign="top" charoff="50">NaCl</td>
<td align="center" valign="top" charoff="50">10</td>
<td align="center" valign="top" charoff="50">10</td>
<td align="center" valign="top" charoff="50">0.2</td>
<td align="center" valign="top" charoff="50">0.6</td>
<td align="center" valign="top" charoff="50">4,020</td>
<td align="center" valign="top" charoff="50">402</td>
<td align="center" valign="top" charoff="50">6,700</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50"> PEDOT:PSS (typical)</td>
<td align="center" valign="top" charoff="50">NaCl</td>
<td align="center" valign="top" charoff="50">10</td>
<td align="center" valign="top" charoff="50">5</td>
<td align="center" valign="top" charoff="50">0.275</td>
<td align="center" valign="top" charoff="50">0.6</td>
<td align="center" valign="top" charoff="50">2,700</td>
<td align="center" valign="top" charoff="50">270</td>
<td align="center" valign="top" charoff="50">4,500</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50"> Graphene
<xref ref-type="bibr" rid="b17">17</xref>
<xref ref-type="bibr" rid="b18">18</xref>
</td>
<td align="center" valign="top" charoff="50">PBS+NaCl</td>
<td align="center" valign="top" charoff="50">40</td>
<td align="center" valign="top" charoff="50">20</td>
<td align="center" valign="top" charoff="50">0.25</td>
<td align="center" valign="top" charoff="50">0.1</td>
<td align="center" valign="top" charoff="50">420</td>
<td align="center" valign="top" charoff="50">11</td>
<td align="center" valign="top" charoff="50">4,200</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50"> Diamond
<xref ref-type="bibr" rid="b19">19</xref>
</td>
<td align="center" valign="top" charoff="50">PBS+KCl (
<italic>in vitro</italic>
)</td>
<td align="center" valign="top" charoff="50">~20</td>
<td align="center" valign="top" charoff="50">~5–20</td>
<td align="center" valign="top" charoff="50">0.22</td>
<td align="center" valign="top" charoff="50">0.2</td>
<td align="center" valign="top" charoff="50">18</td>
<td align="center" valign="top" charoff="50">0.9</td>
<td align="center" valign="top" charoff="50">90</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50"> Silicon
<xref ref-type="bibr" rid="b20">20</xref>
</td>
<td align="center" valign="top" charoff="50">SiO
<sub>2</sub>
/TiO
<sub>2</sub>
(
<italic>in toto</italic>
)</td>
<td align="center" valign="top" charoff="50">20</td>
<td align="center" valign="top" charoff="50">20</td>
<td align="center" valign="top" charoff="50">0.25</td>
<td align="center" valign="top" charoff="50">0.25</td>
<td align="center" valign="top" charoff="50">15</td>
<td align="center" valign="top" charoff="50">0.75</td>
<td align="center" valign="top" charoff="50">60</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50"> Silicon NW
<xref ref-type="bibr" rid="b21">21</xref>
</td>
<td align="center" valign="top" charoff="50">SiO
<sub>2</sub>
, PBS</td>
<td align="center" valign="top" charoff="50">20</td>
<td align="center" valign="top" charoff="50">2</td>
<td align="center" valign="top" charoff="50">~0.4</td>
<td align="center" valign="top" charoff="50">0.03</td>
<td align="center" valign="top" charoff="50">5</td>
<td align="center" valign="top" charoff="50">0.25</td>
<td align="center" valign="top" charoff="50">167</td>
</tr>
<tr>
<td colspan="9" align="center" valign="top" charoff="50"> </td>
</tr>
<tr>
<td colspan="9" align="left" valign="top" charoff="50">
<italic>Ionic liquid/gel, solid electrolyte</italic>
</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50"> ZnO
<xref ref-type="bibr" rid="b22">22</xref>
</td>
<td align="center" valign="top" charoff="50">IL (DEME/TFSI)</td>
<td align="center" valign="top" charoff="50">200</td>
<td align="center" valign="top" charoff="50">500</td>
<td align="center" valign="top" charoff="50">1.2</td>
<td align="center" valign="top" charoff="50">0.1</td>
<td align="center" valign="top" charoff="50">160</td>
<td align="center" valign="top" charoff="50">0.8</td>
<td align="center" valign="top" charoff="50">1,600</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50"> ZnO NW
<xref ref-type="bibr" rid="b23">23</xref>
</td>
<td align="center" valign="top" charoff="50">Solid electrolyte (PVA/LiClO
<sub>4</sub>
)</td>
<td align="center" valign="top" charoff="50">0.018</td>
<td align="center" valign="top" charoff="50">0.94</td>
<td align="center" valign="top" charoff="50">~1.5</td>
<td align="center" valign="top" charoff="50">0.5</td>
<td align="center" valign="top" charoff="50">2.79</td>
<td align="center" valign="top" charoff="50">155</td>
<td align="center" valign="top" charoff="50">5.58</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50"> Organic semiconductor: P3HT
<xref ref-type="bibr" rid="b24">24</xref>
<xref ref-type="bibr" rid="b15">15</xref>
</td>
<td align="center" valign="top" charoff="50">IL (EMIM/TFSI) gel (PS-PEO-PS)</td>
<td align="center" valign="top" charoff="50">100</td>
<td align="center" valign="top" charoff="50">20</td>
<td align="center" valign="top" charoff="50">~4</td>
<td align="center" valign="top" charoff="50">1</td>
<td align="center" valign="top" charoff="50">50</td>
<td align="center" valign="top" charoff="50">0.5</td>
<td align="center" valign="top" charoff="50">50</td>
</tr>
<tr>
<td colspan="9" align="left" valign="top" charoff="50"> </td>
</tr>
<tr>
<td colspan="9" align="left" valign="top" charoff="50">
<italic>Solid-state</italic>
</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50"> ZnO
<xref ref-type="bibr" rid="b25">25</xref>
<xref ref-type="bibr" rid="b26">26</xref>
</td>
<td align="center" valign="top" charoff="50">Al
<sub>2</sub>
O
<sub>3</sub>
</td>
<td align="center" valign="top" charoff="50">50</td>
<td align="center" valign="top" charoff="50">1</td>
<td align="center" valign="top" charoff="50">5.1</td>
<td align="center" valign="top" charoff="50">4</td>
<td align="center" valign="top" charoff="50">1,400</td>
<td align="center" valign="top" charoff="50">28</td>
<td align="center" valign="top" charoff="50">350</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50"> Graphene
<xref ref-type="bibr" rid="b27">27</xref>
<xref ref-type="bibr" rid="b28">28</xref>
<xref ref-type="bibr" rid="b29">29</xref>
</td>
<td align="center" valign="top" charoff="50">SiO
<sub>2</sub>
(BG); Y
<sub>2</sub>
O
<sub>3</sub>
(TG)</td>
<td align="center" valign="top" charoff="50">2.7</td>
<td align="center" valign="top" charoff="50">0.31</td>
<td align="center" valign="top" charoff="50">~1.2</td>
<td align="center" valign="top" charoff="50">2</td>
<td align="center" valign="top" charoff="50">1,863</td>
<td align="center" valign="top" charoff="50">690</td>
<td align="center" valign="top" charoff="50">932</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50"> III–V NW: n-InAs NW
<xref ref-type="bibr" rid="b30">30</xref>
<xref ref-type="bibr" rid="b31">31</xref>
</td>
<td align="center" valign="top" charoff="50">SiN
<sub>
<italic>x</italic>
</sub>
</td>
<td align="center" valign="top" charoff="50">0.05</td>
<td align="center" valign="top" charoff="50">2</td>
<td align="center" valign="top" charoff="50">0.56</td>
<td align="center" valign="top" charoff="50">1</td>
<td align="center" valign="top" charoff="50">97.5</td>
<td align="center" valign="top" charoff="50">1,950</td>
<td align="center" valign="top" charoff="50">98</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50"> III–V Bulk: GaN/InAlN
<xref ref-type="bibr" rid="b32">32</xref>
<xref ref-type="bibr" rid="b33">33</xref>
<xref ref-type="bibr" rid="b34">34</xref>
</td>
<td align="center" valign="top" charoff="50">SiN
<sub>
<italic>x</italic>
</sub>
</td>
<td align="center" valign="top" charoff="50">NR</td>
<td align="center" valign="top" charoff="50">0.06</td>
<td align="center" valign="top" charoff="50">1.75</td>
<td align="center" valign="top" charoff="50">2</td>
<td align="center" valign="top" charoff="50">NR
<xref ref-type="fn" rid="t1-fn3">*</xref>
</td>
<td align="center" valign="top" charoff="50">1,105</td>
<td align="center" valign="top" charoff="50">NR</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50"> Carbon nanotube (mat)
<xref ref-type="bibr" rid="b35">35</xref>
<xref ref-type="bibr" rid="b36">36</xref>
</td>
<td align="center" valign="top" charoff="50">HfO
<sub>2</sub>
</td>
<td align="center" valign="top" charoff="50">10</td>
<td align="center" valign="top" charoff="50">1.5</td>
<td align="center" valign="top" charoff="50">~1</td>
<td align="center" valign="top" charoff="50">0.5</td>
<td align="center" valign="top" charoff="50">50</td>
<td align="center" valign="top" charoff="50">5</td>
<td align="center" valign="top" charoff="50">100</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50"> Organic semiconductor: DNTT
<xref ref-type="bibr" rid="b37">37</xref>
<xref ref-type="bibr" rid="b38">38</xref>
<xref ref-type="bibr" rid="b39">39</xref>
</td>
<td align="center" valign="top" charoff="50">AlO
<sub>
<italic>x</italic>
</sub>
/SAM</td>
<td align="center" valign="top" charoff="50">10</td>
<td align="center" valign="top" charoff="50">1</td>
<td align="center" valign="top" charoff="50">~2</td>
<td align="center" valign="top" charoff="50">2</td>
<td align="center" valign="top" charoff="50">12</td>
<td align="center" valign="top" charoff="50">1.2</td>
<td align="center" valign="top" charoff="50">95</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50"> Silicon NW
<xref ref-type="bibr" rid="b40">40</xref>
</td>
<td align="center" valign="top" charoff="50">SiO
<sub>2</sub>
</td>
<td align="center" valign="top" charoff="50">0.01</td>
<td align="center" valign="top" charoff="50">0.8–2</td>
<td align="center" valign="top" charoff="50">~2–4</td>
<td align="center" valign="top" charoff="50">NR</td>
<td align="center" valign="top" charoff="50">2</td>
<td align="center" valign="top" charoff="50">200</td>
<td align="center" valign="top" charoff="50">NR</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="t1-fn1">
<p>Abbreviations: BG, bottom gate; NR, not reported; TG, top gate; NW, nanowire; PBS, phosphate buffered saline; SAM, self-assembled monolayer.</p>
</fn>
<fn id="t1-fn2">
<p>When BG/TG are both listed the device is operated in the dual gate configuration, and the applied gate voltage listed is the larger of the two. For this statement to hold, the changes described in the table regarding reference citations needs to be returned to the format of the as-submitted table.</p>
</fn>
<fn id="t1-fn3">
<p>
<sup>*</sup>
The GaN/InAlN device shown here shows the highest
<italic>g</italic>
<sub>m</sub>
/
<italic>W</italic>
, but the paper does not report
<italic>W</italic>
, and therefore
<italic>g</italic>
<sub>m</sub>
cannot be calculated. It should be noted that III–V bulk devices with channel widths of 10–100 μm can achieve
<italic>g</italic>
<sub>
<italic>m</italic>
</sub>
values of 30–50 mS
<xref ref-type="bibr" rid="b33">33</xref>
<xref ref-type="bibr" rid="b34">34</xref>
.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</floats-group>
</pmc>
<affiliations>
<list>
<country>
<li>France</li>
</country>
</list>
<tree>
<country name="France">
<noRegion>
<name sortKey="Khodagholy, Dion" sort="Khodagholy, Dion" uniqKey="Khodagholy D" first="Dion" last="Khodagholy">Dion Khodagholy</name>
</noRegion>
<name sortKey="Gurfinkel, Moshe" sort="Gurfinkel, Moshe" uniqKey="Gurfinkel M" first="Moshe" last="Gurfinkel">Moshe Gurfinkel</name>
<name sortKey="Herve, Thierry" sort="Herve, Thierry" uniqKey="Herve T" first="Thierry" last="Herve">Thierry Herve</name>
<name sortKey="Jimison, Leslie H" sort="Jimison, Leslie H" uniqKey="Jimison L" first="Leslie H." last="Jimison">Leslie H. Jimison</name>
<name sortKey="Leleux, Pierre" sort="Leleux, Pierre" uniqKey="Leleux P" first="Pierre" last="Leleux">Pierre Leleux</name>
<name sortKey="Leleux, Pierre" sort="Leleux, Pierre" uniqKey="Leleux P" first="Pierre" last="Leleux">Pierre Leleux</name>
<name sortKey="Leleux, Pierre" sort="Leleux, Pierre" uniqKey="Leleux P" first="Pierre" last="Leleux">Pierre Leleux</name>
<name sortKey="Malliaras, George G" sort="Malliaras, George G" uniqKey="Malliaras G" first="George G." last="Malliaras">George G. Malliaras</name>
<name sortKey="Owens, R Isin M" sort="Owens, R Isin M" uniqKey="Owens R" first="R Isín M." last="Owens">R Isín M. Owens</name>
<name sortKey="Rivnay, Jonathan" sort="Rivnay, Jonathan" uniqKey="Rivnay J" first="Jonathan" last="Rivnay">Jonathan Rivnay</name>
<name sortKey="Sanaur, Sebastien" sort="Sanaur, Sebastien" uniqKey="Sanaur S" first="Sébastien" last="Sanaur">Sébastien Sanaur</name>
<name sortKey="Sessolo, Michele" sort="Sessolo, Michele" uniqKey="Sessolo M" first="Michele" last="Sessolo">Michele Sessolo</name>
<name sortKey="Stavrinidou, Eleni" sort="Stavrinidou, Eleni" uniqKey="Stavrinidou E" first="Eleni" last="Stavrinidou">Eleni Stavrinidou</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002802 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 002802 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     PMC:3717497
   |texte=   High transconductance organic electrochemical transistors
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:23851620" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024