Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modeling soft-tissue deformation prior to cutting for surgical simulation: finite element analysis and study of cutting parameters.

Identifieur interne : 000A97 ( Ncbi/Merge ); précédent : 000A96; suivant : 000A98

Modeling soft-tissue deformation prior to cutting for surgical simulation: finite element analysis and study of cutting parameters.

Auteurs : Teeranoot Chanthasopeephan [Thaïlande] ; Jaydev P. Desai ; Alan C W. Lau

Source :

RBID : pubmed:17355046

English descriptors

Abstract

This paper presents an experimental study to understand the localized soft-tissue deformation phase immediately preceding crack growth as observed during the cutting of soft tissue. Such understanding serves as a building block to enable realistic haptic display in simulation of soft tissue cutting for surgical training. Experiments were conducted for soft tissue cutting with a scalpel blade while monitoring the cutting forces and blade displacement for various cutting speeds and cutting angles. The measured force-displacement curves in all the experiments of scalpel cutting of pig liver sample having a natural bulge in thickness exhibited a characteristic pattern: repeating units formed by a segment of linear loading (deformation) followed by a segment of sudden unloading (localized crack extension in the tissue). During the deformation phase immediately preceding crack extension in the tissue, the deformation resistance of the soft tissue was characterized with the local effective modulus (LEM). By iteratively solving an inverse problem formulated with the experimental data and finite element models, this measure of effective deformation resistance was determined. Then computational experiments of model order reduction were conducted to seek the most computationally efficient model that still retained fidelity. Starting with a 3-D finite element model of the liver specimen, three levels of model order reduction were carried out with computational effort in the ratio of 1.000:0.103:0.038. We also conducted parametric studies to understand the effect of cutting speed and cutting angle on LEM. Results showed that for a given cutting speed, the deformation resistance decreased as the cutting angle was varied from 90 degrees to 45 degrees. For a given cutting angle, the deformation resistance decreased with increase in cutting speed.

DOI: 10.1109/TBME.2006.886937
PubMed: 17355046

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:17355046

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Modeling soft-tissue deformation prior to cutting for surgical simulation: finite element analysis and study of cutting parameters.</title>
<author>
<name sortKey="Chanthasopeephan, Teeranoot" sort="Chanthasopeephan, Teeranoot" uniqKey="Chanthasopeephan T" first="Teeranoot" last="Chanthasopeephan">Teeranoot Chanthasopeephan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mechanical Engineering, King Mongkut's University of Technology, Bangkok 10140, Thailand.</nlm:affiliation>
<country xml:lang="fr">Thaïlande</country>
<wicri:regionArea>Department of Mechanical Engineering, King Mongkut's University of Technology, Bangkok 10140</wicri:regionArea>
<wicri:noRegion>Bangkok 10140</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Desai, Jaydev P" sort="Desai, Jaydev P" uniqKey="Desai J" first="Jaydev P" last="Desai">Jaydev P. Desai</name>
</author>
<author>
<name sortKey="Lau, Alan C W" sort="Lau, Alan C W" uniqKey="Lau A" first="Alan C W" last="Lau">Alan C W. Lau</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17355046</idno>
<idno type="pmid">17355046</idno>
<idno type="doi">10.1109/TBME.2006.886937</idno>
<idno type="wicri:Area/PubMed/Corpus">001681</idno>
<idno type="wicri:Area/PubMed/Curation">001681</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001405</idno>
<idno type="wicri:Area/Ncbi/Merge">000A97</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Modeling soft-tissue deformation prior to cutting for surgical simulation: finite element analysis and study of cutting parameters.</title>
<author>
<name sortKey="Chanthasopeephan, Teeranoot" sort="Chanthasopeephan, Teeranoot" uniqKey="Chanthasopeephan T" first="Teeranoot" last="Chanthasopeephan">Teeranoot Chanthasopeephan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mechanical Engineering, King Mongkut's University of Technology, Bangkok 10140, Thailand.</nlm:affiliation>
<country xml:lang="fr">Thaïlande</country>
<wicri:regionArea>Department of Mechanical Engineering, King Mongkut's University of Technology, Bangkok 10140</wicri:regionArea>
<wicri:noRegion>Bangkok 10140</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Desai, Jaydev P" sort="Desai, Jaydev P" uniqKey="Desai J" first="Jaydev P" last="Desai">Jaydev P. Desai</name>
</author>
<author>
<name sortKey="Lau, Alan C W" sort="Lau, Alan C W" uniqKey="Lau A" first="Alan C W" last="Lau">Alan C W. Lau</name>
</author>
</analytic>
<series>
<title level="j">IEEE transactions on bio-medical engineering</title>
<idno type="ISSN">0018-9294</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Computer Simulation</term>
<term>Elasticity</term>
<term>Finite Element Analysis</term>
<term>Hepatectomy (methods)</term>
<term>Humans</term>
<term>In Vitro Techniques</term>
<term>Liver (physiology)</term>
<term>Liver (surgery)</term>
<term>Models, Biological</term>
<term>Stress, Mechanical</term>
<term>Surgery, Computer-Assisted (methods)</term>
<term>Swine</term>
<term>User-Computer Interface</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Hepatectomy</term>
<term>Surgery, Computer-Assisted</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Liver</term>
</keywords>
<keywords scheme="MESH" qualifier="surgery" xml:lang="en">
<term>Liver</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Computer Simulation</term>
<term>Elasticity</term>
<term>Finite Element Analysis</term>
<term>Humans</term>
<term>In Vitro Techniques</term>
<term>Models, Biological</term>
<term>Stress, Mechanical</term>
<term>Swine</term>
<term>User-Computer Interface</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper presents an experimental study to understand the localized soft-tissue deformation phase immediately preceding crack growth as observed during the cutting of soft tissue. Such understanding serves as a building block to enable realistic haptic display in simulation of soft tissue cutting for surgical training. Experiments were conducted for soft tissue cutting with a scalpel blade while monitoring the cutting forces and blade displacement for various cutting speeds and cutting angles. The measured force-displacement curves in all the experiments of scalpel cutting of pig liver sample having a natural bulge in thickness exhibited a characteristic pattern: repeating units formed by a segment of linear loading (deformation) followed by a segment of sudden unloading (localized crack extension in the tissue). During the deformation phase immediately preceding crack extension in the tissue, the deformation resistance of the soft tissue was characterized with the local effective modulus (LEM). By iteratively solving an inverse problem formulated with the experimental data and finite element models, this measure of effective deformation resistance was determined. Then computational experiments of model order reduction were conducted to seek the most computationally efficient model that still retained fidelity. Starting with a 3-D finite element model of the liver specimen, three levels of model order reduction were carried out with computational effort in the ratio of 1.000:0.103:0.038. We also conducted parametric studies to understand the effect of cutting speed and cutting angle on LEM. Results showed that for a given cutting speed, the deformation resistance decreased as the cutting angle was varied from 90 degrees to 45 degrees. For a given cutting angle, the deformation resistance decreased with increase in cutting speed.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">17355046</PMID>
<DateCreated>
<Year>2007</Year>
<Month>03</Month>
<Day>14</Day>
</DateCreated>
<DateCompleted>
<Year>2007</Year>
<Month>12</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>11</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0018-9294</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>54</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2007</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>IEEE transactions on bio-medical engineering</Title>
<ISOAbbreviation>IEEE Trans Biomed Eng</ISOAbbreviation>
</Journal>
<ArticleTitle>Modeling soft-tissue deformation prior to cutting for surgical simulation: finite element analysis and study of cutting parameters.</ArticleTitle>
<Pagination>
<MedlinePgn>349-59</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>This paper presents an experimental study to understand the localized soft-tissue deformation phase immediately preceding crack growth as observed during the cutting of soft tissue. Such understanding serves as a building block to enable realistic haptic display in simulation of soft tissue cutting for surgical training. Experiments were conducted for soft tissue cutting with a scalpel blade while monitoring the cutting forces and blade displacement for various cutting speeds and cutting angles. The measured force-displacement curves in all the experiments of scalpel cutting of pig liver sample having a natural bulge in thickness exhibited a characteristic pattern: repeating units formed by a segment of linear loading (deformation) followed by a segment of sudden unloading (localized crack extension in the tissue). During the deformation phase immediately preceding crack extension in the tissue, the deformation resistance of the soft tissue was characterized with the local effective modulus (LEM). By iteratively solving an inverse problem formulated with the experimental data and finite element models, this measure of effective deformation resistance was determined. Then computational experiments of model order reduction were conducted to seek the most computationally efficient model that still retained fidelity. Starting with a 3-D finite element model of the liver specimen, three levels of model order reduction were carried out with computational effort in the ratio of 1.000:0.103:0.038. We also conducted parametric studies to understand the effect of cutting speed and cutting angle on LEM. Results showed that for a given cutting speed, the deformation resistance decreased as the cutting angle was varied from 90 degrees to 45 degrees. For a given cutting angle, the deformation resistance decreased with increase in cutting speed.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chanthasopeephan</LastName>
<ForeName>Teeranoot</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Mechanical Engineering, King Mongkut's University of Technology, Bangkok 10140, Thailand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Desai</LastName>
<ForeName>Jaydev P</ForeName>
<Initials>JP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lau</LastName>
<ForeName>Alan C W</ForeName>
<Initials>AC</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>IEEE Trans Biomed Eng</MedlineTA>
<NlmUniqueID>0012737</NlmUniqueID>
<ISSNLinking>0018-9294</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003198">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004548">Elasticity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D020342">Finite Element Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006498">Hepatectomy</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D066298">In Vitro Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008099">Liver</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000601">surgery</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D008954">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013314">Stress, Mechanical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D025321">Surgery, Computer-Assisted</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013552">Swine</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D014584">User-Computer Interface</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>3</Month>
<Day>16</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>3</Month>
<Day>16</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17355046</ArticleId>
<ArticleId IdType="doi">10.1109/TBME.2006.886937</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Thaïlande</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Desai, Jaydev P" sort="Desai, Jaydev P" uniqKey="Desai J" first="Jaydev P" last="Desai">Jaydev P. Desai</name>
<name sortKey="Lau, Alan C W" sort="Lau, Alan C W" uniqKey="Lau A" first="Alan C W" last="Lau">Alan C W. Lau</name>
</noCountry>
<country name="Thaïlande">
<noRegion>
<name sortKey="Chanthasopeephan, Teeranoot" sort="Chanthasopeephan, Teeranoot" uniqKey="Chanthasopeephan T" first="Teeranoot" last="Chanthasopeephan">Teeranoot Chanthasopeephan</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A97 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 000A97 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:17355046
   |texte=   Modeling soft-tissue deformation prior to cutting for surgical simulation: finite element analysis and study of cutting parameters.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:17355046" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024