Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Haptic discrimination of object shape in humans: two-dimensional angle discrimination.

Identifieur interne : 000308 ( Ncbi/Merge ); précédent : 000307; suivant : 000309

Haptic discrimination of object shape in humans: two-dimensional angle discrimination.

Auteurs : Julien Voisin [Canada] ; Geneviève Benoit ; C Elaine Chapman

Source :

RBID : pubmed:12110965

English descriptors

Abstract

The human ability to recognize objects on the basis of their shape, as defined by active exploratory movements, is dependent on sensory feedback from mechanoreceptors located both in the skin and in deep structures ( haptic feedback). Surprisingly, we have little information about the mechanisms for integrating these different signals into a single sensory percept. With the eventual aim of studying the underlying central neural mechanisms, we developed a shape discrimination test that required active exploration of objects, but was restricted to one component of shape, two-dimensional (2D) angles. The angles were machined from 1-cm-thick Plexiglas, and consisted of two 8-cm-long arms that met to form an angle of 90 degrees (standard) or 91 degrees to 103 degrees (comparison angles). Subjects scanned pairs of angles with the index finger of the outstretched arm and identified the larger angle of each pair explored. Discrimination threshold (75% correct) was 4.7 degrees (range 0.7 degrees to 12.1 degrees), giving a precision of 5.2% (0.8-13.4%: difference/standard). Repeated blocks of trials, either in the same session or on different days, had no effect on discrimination threshold. In contrast, the motor strategy was partly modified: scanning speed increased but dwell-time at the intersection did not change. Finally, 2D angle discrimination was not significantly modified by rotating the orientation of one of the angles in the pair (0 degrees, 4 degrees or 8 degrees rotation towards the midline, in the vertical plane), providing evidence that subjects evaluated each angle independently in each trial. Subject reports indicated that they relied on cutaneous feedback from the exploring digit (amount of compression of the finger at the angle) and mental images of the angles, most likely arising from proprioceptive information (from the shoulder) generated during the to-and-fro scans over the angle. In terms of shoulder angles, the mean discrimination threshold here was 0.54 degrees (range 0.08 degrees to 1.36 degrees). These values are lower than previous estimates of position sense at the shoulder. In light of the subjects' strategies, it therefore seems likely that both cutaneous and proprioceptive (including both dynamic and static position-related signals) feedback contributed to the haptic discrimination of 2D angles.

DOI: 10.1007/s00221-002-1117-6
PubMed: 12110965

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:12110965

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Haptic discrimination of object shape in humans: two-dimensional angle discrimination.</title>
<author>
<name sortKey="Voisin, Julien" sort="Voisin, Julien" uniqKey="Voisin J" first="Julien" last="Voisin">Julien Voisin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre de recherche en sciences neurologiques, Département de physiologie, Faculté de médecine, Université de Montréal, PO Box 6128, Succursale centre ville, Montréal, Québec H3C 3J7, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre de recherche en sciences neurologiques, Département de physiologie, Faculté de médecine, Université de Montréal, PO Box 6128, Succursale centre ville, Montréal, Québec H3C 3J7</wicri:regionArea>
<wicri:noRegion>Québec H3C 3J7</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Benoit, Genevieve" sort="Benoit, Genevieve" uniqKey="Benoit G" first="Geneviève" last="Benoit">Geneviève Benoit</name>
</author>
<author>
<name sortKey="Chapman, C Elaine" sort="Chapman, C Elaine" uniqKey="Chapman C" first="C Elaine" last="Chapman">C Elaine Chapman</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2002">2002</date>
<idno type="RBID">pubmed:12110965</idno>
<idno type="pmid">12110965</idno>
<idno type="doi">10.1007/s00221-002-1117-6</idno>
<idno type="wicri:Area/PubMed/Corpus">001C69</idno>
<idno type="wicri:Area/PubMed/Curation">001C69</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001A22</idno>
<idno type="wicri:Area/Ncbi/Merge">000308</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Haptic discrimination of object shape in humans: two-dimensional angle discrimination.</title>
<author>
<name sortKey="Voisin, Julien" sort="Voisin, Julien" uniqKey="Voisin J" first="Julien" last="Voisin">Julien Voisin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre de recherche en sciences neurologiques, Département de physiologie, Faculté de médecine, Université de Montréal, PO Box 6128, Succursale centre ville, Montréal, Québec H3C 3J7, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre de recherche en sciences neurologiques, Département de physiologie, Faculté de médecine, Université de Montréal, PO Box 6128, Succursale centre ville, Montréal, Québec H3C 3J7</wicri:regionArea>
<wicri:noRegion>Québec H3C 3J7</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Benoit, Genevieve" sort="Benoit, Genevieve" uniqKey="Benoit G" first="Geneviève" last="Benoit">Geneviève Benoit</name>
</author>
<author>
<name sortKey="Chapman, C Elaine" sort="Chapman, C Elaine" uniqKey="Chapman C" first="C Elaine" last="Chapman">C Elaine Chapman</name>
</author>
</analytic>
<series>
<title level="j">Experimental brain research</title>
<idno type="ISSN">0014-4819</idno>
<imprint>
<date when="2002" type="published">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult</term>
<term>Analysis of Variance</term>
<term>Discrimination (Psychology) (physiology)</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Recognition (Psychology) (physiology)</term>
<term>Touch (physiology)</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Discrimination (Psychology)</term>
<term>Recognition (Psychology)</term>
<term>Touch</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Analysis of Variance</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The human ability to recognize objects on the basis of their shape, as defined by active exploratory movements, is dependent on sensory feedback from mechanoreceptors located both in the skin and in deep structures ( haptic feedback). Surprisingly, we have little information about the mechanisms for integrating these different signals into a single sensory percept. With the eventual aim of studying the underlying central neural mechanisms, we developed a shape discrimination test that required active exploration of objects, but was restricted to one component of shape, two-dimensional (2D) angles. The angles were machined from 1-cm-thick Plexiglas, and consisted of two 8-cm-long arms that met to form an angle of 90 degrees (standard) or 91 degrees to 103 degrees (comparison angles). Subjects scanned pairs of angles with the index finger of the outstretched arm and identified the larger angle of each pair explored. Discrimination threshold (75% correct) was 4.7 degrees (range 0.7 degrees to 12.1 degrees), giving a precision of 5.2% (0.8-13.4%: difference/standard). Repeated blocks of trials, either in the same session or on different days, had no effect on discrimination threshold. In contrast, the motor strategy was partly modified: scanning speed increased but dwell-time at the intersection did not change. Finally, 2D angle discrimination was not significantly modified by rotating the orientation of one of the angles in the pair (0 degrees, 4 degrees or 8 degrees rotation towards the midline, in the vertical plane), providing evidence that subjects evaluated each angle independently in each trial. Subject reports indicated that they relied on cutaneous feedback from the exploring digit (amount of compression of the finger at the angle) and mental images of the angles, most likely arising from proprioceptive information (from the shoulder) generated during the to-and-fro scans over the angle. In terms of shoulder angles, the mean discrimination threshold here was 0.54 degrees (range 0.08 degrees to 1.36 degrees). These values are lower than previous estimates of position sense at the shoulder. In light of the subjects' strategies, it therefore seems likely that both cutaneous and proprioceptive (including both dynamic and static position-related signals) feedback contributed to the haptic discrimination of 2D angles.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">12110965</PMID>
<DateCreated>
<Year>2002</Year>
<Month>07</Month>
<Day>11</Day>
</DateCreated>
<DateCompleted>
<Year>2002</Year>
<Month>10</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>12</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0014-4819</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>145</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2002</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Experimental brain research</Title>
<ISOAbbreviation>Exp Brain Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Haptic discrimination of object shape in humans: two-dimensional angle discrimination.</ArticleTitle>
<Pagination>
<MedlinePgn>239-50</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The human ability to recognize objects on the basis of their shape, as defined by active exploratory movements, is dependent on sensory feedback from mechanoreceptors located both in the skin and in deep structures ( haptic feedback). Surprisingly, we have little information about the mechanisms for integrating these different signals into a single sensory percept. With the eventual aim of studying the underlying central neural mechanisms, we developed a shape discrimination test that required active exploration of objects, but was restricted to one component of shape, two-dimensional (2D) angles. The angles were machined from 1-cm-thick Plexiglas, and consisted of two 8-cm-long arms that met to form an angle of 90 degrees (standard) or 91 degrees to 103 degrees (comparison angles). Subjects scanned pairs of angles with the index finger of the outstretched arm and identified the larger angle of each pair explored. Discrimination threshold (75% correct) was 4.7 degrees (range 0.7 degrees to 12.1 degrees), giving a precision of 5.2% (0.8-13.4%: difference/standard). Repeated blocks of trials, either in the same session or on different days, had no effect on discrimination threshold. In contrast, the motor strategy was partly modified: scanning speed increased but dwell-time at the intersection did not change. Finally, 2D angle discrimination was not significantly modified by rotating the orientation of one of the angles in the pair (0 degrees, 4 degrees or 8 degrees rotation towards the midline, in the vertical plane), providing evidence that subjects evaluated each angle independently in each trial. Subject reports indicated that they relied on cutaneous feedback from the exploring digit (amount of compression of the finger at the angle) and mental images of the angles, most likely arising from proprioceptive information (from the shoulder) generated during the to-and-fro scans over the angle. In terms of shoulder angles, the mean discrimination threshold here was 0.54 degrees (range 0.08 degrees to 1.36 degrees). These values are lower than previous estimates of position sense at the shoulder. In light of the subjects' strategies, it therefore seems likely that both cutaneous and proprioceptive (including both dynamic and static position-related signals) feedback contributed to the haptic discrimination of 2D angles.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Voisin</LastName>
<ForeName>Julien</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Centre de recherche en sciences neurologiques, Département de physiologie, Faculté de médecine, Université de Montréal, PO Box 6128, Succursale centre ville, Montréal, Québec H3C 3J7, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Benoit</LastName>
<ForeName>Geneviève</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chapman</LastName>
<ForeName>C Elaine</ForeName>
<Initials>CE</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2002</Year>
<Month>05</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Exp Brain Res</MedlineTA>
<NlmUniqueID>0043312</NlmUniqueID>
<ISSNLinking>0014-4819</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000328">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000704">Analysis of Variance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004192">Discrimination (Psychology)</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005260">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D021641">Recognition (Psychology)</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014110">Touch</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2002</Year>
<Month>7</Month>
<Day>12</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2002</Year>
<Month>10</Month>
<Day>3</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="received">
<Year>2001</Year>
<Month>Nov</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2002</Year>
<Month>Mar</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2002</Year>
<Month>May</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2002</Year>
<Month>7</Month>
<Day>12</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">12110965</ArticleId>
<ArticleId IdType="doi">10.1007/s00221-002-1117-6</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Benoit, Genevieve" sort="Benoit, Genevieve" uniqKey="Benoit G" first="Geneviève" last="Benoit">Geneviève Benoit</name>
<name sortKey="Chapman, C Elaine" sort="Chapman, C Elaine" uniqKey="Chapman C" first="C Elaine" last="Chapman">C Elaine Chapman</name>
</noCountry>
<country name="Canada">
<noRegion>
<name sortKey="Voisin, Julien" sort="Voisin, Julien" uniqKey="Voisin J" first="Julien" last="Voisin">Julien Voisin</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000308 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 000308 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:12110965
   |texte=   Haptic discrimination of object shape in humans: two-dimensional angle discrimination.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:12110965" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024