Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Biofeedback improves postural control recovery from multi-axis discrete perturbations

Identifieur interne : 002174 ( Ncbi/Curation ); précédent : 002173; suivant : 002175

Biofeedback improves postural control recovery from multi-axis discrete perturbations

Auteurs : Kathleen H. Sienko [États-Unis] ; M David Balkwill [États-Unis] ; Conrad Wall [États-Unis]

Source :

RBID : PMC:3477042

Abstract

Background

Multi-axis vibrotactile feedback has been shown to significantly reduce the root-mean-square (RMS) sway, elliptical fits to sway trajectory area, and the time spent outside of the no feedback zone in individuals with vestibular deficits during continuous multidirectional support surface perturbations. The purpose of this study was to examine the effect of multidirectional vibrotactile biofeedback on postural stability during discrete multidirectional support surface perturbations.

Methods

The vibrotactile biofeedback device mapped tilt estimates onto the torso using a 3-row by 16-column tactor array. The number of columns displayed was varied to determine the effect of spatial resolution upon subject response. Torso kinematics and center of pressure data were measured in six subjects with vestibular deficits. Transient and steady state postural responses with and without feedback were characterized in response to eight perturbation directions. Four feedback conditions in addition to the tactors off (no feedback) configuration were evaluated. Postural response data captured by both a force plate and an inertial measurement unit worn on the torso were partitioned into three distinct phases: ballistic, recovery, and steady state.

Results

The results suggest that feedback has minimal effects during the ballistic phase (body’s outbound trajectory in response to the perturbation), and the greatest effects during the recovery (return toward baseline) and steady state (post-recovery) phases. Specifically, feedback significantly decreases the time required for the body tilt to return to baseline values and significantly increases the velocity of the body’s return to baseline values. Furthermore, feedback significantly decreases root mean square roll and pitch sway and significantly increases the amount of time spent in the no feedback zone. All four feedback conditions produced comparable performance improvements. Incidences of delayed and uncontrolled responses were significantly reduced with feedback while erroneous (sham) feedback resulted in poorer performance when compared with the no feedback condition.

Conclusions

The results show that among the displays evaluated in this study, no one tactor column configuration was optimal for standing tasks involving discrete surface perturbations. Feedback produced larger effects on body tilt versus center of pressure parameters. Furthermore, the subjects’ performance worsened when erroneous feedback was provided, suggesting that vibrotactile stimulation applied to the torso is actively processed and acted upon rather than being responsible for simply triggering a stiffening response.


Url:
DOI: 10.1186/1743-0003-9-53
PubMed: 22863399
PubMed Central: 3477042

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:3477042

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Biofeedback improves postural control recovery from multi-axis discrete perturbations</title>
<author>
<name sortKey="Sienko, Kathleen H" sort="Sienko, Kathleen H" uniqKey="Sienko K" first="Kathleen H" last="Sienko">Kathleen H. Sienko</name>
<affiliation wicri:level="2">
<nlm:aff id="I1">Massachusetts Institute of Technology, Cambridge, MA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Massachusetts Institute of Technology, Cambridge, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="I2">Jenks Vestibular Diagnostic Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Jenks Vestibular Diagnostic Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="I4">Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="I5">Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Balkwill, M David" sort="Balkwill, M David" uniqKey="Balkwill M" first="M David" last="Balkwill">M David Balkwill</name>
<affiliation wicri:level="2">
<nlm:aff id="I2">Jenks Vestibular Diagnostic Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Jenks Vestibular Diagnostic Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wall, Conrad" sort="Wall, Conrad" uniqKey="Wall C" first="Conrad" last="Wall">Conrad Wall</name>
<affiliation wicri:level="2">
<nlm:aff id="I2">Jenks Vestibular Diagnostic Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Jenks Vestibular Diagnostic Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="I3">Department of Otology & Laryngology, Harvard Medical School, Boston, MA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Otology & Laryngology, Harvard Medical School, Boston, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">22863399</idno>
<idno type="pmc">3477042</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3477042</idno>
<idno type="RBID">PMC:3477042</idno>
<idno type="doi">10.1186/1743-0003-9-53</idno>
<date when="2012">2012</date>
<idno type="wicri:Area/Pmc/Corpus">001256</idno>
<idno type="wicri:Area/Pmc/Curation">001256</idno>
<idno type="wicri:Area/Pmc/Checkpoint">001833</idno>
<idno type="wicri:Area/Ncbi/Merge">002174</idno>
<idno type="wicri:Area/Ncbi/Curation">002174</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Biofeedback improves postural control recovery from multi-axis discrete perturbations</title>
<author>
<name sortKey="Sienko, Kathleen H" sort="Sienko, Kathleen H" uniqKey="Sienko K" first="Kathleen H" last="Sienko">Kathleen H. Sienko</name>
<affiliation wicri:level="2">
<nlm:aff id="I1">Massachusetts Institute of Technology, Cambridge, MA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Massachusetts Institute of Technology, Cambridge, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="I2">Jenks Vestibular Diagnostic Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Jenks Vestibular Diagnostic Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="I4">Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="I5">Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Balkwill, M David" sort="Balkwill, M David" uniqKey="Balkwill M" first="M David" last="Balkwill">M David Balkwill</name>
<affiliation wicri:level="2">
<nlm:aff id="I2">Jenks Vestibular Diagnostic Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Jenks Vestibular Diagnostic Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wall, Conrad" sort="Wall, Conrad" uniqKey="Wall C" first="Conrad" last="Wall">Conrad Wall</name>
<affiliation wicri:level="2">
<nlm:aff id="I2">Jenks Vestibular Diagnostic Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Jenks Vestibular Diagnostic Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="I3">Department of Otology & Laryngology, Harvard Medical School, Boston, MA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Otology & Laryngology, Harvard Medical School, Boston, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of NeuroEngineering and Rehabilitation</title>
<idno type="eISSN">1743-0003</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Background</title>
<p>Multi-axis vibrotactile feedback has been shown to significantly reduce the root-mean-square (RMS) sway, elliptical fits to sway trajectory area, and the time spent outside of the no feedback zone in individuals with vestibular deficits during continuous multidirectional support surface perturbations. The purpose of this study was to examine the effect of multidirectional vibrotactile biofeedback on postural stability during discrete multidirectional support surface perturbations.</p>
</sec>
<sec>
<title>Methods</title>
<p>The vibrotactile biofeedback device mapped tilt estimates onto the torso using a 3-row by 16-column tactor array. The number of columns displayed was varied to determine the effect of spatial resolution upon subject response. Torso kinematics and center of pressure data were measured in six subjects with vestibular deficits. Transient and steady state postural responses with and without feedback were characterized in response to eight perturbation directions. Four feedback conditions in addition to the tactors off (no feedback) configuration were evaluated. Postural response data captured by both a force plate and an inertial measurement unit worn on the torso were partitioned into three distinct phases: ballistic, recovery, and steady state.</p>
</sec>
<sec>
<title>Results</title>
<p>The results suggest that feedback has minimal effects during the ballistic phase (body’s outbound trajectory in response to the perturbation), and the greatest effects during the recovery (return toward baseline) and steady state (post-recovery) phases. Specifically, feedback significantly decreases the time required for the body tilt to return to baseline values and significantly increases the velocity of the body’s return to baseline values. Furthermore, feedback significantly decreases root mean square roll and pitch sway and significantly increases the amount of time spent in the no feedback zone. All four feedback conditions produced comparable performance improvements. Incidences of delayed and uncontrolled responses were significantly reduced with feedback while erroneous (sham) feedback resulted in poorer performance when compared with the no feedback condition.</p>
</sec>
<sec>
<title>Conclusions</title>
<p>The results show that among the displays evaluated in this study, no one tactor column configuration was optimal for standing tasks involving discrete surface perturbations. Feedback produced larger effects on body tilt versus center of pressure parameters. Furthermore, the subjects’ performance worsened when erroneous feedback was provided, suggesting that vibrotactile stimulation applied to the torso is actively processed and acted upon rather than being responsible for simply triggering a stiffening response.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Wall, C" uniqKey="Wall C">C Wall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tyler, M" uniqKey="Tyler M">M Tyler</name>
</author>
<author>
<name sortKey="Danilov, Y" uniqKey="Danilov Y">Y Danilov</name>
</author>
<author>
<name sortKey="Bach Y Rita, P" uniqKey="Bach Y Rita P">P Bach-y-Rita</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nitz, Jc" uniqKey="Nitz J">JC Nitz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dozza, M" uniqKey="Dozza M">M Dozza</name>
</author>
<author>
<name sortKey="Chiari, L" uniqKey="Chiari L">L Chiari</name>
</author>
<author>
<name sortKey="Horak, Fb" uniqKey="Horak F">FB Horak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Verhoeff, Ll" uniqKey="Verhoeff L">LL Verhoeff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bechly, K" uniqKey="Bechly K">K Bechly</name>
</author>
<author>
<name sortKey="Carender, W" uniqKey="Carender W">W Carender</name>
</author>
<author>
<name sortKey="Myles, J" uniqKey="Myles J">J Myles</name>
</author>
<author>
<name sortKey="Sienko, Kh" uniqKey="Sienko K">KH Sienko</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Janssen, M" uniqKey="Janssen M">M Janssen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wall, C" uniqKey="Wall C">C Wall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Erp, J" uniqKey="Van Erp J">J Van Erp</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cholewiak, Rw" uniqKey="Cholewiak R">RW Cholewiak</name>
</author>
<author>
<name sortKey="Brill, Jc" uniqKey="Brill J">JC Brill</name>
</author>
<author>
<name sortKey="Schwab, A" uniqKey="Schwab A">A Schwab</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kadkade, P" uniqKey="Kadkade P">P Kadkade</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nashner, L" uniqKey="Nashner L">L Nashner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goebel, Ja" uniqKey="Goebel J">JA Goebel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kentala, E" uniqKey="Kentala E">E Kentala</name>
</author>
<author>
<name sortKey="Vivas, J" uniqKey="Vivas J">J Vivas</name>
</author>
<author>
<name sortKey="Wall, C" uniqKey="Wall C">C Wall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wall, C" uniqKey="Wall C">C Wall</name>
</author>
<author>
<name sortKey="Kentala, E" uniqKey="Kentala E">E Kentala</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sienko, Kh" uniqKey="Sienko K">KH Sienko</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sienko, Kh" uniqKey="Sienko K">KH Sienko</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wall, C" uniqKey="Wall C">C Wall</name>
</author>
<author>
<name sortKey="Kentala, E" uniqKey="Kentala E">E Kentala</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oddsson, Li" uniqKey="Oddsson L">LI Oddsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Winter, Da" uniqKey="Winter D">DA Winter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dimitri, Ps" uniqKey="Dimitri P">PS Dimitri</name>
</author>
<author>
<name sortKey="Wall, C" uniqKey="Wall C">C Wall</name>
</author>
<author>
<name sortKey="Oas, Jg" uniqKey="Oas J">JG Oas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dimitri, Ps" uniqKey="Dimitri P">PS Dimitri</name>
</author>
<author>
<name sortKey="Wall, C" uniqKey="Wall C">C Wall</name>
</author>
<author>
<name sortKey="Rauch, Sd" uniqKey="Rauch S">SD Rauch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Bc" uniqKey="Lee B">BC Lee</name>
</author>
<author>
<name sortKey="Kim, J" uniqKey="Kim J">J Kim</name>
</author>
<author>
<name sortKey="Chen, S" uniqKey="Chen S">S Chen</name>
</author>
<author>
<name sortKey="Sienko, Kh" uniqKey="Sienko K">KH Sienko</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Ncbi/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002174 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Curation/biblio.hfd -nk 002174 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Ncbi
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:3477042
   |texte=   Biofeedback improves postural control recovery from multi-axis discrete perturbations
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Curation/RBID.i   -Sk "pubmed:22863399" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024