Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Robotic neurorehabilitation: a computational motor learning perspective

Identifieur interne : 001057 ( Ncbi/Curation ); précédent : 001056; suivant : 001058

Robotic neurorehabilitation: a computational motor learning perspective

Auteurs : Vincent S. Huang [États-Unis] ; John W. Krakauer [États-Unis]

Source :

RBID : PMC:2653497

Abstract

Conventional neurorehabilitation appears to have little impact on impairment over and above that of spontaneous biological recovery. Robotic neurorehabilitation has the potential for a greater impact on impairment due to easy deployment, its applicability across of a wide range of motor impairment, its high measurement reliability, and the capacity to deliver high dosage and high intensity training protocols.

We first describe current knowledge of the natural history of arm recovery after stroke and of outcome prediction in individual patients. Rehabilitation strategies and outcome measures for impairment versus function are compared. The topics of dosage, intensity, and time of rehabilitation are then discussed.

Robots are particularly suitable for both rigorous testing and application of motor learning principles to neurorehabilitation. Computational motor control and learning principles derived from studies in healthy subjects are introduced in the context of robotic neurorehabilitation. Particular attention is paid to the idea of context, task generalization and training schedule. The assumptions that underlie the choice of both movement trajectory programmed into the robot and the degree of active participation required by subjects are examined. We consider rehabilitation as a general learning problem, and examine it from the perspective of theoretical learning frameworks such as supervised and unsupervised learning. We discuss the limitations of current robotic neurorehabilitation paradigms and suggest new research directions from the perspective of computational motor learning.


Url:
DOI: 10.1186/1743-0003-6-5
PubMed: 19243614
PubMed Central: 2653497

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:2653497

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Robotic neurorehabilitation: a computational motor learning perspective</title>
<author>
<name sortKey="Huang, Vincent S" sort="Huang, Vincent S" uniqKey="Huang V" first="Vincent S" last="Huang">Vincent S. Huang</name>
<affiliation wicri:level="2">
<nlm:aff id="I1">Motor Performance Laboratory, Department of Neurology, The Neurological Institute, Columbia University College of Physicians and Surgeons, New York, New York, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Motor Performance Laboratory, Department of Neurology, The Neurological Institute, Columbia University College of Physicians and Surgeons, New York, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Krakauer, John W" sort="Krakauer, John W" uniqKey="Krakauer J" first="John W" last="Krakauer">John W. Krakauer</name>
<affiliation wicri:level="2">
<nlm:aff id="I1">Motor Performance Laboratory, Department of Neurology, The Neurological Institute, Columbia University College of Physicians and Surgeons, New York, New York, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Motor Performance Laboratory, Department of Neurology, The Neurological Institute, Columbia University College of Physicians and Surgeons, New York, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">19243614</idno>
<idno type="pmc">2653497</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2653497</idno>
<idno type="RBID">PMC:2653497</idno>
<idno type="doi">10.1186/1743-0003-6-5</idno>
<date when="2009">2009</date>
<idno type="wicri:Area/Pmc/Corpus">000B87</idno>
<idno type="wicri:Area/Pmc/Curation">000B87</idno>
<idno type="wicri:Area/Pmc/Checkpoint">002056</idno>
<idno type="wicri:Area/Ncbi/Merge">001057</idno>
<idno type="wicri:Area/Ncbi/Curation">001057</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Robotic neurorehabilitation: a computational motor learning perspective</title>
<author>
<name sortKey="Huang, Vincent S" sort="Huang, Vincent S" uniqKey="Huang V" first="Vincent S" last="Huang">Vincent S. Huang</name>
<affiliation wicri:level="2">
<nlm:aff id="I1">Motor Performance Laboratory, Department of Neurology, The Neurological Institute, Columbia University College of Physicians and Surgeons, New York, New York, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Motor Performance Laboratory, Department of Neurology, The Neurological Institute, Columbia University College of Physicians and Surgeons, New York, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Krakauer, John W" sort="Krakauer, John W" uniqKey="Krakauer J" first="John W" last="Krakauer">John W. Krakauer</name>
<affiliation wicri:level="2">
<nlm:aff id="I1">Motor Performance Laboratory, Department of Neurology, The Neurological Institute, Columbia University College of Physicians and Surgeons, New York, New York, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Motor Performance Laboratory, Department of Neurology, The Neurological Institute, Columbia University College of Physicians and Surgeons, New York, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of NeuroEngineering and Rehabilitation</title>
<idno type="eISSN">1743-0003</idno>
<imprint>
<date when="2009">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Conventional neurorehabilitation appears to have little impact on impairment over and above that of spontaneous biological recovery. Robotic neurorehabilitation has the potential for a greater impact on impairment due to easy deployment, its applicability across of a wide range of motor impairment, its high measurement reliability, and the capacity to deliver high dosage and high intensity training protocols.</p>
<p>We first describe current knowledge of the natural history of arm recovery after stroke and of outcome prediction in individual patients. Rehabilitation strategies and outcome measures for impairment versus function are compared. The topics of dosage, intensity, and time of rehabilitation are then discussed.</p>
<p>Robots are particularly suitable for both rigorous testing and application of motor learning principles to neurorehabilitation. Computational motor control and learning principles derived from studies in healthy subjects are introduced in the context of robotic neurorehabilitation. Particular attention is paid to the idea of context, task generalization and training schedule. The assumptions that underlie the choice of both movement trajectory programmed into the robot and the degree of active participation required by subjects are examined. We consider rehabilitation as a general learning problem, and examine it from the perspective of theoretical learning frameworks such as supervised and unsupervised learning. We discuss the limitations of current robotic neurorehabilitation paradigms and suggest new research directions from the perspective of computational motor learning.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Ncbi/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001057 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Curation/biblio.hfd -nk 001057 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Ncbi
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:2653497
   |texte=   Robotic neurorehabilitation: a computational motor learning perspective
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Curation/RBID.i   -Sk "pubmed:19243614" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024