Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Silent Synapses, LTP, and the Indirect Parallel-Fibre Pathway: Computational Consequences of Optimal Cerebellar Noise-Processing

Identifieur interne : 000E50 ( Ncbi/Checkpoint ); précédent : 000E49; suivant : 000E51

Silent Synapses, LTP, and the Indirect Parallel-Fibre Pathway: Computational Consequences of Optimal Cerebellar Noise-Processing

Auteurs : John Porrill ; Paul Dean

Source :

RBID : PMC:2377154

Abstract

Computational analysis of neural systems is at its most useful when it uncovers principles that provide a unified account of phenomena across multiple scales and levels of description. Here we analyse a widely used model of the cerebellar contribution to sensori-motor learning to demonstrate both that its response to intrinsic and sensor noise is optimal, and that the unexpected synaptic and behavioural consequences of this optimality can explain a wide range of experimental data. The response of the Marr-Albus adaptive-filter model of the cerebellar microcircuit to noise was examined in the context of vestibulo-ocular reflex calibration. We found that, when appropriately connected, an adaptive-filter model using the covariance learning rule to adjust the weights of synapses between parallel fibres and Purkinje cells learns weight values that are optimal given the relative amount of signal and noise carried by each parallel fibre. This optimality principle is consistent with data on the cerebellar role in smooth pursuit eye movements, and predicts that many synaptic weights must be very small, providing an explanation for the experimentally observed preponderance of silent synapses. Such a preponderance has in its turn two further consequences. First, an additional inhibitory pathway from parallel fibre to Purkinje cell is required if Purkinje cell activity is to be altered in either direction from a starting point of silent synapses. Second, cerebellar learning tasks must often proceed via LTP, rather than LTD as is widely assumed. Taken together, these considerations have profound behavioural consequences, including the optimal combination of sensori-motor information, and asymmetry and hysteresis of sensori-motor learning rates.


Url:
DOI: 10.1371/journal.pcbi.1000085
PubMed: 18497864
PubMed Central: 2377154


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:2377154

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Silent Synapses, LTP, and the Indirect Parallel-Fibre Pathway: Computational Consequences of Optimal Cerebellar Noise-Processing</title>
<author>
<name sortKey="Porrill, John" sort="Porrill, John" uniqKey="Porrill J" first="John" last="Porrill">John Porrill</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dean, Paul" sort="Dean, Paul" uniqKey="Dean P" first="Paul" last="Dean">Paul Dean</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">18497864</idno>
<idno type="pmc">2377154</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2377154</idno>
<idno type="RBID">PMC:2377154</idno>
<idno type="doi">10.1371/journal.pcbi.1000085</idno>
<date when="2008">2008</date>
<idno type="wicri:Area/Pmc/Corpus">001107</idno>
<idno type="wicri:Area/Pmc/Curation">001107</idno>
<idno type="wicri:Area/Pmc/Checkpoint">002275</idno>
<idno type="wicri:Area/Ncbi/Merge">000E50</idno>
<idno type="wicri:Area/Ncbi/Curation">000E50</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">000E50</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Silent Synapses, LTP, and the Indirect Parallel-Fibre Pathway: Computational Consequences of Optimal Cerebellar Noise-Processing</title>
<author>
<name sortKey="Porrill, John" sort="Porrill, John" uniqKey="Porrill J" first="John" last="Porrill">John Porrill</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dean, Paul" sort="Dean, Paul" uniqKey="Dean P" first="Paul" last="Dean">Paul Dean</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS Computational Biology</title>
<idno type="ISSN">1553-734X</idno>
<idno type="eISSN">1553-7358</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Computational analysis of neural systems is at its most useful when it uncovers principles that provide a unified account of phenomena across multiple scales and levels of description. Here we analyse a widely used model of the cerebellar contribution to sensori-motor learning to demonstrate both that its response to intrinsic and sensor noise is optimal, and that the unexpected synaptic and behavioural consequences of this optimality can explain a wide range of experimental data. The response of the Marr-Albus adaptive-filter model of the cerebellar microcircuit to noise was examined in the context of vestibulo-ocular reflex calibration. We found that, when appropriately connected, an adaptive-filter model using the covariance learning rule to adjust the weights of synapses between parallel fibres and Purkinje cells learns weight values that are optimal given the relative amount of signal and noise carried by each parallel fibre. This optimality principle is consistent with data on the cerebellar role in smooth pursuit eye movements, and predicts that many synaptic weights must be very small, providing an explanation for the experimentally observed preponderance of silent synapses. Such a preponderance has in its turn two further consequences. First, an additional inhibitory pathway from parallel fibre to Purkinje cell is required if Purkinje cell activity is to be altered in either direction from a starting point of silent synapses. Second, cerebellar learning tasks must often proceed via LTP, rather than LTD as is widely assumed. Taken together, these considerations have profound behavioural consequences, including the optimal combination of sensori-motor information, and asymmetry and hysteresis of sensori-motor learning rates.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Dean, Paul" sort="Dean, Paul" uniqKey="Dean P" first="Paul" last="Dean">Paul Dean</name>
<name sortKey="Porrill, John" sort="Porrill, John" uniqKey="Porrill J" first="John" last="Porrill">John Porrill</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Ncbi/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E50 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Checkpoint/biblio.hfd -nk 000E50 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Ncbi
   |étape=   Checkpoint
   |type=    RBID
   |clé=     PMC:2377154
   |texte=   Silent Synapses, LTP, and the Indirect Parallel-Fibre Pathway: Computational Consequences of Optimal Cerebellar Noise-Processing
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Checkpoint/RBID.i   -Sk "pubmed:18497864" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024