Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Humans use internal models to construct and update a sense of verticality

Identifieur interne : 003983 ( Main/Merge ); précédent : 003982; suivant : 003984

Humans use internal models to construct and update a sense of verticality

Auteurs : Julien Barra [France] ; Adlade Marquer [France] ; Roxane Joassin [France] ; Cline Reymond [France] ; Liliane Metge [France] ; Valrie Chauvineau [France] ; Dominic Prennou [France]

Source :

RBID : ISTEX:ACFBECBBEFAF85E463AB7628AA2CF213364FD165

Abstract

Internal models serve sensory processing, sensorimotor integration and motor control. They could be a way to construct and update a sense of verticality, by combining vestibular and somatosensory graviception. We tested this hypothesis by investigating self-orientation relative to gravity in 39 normal subjects and in subjects with various somatosensory losses showing either a complete deafferentation of trunk and lower limbs (14 paraplegic patients after complete traumatic spinal cord injury) or a gradient in the degree of a hemibody sensory loss (23 hemiplegic patients after stroke). We asked subjects to estimate, in the dark, the direction of the Earth vertical in two postural conditionsupright and at lateral whole body tilt. For upright conditions, verticality estimates were not different from the direction of the Earth vertical in normal (0.241; P0.42) and paraplegic subjects (0.870.9; P0.14). The within-subject variability was much greater in hemiplegic than in normal subjects (2.051.15 versus 1.060.4; P<0.01) and greater in paraplegic than in normal subjects (1.130.4 versus 0.720.4; P<0.01). These findings indicate that, even if vestibular graviception is intact, somaesthetic graviception contributes to the sense of verticality, leading to a more robust judgement about the direction of verticality when vestibular and somaesthetic graviception yield congruent information. As expected, when normal subjects were tilted, their verticality estimates were biased in the direction of the body tilt (5.553.9). This normal modulation of verticality perception (Aubert effect), was preserved in hemiplegics on the side of the normoaesthetic hemibody (ipsilesional) (6.096.3), and abolished both in paraplegics (1.062.5) and in hemiplegics (0.046.7) on the side of hypoaesthetic hemibody (contralesional). This incongruence did not exist in deafferented paraplegics who exclusively used vestibular graviception with a similar efficacy no matter what the lateral body position. The Aubert effect was not an onoff phenomenon since the degree of hemiplegics somatosensory loss correlated with the modulation of verticality perception when they were tilted to the side of hypoaesthetic hemibody (r0.55; P<0.01). The analysis of anatomical correlates showed that the Aubert effect required the integrity of the posterolateral thalamus. This study reveals the existence of a synthesis of vestibular and somaesthetic graviception for which the posterolateral thalamus plays a major role. This corresponds to a primary property of internal models and yields the neural bases of the Aubert effect. We conclude that humans construct and update internal models of verticality in which somatosensory information plays an important role.

Url:
DOI: 10.1093/brain/awq311

Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:ACFBECBBEFAF85E463AB7628AA2CF213364FD165

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Humans use internal models to construct and update a sense of verticality</title>
<author>
<name sortKey="Barra, Julien" sort="Barra, Julien" uniqKey="Barra J" first="Julien" last="Barra">Julien Barra</name>
</author>
<author>
<name sortKey="Marquer, Adlade" sort="Marquer, Adlade" uniqKey="Marquer A" first="Adlade" last="Marquer">Adlade Marquer</name>
</author>
<author>
<name sortKey="Joassin, Roxane" sort="Joassin, Roxane" uniqKey="Joassin R" first="Roxane" last="Joassin">Roxane Joassin</name>
</author>
<author>
<name sortKey="Reymond, Cline" sort="Reymond, Cline" uniqKey="Reymond C" first="Cline" last="Reymond">Cline Reymond</name>
</author>
<author>
<name sortKey="Metge, Liliane" sort="Metge, Liliane" uniqKey="Metge L" first="Liliane" last="Metge">Liliane Metge</name>
</author>
<author>
<name sortKey="Chauvineau, Valrie" sort="Chauvineau, Valrie" uniqKey="Chauvineau V" first="Valrie" last="Chauvineau">Valrie Chauvineau</name>
</author>
<author>
<name sortKey="Prennou, Dominic" sort="Prennou, Dominic" uniqKey="Prennou D" first="Dominic" last="Prennou">Dominic Prennou</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:ACFBECBBEFAF85E463AB7628AA2CF213364FD165</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1093/brain/awq311</idno>
<idno type="url">https://api.istex.fr/document/ACFBECBBEFAF85E463AB7628AA2CF213364FD165/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">004759</idno>
<idno type="wicri:Area/Istex/Curation">004759</idno>
<idno type="wicri:Area/Istex/Checkpoint">000722</idno>
<idno type="wicri:doubleKey">0006-8950:2010:Barra J:humans:use:internal</idno>
<idno type="wicri:Area/Main/Merge">003983</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Humans use internal models to construct and update a sense of verticality</title>
<author>
<name sortKey="Barra, Julien" sort="Barra, Julien" uniqKey="Barra J" first="Julien" last="Barra">Julien Barra</name>
<affiliation wicri:level="1">
<country xml:lang="fr">France</country>
<wicri:regionArea>1 Laboratoire de Psychologie et Neuropsychologie Cognitive, Universit Paris Descartes, FRE 3292</wicri:regionArea>
<wicri:noRegion>FRE 3292</wicri:noRegion>
<wicri:noRegion>FRE 3292</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">France</country>
<wicri:regionArea>2 Clinique MPR-CHU, Laboratoire TIMC-IMAG CNRS 5525 Equipe Sant-Plasticit-Motricit, Universit Grenoble 1, Grenoble</wicri:regionArea>
<placeName>
<settlement type="city">Grenoble</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Marquer, Adlade" sort="Marquer, Adlade" uniqKey="Marquer A" first="Adlade" last="Marquer">Adlade Marquer</name>
<affiliation wicri:level="1">
<country xml:lang="fr">France</country>
<wicri:regionArea>2 Clinique MPR-CHU, Laboratoire TIMC-IMAG CNRS 5525 Equipe Sant-Plasticit-Motricit, Universit Grenoble 1, Grenoble</wicri:regionArea>
<placeName>
<settlement type="city">Grenoble</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Joassin, Roxane" sort="Joassin, Roxane" uniqKey="Joassin R" first="Roxane" last="Joassin">Roxane Joassin</name>
<affiliation wicri:level="1">
<country xml:lang="fr">France</country>
<wicri:regionArea>3 Service de Rducation Neurologique, CHU Dijon</wicri:regionArea>
<wicri:noRegion>CHU Dijon</wicri:noRegion>
<wicri:noRegion>CHU Dijon</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Reymond, Cline" sort="Reymond, Cline" uniqKey="Reymond C" first="Cline" last="Reymond">Cline Reymond</name>
<affiliation wicri:level="1">
<country xml:lang="fr">France</country>
<wicri:regionArea>2 Clinique MPR-CHU, Laboratoire TIMC-IMAG CNRS 5525 Equipe Sant-Plasticit-Motricit, Universit Grenoble 1, Grenoble</wicri:regionArea>
<placeName>
<settlement type="city">Grenoble</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Metge, Liliane" sort="Metge, Liliane" uniqKey="Metge L" first="Liliane" last="Metge">Liliane Metge</name>
<affiliation wicri:level="1">
<country xml:lang="fr">France</country>
<wicri:regionArea>4 Dpartement dImagerie Mdicale, CHU de Nmes</wicri:regionArea>
<wicri:noRegion>CHU de Nmes</wicri:noRegion>
<wicri:noRegion>CHU de Nmes</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chauvineau, Valrie" sort="Chauvineau, Valrie" uniqKey="Chauvineau V" first="Valrie" last="Chauvineau">Valrie Chauvineau</name>
<affiliation wicri:level="1">
<country xml:lang="fr">France</country>
<wicri:regionArea>5 Unit de Rducation Neurologique, CHU de Nmes</wicri:regionArea>
<wicri:noRegion>CHU de Nmes</wicri:noRegion>
<wicri:noRegion>CHU de Nmes</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Prennou, Dominic" sort="Prennou, Dominic" uniqKey="Prennou D" first="Dominic" last="Prennou">Dominic Prennou</name>
<affiliation wicri:level="1">
<country xml:lang="fr">France</country>
<wicri:regionArea>2 Clinique MPR-CHU, Laboratoire TIMC-IMAG CNRS 5525 Equipe Sant-Plasticit-Motricit, Universit Grenoble 1, Grenoble</wicri:regionArea>
<placeName>
<settlement type="city">Grenoble</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">France</country>
<wicri:regionArea>3 Service de Rducation Neurologique, CHU Dijon</wicri:regionArea>
<wicri:noRegion>CHU Dijon</wicri:noRegion>
<wicri:noRegion>CHU Dijon</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">France</country>
<wicri:regionArea>5 Unit de Rducation Neurologique, CHU de Nmes</wicri:regionArea>
<wicri:noRegion>CHU de Nmes</wicri:noRegion>
<wicri:noRegion>CHU de Nmes</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">France</country>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Brain</title>
<idno type="ISSN">0006-8950</idno>
<idno type="eISSN">1460-2156</idno>
<imprint>
<publisher>Oxford University Press</publisher>
<date type="published" when="2010-12">2010-12</date>
<biblScope unit="volume">133</biblScope>
<biblScope unit="issue">12</biblScope>
<biblScope unit="page" from="3552">3552</biblScope>
<biblScope unit="page" to="3563">3563</biblScope>
</imprint>
<idno type="ISSN">0006-8950</idno>
</series>
<idno type="istex">ACFBECBBEFAF85E463AB7628AA2CF213364FD165</idno>
<idno type="DOI">10.1093/brain/awq311</idno>
<idno type="ArticleID">awq311</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0006-8950</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Internal models serve sensory processing, sensorimotor integration and motor control. They could be a way to construct and update a sense of verticality, by combining vestibular and somatosensory graviception. We tested this hypothesis by investigating self-orientation relative to gravity in 39 normal subjects and in subjects with various somatosensory losses showing either a complete deafferentation of trunk and lower limbs (14 paraplegic patients after complete traumatic spinal cord injury) or a gradient in the degree of a hemibody sensory loss (23 hemiplegic patients after stroke). We asked subjects to estimate, in the dark, the direction of the Earth vertical in two postural conditionsupright and at lateral whole body tilt. For upright conditions, verticality estimates were not different from the direction of the Earth vertical in normal (0.241; P0.42) and paraplegic subjects (0.870.9; P0.14). The within-subject variability was much greater in hemiplegic than in normal subjects (2.051.15 versus 1.060.4; P<0.01) and greater in paraplegic than in normal subjects (1.130.4 versus 0.720.4; P<0.01). These findings indicate that, even if vestibular graviception is intact, somaesthetic graviception contributes to the sense of verticality, leading to a more robust judgement about the direction of verticality when vestibular and somaesthetic graviception yield congruent information. As expected, when normal subjects were tilted, their verticality estimates were biased in the direction of the body tilt (5.553.9). This normal modulation of verticality perception (Aubert effect), was preserved in hemiplegics on the side of the normoaesthetic hemibody (ipsilesional) (6.096.3), and abolished both in paraplegics (1.062.5) and in hemiplegics (0.046.7) on the side of hypoaesthetic hemibody (contralesional). This incongruence did not exist in deafferented paraplegics who exclusively used vestibular graviception with a similar efficacy no matter what the lateral body position. The Aubert effect was not an onoff phenomenon since the degree of hemiplegics somatosensory loss correlated with the modulation of verticality perception when they were tilted to the side of hypoaesthetic hemibody (r0.55; P<0.01). The analysis of anatomical correlates showed that the Aubert effect required the integrity of the posterolateral thalamus. This study reveals the existence of a synthesis of vestibular and somaesthetic graviception for which the posterolateral thalamus plays a major role. This corresponds to a primary property of internal models and yields the neural bases of the Aubert effect. We conclude that humans construct and update internal models of verticality in which somatosensory information plays an important role.</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Main/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003983 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Merge/biblio.hfd -nk 003983 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Main
   |étape=   Merge
   |type=    RBID
   |clé=     ISTEX:ACFBECBBEFAF85E463AB7628AA2CF213364FD165
   |texte=   Humans use internal models to construct and update a sense of verticality
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024