Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dynamic Granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data

Identifieur interne : 003808 ( Main/Merge ); précédent : 003807; suivant : 003809

Dynamic Granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data

Auteurs : Martin Havlicek [République tchèque, États-Unis] ; Jiri Jan [République tchèque] ; Milan Brazdil [République tchèque] ; Vince D. Calhoun [États-Unis]

Source :

RBID : PMC:4347842

Abstract

Increasing interest in understanding dynamic interactions of brain neural networks leads to formulation of sophisticated connectivity analysis methods. Recent studies have applied Granger causality based on standard multivariate autoregressive (MAR) modeling to assess the brain connectivity. Nevertheless, one important flaw of this commonly proposed method is that it requires the analyzed time series to be stationary, whereas such assumption is mostly violated due to the weakly nonstationary nature of functional magnetic resonance imaging (fMRI) time series. Therefore, we propose an approach to dynamic Granger causality in the frequency domain for evaluating functional network connectivity in fMRI data. The effectiveness and robustness of the dynamic approach was significantly improved by combining a forward and backward Kalman filter that improved estimates compared to the standard time-invariant MAR modeling. In our method, the functional networks were first detected by independent component analysis (ICA), a computational method for separating a multivariate signal into maximally independent components. Then the measure of Granger causality was evaluated using generalized partial directed coherence that is suitable for bivariate as well as multivariate data. Moreover, this metric provides identification of causal relation in frequency domain, which allows one to distinguish the frequency components related to the experimental paradigm. The procedure of evaluating Granger causality via dynamic MAR was demonstrated on simulated time series as well as on two sets of group fMRI data collected during an auditory sensorimotor (SM) or auditory oddball discrimination (AOD) tasks. Finally, a comparison with the results obtained from a standard time-invariant MAR model was provided.


Url:
DOI: 10.1016/j.neuroimage.2010.05.063
PubMed: 20561919
PubMed Central: 4347842

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:4347842

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dynamic Granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data</title>
<author>
<name sortKey="Havlicek, Martin" sort="Havlicek, Martin" uniqKey="Havlicek M" first="Martin" last="Havlicek">Martin Havlicek</name>
<affiliation wicri:level="3">
<nlm:aff id="A1">Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic</nlm:aff>
<country xml:lang="fr">République tchèque</country>
<wicri:regionArea>Department of Biomedical Engineering, Brno University of Technology, Brno</wicri:regionArea>
<placeName>
<settlement type="city">Brno</settlement>
<region>Moravie</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A2">The Mind Research Network, Albuquerque, New Mexico, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Mind Research Network, Albuquerque, New Mexico</wicri:regionArea>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="A4">Department of Electrical and Computer Engineering, University of New Mexico, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Electrical and Computer Engineering, University of New Mexico</wicri:regionArea>
<wicri:noRegion>University of New Mexico</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jan, Jiri" sort="Jan, Jiri" uniqKey="Jan J" first="Jiri" last="Jan">Jiri Jan</name>
<affiliation wicri:level="3">
<nlm:aff id="A1">Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic</nlm:aff>
<country xml:lang="fr">République tchèque</country>
<wicri:regionArea>Department of Biomedical Engineering, Brno University of Technology, Brno</wicri:regionArea>
<placeName>
<settlement type="city">Brno</settlement>
<region>Moravie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Brazdil, Milan" sort="Brazdil, Milan" uniqKey="Brazdil M" first="Milan" last="Brazdil">Milan Brazdil</name>
<affiliation wicri:level="3">
<nlm:aff id="A3">First Department of Neurology, St. Anne’s University Hospital, Brno, Czech Republic</nlm:aff>
<country xml:lang="fr">République tchèque</country>
<wicri:regionArea>First Department of Neurology, St. Anne’s University Hospital, Brno</wicri:regionArea>
<placeName>
<settlement type="city">Brno</settlement>
<region>Moravie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Calhoun, Vince D" sort="Calhoun, Vince D" uniqKey="Calhoun V" first="Vince D." last="Calhoun">Vince D. Calhoun</name>
<affiliation wicri:level="2">
<nlm:aff id="A2">The Mind Research Network, Albuquerque, New Mexico, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Mind Research Network, Albuquerque, New Mexico</wicri:regionArea>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="A4">Department of Electrical and Computer Engineering, University of New Mexico, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Electrical and Computer Engineering, University of New Mexico</wicri:regionArea>
<wicri:noRegion>University of New Mexico</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">20561919</idno>
<idno type="pmc">4347842</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4347842</idno>
<idno type="RBID">PMC:4347842</idno>
<idno type="doi">10.1016/j.neuroimage.2010.05.063</idno>
<date when="2010">2010</date>
<idno type="wicri:Area/Pmc/Corpus">001A88</idno>
<idno type="wicri:Area/Pmc/Curation">001A88</idno>
<idno type="wicri:Area/Pmc/Checkpoint">001F05</idno>
<idno type="wicri:Area/Ncbi/Merge">001585</idno>
<idno type="wicri:Area/Ncbi/Curation">001585</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">001585</idno>
<idno type="wicri:doubleKey">1053-8119:2010:Havlicek M:dynamic:granger:causality</idno>
<idno type="wicri:Area/Main/Merge">003808</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Dynamic Granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data</title>
<author>
<name sortKey="Havlicek, Martin" sort="Havlicek, Martin" uniqKey="Havlicek M" first="Martin" last="Havlicek">Martin Havlicek</name>
<affiliation wicri:level="3">
<nlm:aff id="A1">Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic</nlm:aff>
<country xml:lang="fr">République tchèque</country>
<wicri:regionArea>Department of Biomedical Engineering, Brno University of Technology, Brno</wicri:regionArea>
<placeName>
<settlement type="city">Brno</settlement>
<region>Moravie</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A2">The Mind Research Network, Albuquerque, New Mexico, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Mind Research Network, Albuquerque, New Mexico</wicri:regionArea>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="A4">Department of Electrical and Computer Engineering, University of New Mexico, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Electrical and Computer Engineering, University of New Mexico</wicri:regionArea>
<wicri:noRegion>University of New Mexico</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jan, Jiri" sort="Jan, Jiri" uniqKey="Jan J" first="Jiri" last="Jan">Jiri Jan</name>
<affiliation wicri:level="3">
<nlm:aff id="A1">Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic</nlm:aff>
<country xml:lang="fr">République tchèque</country>
<wicri:regionArea>Department of Biomedical Engineering, Brno University of Technology, Brno</wicri:regionArea>
<placeName>
<settlement type="city">Brno</settlement>
<region>Moravie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Brazdil, Milan" sort="Brazdil, Milan" uniqKey="Brazdil M" first="Milan" last="Brazdil">Milan Brazdil</name>
<affiliation wicri:level="3">
<nlm:aff id="A3">First Department of Neurology, St. Anne’s University Hospital, Brno, Czech Republic</nlm:aff>
<country xml:lang="fr">République tchèque</country>
<wicri:regionArea>First Department of Neurology, St. Anne’s University Hospital, Brno</wicri:regionArea>
<placeName>
<settlement type="city">Brno</settlement>
<region>Moravie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Calhoun, Vince D" sort="Calhoun, Vince D" uniqKey="Calhoun V" first="Vince D." last="Calhoun">Vince D. Calhoun</name>
<affiliation wicri:level="2">
<nlm:aff id="A2">The Mind Research Network, Albuquerque, New Mexico, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Mind Research Network, Albuquerque, New Mexico</wicri:regionArea>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="A4">Department of Electrical and Computer Engineering, University of New Mexico, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Electrical and Computer Engineering, University of New Mexico</wicri:regionArea>
<wicri:noRegion>University of New Mexico</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">NeuroImage</title>
<idno type="ISSN">1053-8119</idno>
<idno type="eISSN">1095-9572</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="P1">Increasing interest in understanding dynamic interactions of brain neural networks leads to formulation of sophisticated connectivity analysis methods. Recent studies have applied Granger causality based on standard multivariate autoregressive (MAR) modeling to assess the brain connectivity. Nevertheless, one important flaw of this commonly proposed method is that it requires the analyzed time series to be stationary, whereas such assumption is mostly violated due to the weakly nonstationary nature of functional magnetic resonance imaging (fMRI) time series. Therefore, we propose an approach to dynamic Granger causality in the frequency domain for evaluating functional network connectivity in fMRI data. The effectiveness and robustness of the dynamic approach was significantly improved by combining a forward and backward Kalman filter that improved estimates compared to the standard time-invariant MAR modeling. In our method, the functional networks were first detected by independent component analysis (ICA), a computational method for separating a multivariate signal into maximally independent components. Then the measure of Granger causality was evaluated using generalized partial directed coherence that is suitable for bivariate as well as multivariate data. Moreover, this metric provides identification of causal relation in frequency domain, which allows one to distinguish the frequency components related to the experimental paradigm. The procedure of evaluating Granger causality via dynamic MAR was demonstrated on simulated time series as well as on two sets of group fMRI data collected during an auditory sensorimotor (SM) or auditory oddball discrimination (AOD) tasks. Finally, a comparison with the results obtained from a standard time-invariant MAR model was provided.</p>
</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Main/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003808 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Merge/biblio.hfd -nk 003808 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Main
   |étape=   Merge
   |type=    RBID
   |clé=     PMC:4347842
   |texte=   Dynamic Granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Merge/RBID.i   -Sk "pubmed:20561919" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024