Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Durable and water-floatable ionic polymer actuator with hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes.

Identifieur interne : 001281 ( Main/Merge ); précédent : 001280; suivant : 001282

Durable and water-floatable ionic polymer actuator with hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes.

Auteurs : Jaehwan Kim [Corée du Sud] ; Jin-Han Jeon ; Hyun-Jun Kim ; Hyuneui Lim ; Il-Kwon Oh

Source :

RBID : pubmed:24548279

English descriptors

Abstract

Ionic polymer actuators driven by electrical stimuli have been widely investigated for use in practical applications such as bioinspired robots, sensors, and biomedical devices. However, conventional ionic polymer-metal composite actuators have a serious drawback of poor durability under long-term actuation in open air, mainly because of the leakage of the inner electrolyte and hydrated cations through cracks in the metallic electrodes. Here, we developed a highly durable and water-floatable ionic polymer artificial muscle by employing hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes (HLrGOP). The highly conductive, flexible, and cost-effective HLrGOP electrodes have asymmetrically smooth hydrophobic outer and rough inner surfaces, resulting in liquid-impermeable and water-floatable functionalities and strong bonding between an ionic polymer and the electrodes. More interestingly, the HLrGOP electrode, which has a unique functionality to prevent the leakage of the vaporized or liquid electrolyte and mobile ions during electrical stimuli, greatly contributes to an exceptionally durable ionic polymer-graphene composite actuator that is a prerequisite for practical applications in active biomedical devices, biomimetic robots, touch-feedback haptic systems, and flexible soft electronics.

DOI: 10.1021/nn500283q
PubMed: 24548279

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:24548279

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Durable and water-floatable ionic polymer actuator with hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes.</title>
<author>
<name sortKey="Kim, Jaehwan" sort="Kim, Jaehwan" uniqKey="Kim J" first="Jaehwan" last="Kim">Jaehwan Kim</name>
<affiliation wicri:level="1">
<nlm:affiliation>Graphene Research Center, KAIST Institute for the NanoCentury, School of Mechanical, Aerospace and Systems Engineering, Division of Ocean Systems Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Gwahak-ro, Yuseong-gu, Daejeon 305-701, South Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Graphene Research Center, KAIST Institute for the NanoCentury, School of Mechanical, Aerospace and Systems Engineering, Division of Ocean Systems Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Gwahak-ro, Yuseong-gu, Daejeon 305-701</wicri:regionArea>
<wicri:noRegion>Daejeon 305-701</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jeon, Jin Han" sort="Jeon, Jin Han" uniqKey="Jeon J" first="Jin-Han" last="Jeon">Jin-Han Jeon</name>
</author>
<author>
<name sortKey="Kim, Hyun Jun" sort="Kim, Hyun Jun" uniqKey="Kim H" first="Hyun-Jun" last="Kim">Hyun-Jun Kim</name>
</author>
<author>
<name sortKey="Lim, Hyuneui" sort="Lim, Hyuneui" uniqKey="Lim H" first="Hyuneui" last="Lim">Hyuneui Lim</name>
</author>
<author>
<name sortKey="Oh, Il Kwon" sort="Oh, Il Kwon" uniqKey="Oh I" first="Il-Kwon" last="Oh">Il-Kwon Oh</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="doi">10.1021/nn500283q</idno>
<idno type="RBID">pubmed:24548279</idno>
<idno type="pmid">24548279</idno>
<idno type="wicri:Area/PubMed/Corpus">000743</idno>
<idno type="wicri:Area/PubMed/Curation">000743</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000675</idno>
<idno type="wicri:Area/Ncbi/Merge">002D22</idno>
<idno type="wicri:Area/Ncbi/Curation">002D22</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">002D22</idno>
<idno type="wicri:Area/Main/Merge">001281</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Durable and water-floatable ionic polymer actuator with hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes.</title>
<author>
<name sortKey="Kim, Jaehwan" sort="Kim, Jaehwan" uniqKey="Kim J" first="Jaehwan" last="Kim">Jaehwan Kim</name>
<affiliation wicri:level="1">
<nlm:affiliation>Graphene Research Center, KAIST Institute for the NanoCentury, School of Mechanical, Aerospace and Systems Engineering, Division of Ocean Systems Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Gwahak-ro, Yuseong-gu, Daejeon 305-701, South Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Graphene Research Center, KAIST Institute for the NanoCentury, School of Mechanical, Aerospace and Systems Engineering, Division of Ocean Systems Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Gwahak-ro, Yuseong-gu, Daejeon 305-701</wicri:regionArea>
<wicri:noRegion>Daejeon 305-701</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jeon, Jin Han" sort="Jeon, Jin Han" uniqKey="Jeon J" first="Jin-Han" last="Jeon">Jin-Han Jeon</name>
</author>
<author>
<name sortKey="Kim, Hyun Jun" sort="Kim, Hyun Jun" uniqKey="Kim H" first="Hyun-Jun" last="Kim">Hyun-Jun Kim</name>
</author>
<author>
<name sortKey="Lim, Hyuneui" sort="Lim, Hyuneui" uniqKey="Lim H" first="Hyuneui" last="Lim">Hyuneui Lim</name>
</author>
<author>
<name sortKey="Oh, Il Kwon" sort="Oh, Il Kwon" uniqKey="Oh I" first="Il-Kwon" last="Oh">Il-Kwon Oh</name>
</author>
</analytic>
<series>
<title level="j">ACS nano</title>
<idno type="eISSN">1936-086X</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Electric Conductivity</term>
<term>Electrodes</term>
<term>Graphite (chemistry)</term>
<term>Hydrophobic and Hydrophilic Interactions</term>
<term>Lasers</term>
<term>Oxidation-Reduction</term>
<term>Oxides (chemistry)</term>
<term>Paper</term>
<term>Polymers (chemistry)</term>
<term>Time Factors</term>
<term>Water (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Graphite</term>
<term>Oxides</term>
<term>Polymers</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Electric Conductivity</term>
<term>Electrodes</term>
<term>Hydrophobic and Hydrophilic Interactions</term>
<term>Lasers</term>
<term>Oxidation-Reduction</term>
<term>Paper</term>
<term>Time Factors</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ionic polymer actuators driven by electrical stimuli have been widely investigated for use in practical applications such as bioinspired robots, sensors, and biomedical devices. However, conventional ionic polymer-metal composite actuators have a serious drawback of poor durability under long-term actuation in open air, mainly because of the leakage of the inner electrolyte and hydrated cations through cracks in the metallic electrodes. Here, we developed a highly durable and water-floatable ionic polymer artificial muscle by employing hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes (HLrGOP). The highly conductive, flexible, and cost-effective HLrGOP electrodes have asymmetrically smooth hydrophobic outer and rough inner surfaces, resulting in liquid-impermeable and water-floatable functionalities and strong bonding between an ionic polymer and the electrodes. More interestingly, the HLrGOP electrode, which has a unique functionality to prevent the leakage of the vaporized or liquid electrolyte and mobile ions during electrical stimuli, greatly contributes to an exceptionally durable ionic polymer-graphene composite actuator that is a prerequisite for practical applications in active biomedical devices, biomimetic robots, touch-feedback haptic systems, and flexible soft electronics.</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Main/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001281 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Merge/biblio.hfd -nk 001281 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Main
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:24548279
   |texte=   Durable and water-floatable ionic polymer actuator with hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Merge/RBID.i   -Sk "pubmed:24548279" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024