Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

VIRTUAL REALITY, ROBOTICS, AND OTHER WIZARDRY IN 21st CENTURY TRAUMA CARE

Identifieur interne : 003248 ( Istex/Corpus ); précédent : 003247; suivant : 003249

VIRTUAL REALITY, ROBOTICS, AND OTHER WIZARDRY IN 21st CENTURY TRAUMA CARE

Auteurs : Mary E. Maniscalco-Theberge ; David C. Elliott

Source :

RBID : ISTEX:0F64616DFF4AC44001A75675FC673CEDE2D98D4B

Abstract

Sipping the soothing dregs of your double tall nonfat absinthe latte, you are nonetheless startled once again when the alarm sounds. A 4-passenger Acme personal flying saucer (PFC) has crashed into a flying school bus, injuring 14 children and 2 adults. The notice comes to you, the trauma surgeon in charge of Fargo Metropolitan Trauma Center, simultaneous to the accident because all vehicles and all occupants nowadays sport their own status monitors. The status monitor of each involved vehicle broadcasts to the city emergency medical system (EMS) center the exact global positioning satellite (GPS) location and the directional and force vectors of the accident on impact, whereas, on injury, those of each trauma victim broadcast automatically to the trauma center such data as GPS location, vital signs, and noninvasively obtained parameters, such as cardiac output, hemoglobin, and lactate. You note that six people are in shock and will be brought to you and your team of four physicians. The EMS center has triaged the rest of the people to other hospitals in the area, all 16 to be picked up by ambulances dispatched within 60 seconds of the crash. Knowing that the patients will arrive at your hospital within minutes, you alert your colleagues, one of whom has been studying for the upcoming oral board examinations with his virtual reality operative technique trainer. A second alarm from the on-site ambulance notifies you that one of the injured adults is rapidly bleeding from a liver laceration. At your direction, the ambulance paramedic attaches a surgical robot to the victim's abdomen and you quickly perform telepresent laparotomy through the robotic surgical assistant, pack the abdomen, and direct the paramedic to fly the victim to your location as first priority. Donning your universal precautions suit (UPS), you lament, When will this madness ever end. After all, this is 2062! More reality than fantasy, the devices described above are already being developed. This article focuses on probable technologic advancements that will have daily impact on trauma care in the next 20 years; included are discussions regarding information technology, virtual reality, and robotics (Fig. 1).

Url:
DOI: 10.1016/S0039-6109(05)70074-8

Links to Exploration step

ISTEX:0F64616DFF4AC44001A75675FC673CEDE2D98D4B

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>VIRTUAL REALITY, ROBOTICS, AND OTHER WIZARDRY IN 21st CENTURY TRAUMA CARE</title>
<author>
<name sortKey="Maniscalco Theberge, Mary E" sort="Maniscalco Theberge, Mary E" uniqKey="Maniscalco Theberge M" first="Mary E." last="Maniscalco-Theberge">Mary E. Maniscalco-Theberge</name>
<affiliation>
<mods:affiliation>General Surgery Service, Walter Reed Army Medical Center, Washington, DC (MEM-T)</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Elliott, David C" sort="Elliott, David C" uniqKey="Elliott D" first="David C." last="Elliott">David C. Elliott</name>
<affiliation>
<mods:affiliation>Trauma Service, Madigan Army Medical Center, Fort Lewis, Washington (DCE)</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:0F64616DFF4AC44001A75675FC673CEDE2D98D4B</idno>
<date when="1999" year="1999">1999</date>
<idno type="doi">10.1016/S0039-6109(05)70074-8</idno>
<idno type="url">https://api.istex.fr/document/0F64616DFF4AC44001A75675FC673CEDE2D98D4B/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">003248</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">VIRTUAL REALITY, ROBOTICS, AND OTHER WIZARDRY IN 21st CENTURY TRAUMA CARE</title>
<author>
<name sortKey="Maniscalco Theberge, Mary E" sort="Maniscalco Theberge, Mary E" uniqKey="Maniscalco Theberge M" first="Mary E." last="Maniscalco-Theberge">Mary E. Maniscalco-Theberge</name>
<affiliation>
<mods:affiliation>General Surgery Service, Walter Reed Army Medical Center, Washington, DC (MEM-T)</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Elliott, David C" sort="Elliott, David C" uniqKey="Elliott D" first="David C." last="Elliott">David C. Elliott</name>
<affiliation>
<mods:affiliation>Trauma Service, Madigan Army Medical Center, Fort Lewis, Washington (DCE)</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Surgical Clinics of North America</title>
<title level="j" type="abbrev">SUC</title>
<idno type="ISSN">0039-6109</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1999">1999</date>
<biblScope unit="volume">79</biblScope>
<biblScope unit="issue">6</biblScope>
<biblScope unit="page" from="1241">1241</biblScope>
<biblScope unit="page" to="1248">1248</biblScope>
</imprint>
<idno type="ISSN">0039-6109</idno>
</series>
<idno type="istex">0F64616DFF4AC44001A75675FC673CEDE2D98D4B</idno>
<idno type="DOI">10.1016/S0039-6109(05)70074-8</idno>
<idno type="PII">S0039-6109(05)70074-8</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0039-6109</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Sipping the soothing dregs of your double tall nonfat absinthe latte, you are nonetheless startled once again when the alarm sounds. A 4-passenger Acme personal flying saucer (PFC) has crashed into a flying school bus, injuring 14 children and 2 adults. The notice comes to you, the trauma surgeon in charge of Fargo Metropolitan Trauma Center, simultaneous to the accident because all vehicles and all occupants nowadays sport their own status monitors. The status monitor of each involved vehicle broadcasts to the city emergency medical system (EMS) center the exact global positioning satellite (GPS) location and the directional and force vectors of the accident on impact, whereas, on injury, those of each trauma victim broadcast automatically to the trauma center such data as GPS location, vital signs, and noninvasively obtained parameters, such as cardiac output, hemoglobin, and lactate. You note that six people are in shock and will be brought to you and your team of four physicians. The EMS center has triaged the rest of the people to other hospitals in the area, all 16 to be picked up by ambulances dispatched within 60 seconds of the crash. Knowing that the patients will arrive at your hospital within minutes, you alert your colleagues, one of whom has been studying for the upcoming oral board examinations with his virtual reality operative technique trainer. A second alarm from the on-site ambulance notifies you that one of the injured adults is rapidly bleeding from a liver laceration. At your direction, the ambulance paramedic attaches a surgical robot to the victim's abdomen and you quickly perform telepresent laparotomy through the robotic surgical assistant, pack the abdomen, and direct the paramedic to fly the victim to your location as first priority. Donning your universal precautions suit (UPS), you lament, When will this madness ever end. After all, this is 2062! More reality than fantasy, the devices described above are already being developed. This article focuses on probable technologic advancements that will have daily impact on trauma care in the next 20 years; included are discussions regarding information technology, virtual reality, and robotics (Fig. 1).</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<author>
<json:item>
<name>Mary E. Maniscalco-Theberge MD</name>
<affiliations>
<json:string>General Surgery Service, Walter Reed Army Medical Center, Washington, DC (MEM-T)</json:string>
</affiliations>
</json:item>
<json:item>
<name>David C. Elliott MD</name>
<affiliations>
<json:string>Trauma Service, Madigan Army Medical Center, Fort Lewis, Washington (DCE)</json:string>
</affiliations>
</json:item>
</author>
<language>
<json:string>eng</json:string>
</language>
<abstract>Sipping the soothing dregs of your double tall nonfat absinthe latte, you are nonetheless startled once again when the alarm sounds. A 4-passenger Acme personal flying saucer (PFC) has crashed into a flying school bus, injuring 14 children and 2 adults. The notice comes to you, the trauma surgeon in charge of Fargo Metropolitan Trauma Center, simultaneous to the accident because all vehicles and all occupants nowadays sport their own status monitors. The status monitor of each involved vehicle broadcasts to the city emergency medical system (EMS) center the exact global positioning satellite (GPS) location and the directional and force vectors of the accident on impact, whereas, on injury, those of each trauma victim broadcast automatically to the trauma center such data as GPS location, vital signs, and noninvasively obtained parameters, such as cardiac output, hemoglobin, and lactate. You note that six people are in shock and will be brought to you and your team of four physicians. The EMS center has triaged the rest of the people to other hospitals in the area, all 16 to be picked up by ambulances dispatched within 60 seconds of the crash. Knowing that the patients will arrive at your hospital within minutes, you alert your colleagues, one of whom has been studying for the upcoming oral board examinations with his virtual reality operative technique trainer. A second alarm from the on-site ambulance notifies you that one of the injured adults is rapidly bleeding from a liver laceration. At your direction, the ambulance paramedic attaches a surgical robot to the victim's abdomen and you quickly perform telepresent laparotomy through the robotic surgical assistant, pack the abdomen, and direct the paramedic to fly the victim to your location as first priority. Donning your universal precautions suit (UPS), you lament, When will this madness ever end. After all, this is 2062! More reality than fantasy, the devices described above are already being developed. This article focuses on probable technologic advancements that will have daily impact on trauma care in the next 20 years; included are discussions regarding information technology, virtual reality, and robotics (Fig. 1).</abstract>
<qualityIndicators>
<score>6.19</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>396 x 648 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>2214</abstractCharCount>
<pdfWordCount>3190</pdfWordCount>
<pdfCharCount>20859</pdfCharCount>
<pdfPageCount>8</pdfPageCount>
<abstractWordCount>350</abstractWordCount>
</qualityIndicators>
<title>VIRTUAL REALITY, ROBOTICS, AND OTHER WIZARDRY IN 21st CENTURY TRAUMA CARE</title>
<pii>
<json:string>S0039-6109(05)70074-8</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>79</volume>
<pii>
<json:string>S0039-6109(05)X7005-0</json:string>
</pii>
<pages>
<last>1248</last>
<first>1241</first>
</pages>
<issn>
<json:string>0039-6109</json:string>
</issn>
<issue>6</issue>
<genre>
<json:string>Journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<title>Surgical Clinics of North America</title>
<publicationDate>1999</publicationDate>
</host>
<categories>
<wos>
<json:string>SURGERY</json:string>
</wos>
</categories>
<publicationDate>1999</publicationDate>
<copyrightDate>1999</copyrightDate>
<doi>
<json:string>10.1016/S0039-6109(05)70074-8</json:string>
</doi>
<id>0F64616DFF4AC44001A75675FC673CEDE2D98D4B</id>
<score>1</score>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/0F64616DFF4AC44001A75675FC673CEDE2D98D4B/fulltext/pdf</uri>
</json:item>
<json:item>
<original>true</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/0F64616DFF4AC44001A75675FC673CEDE2D98D4B/fulltext/txt</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/0F64616DFF4AC44001A75675FC673CEDE2D98D4B/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/0F64616DFF4AC44001A75675FC673CEDE2D98D4B/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">VIRTUAL REALITY, ROBOTICS, AND OTHER WIZARDRY IN 21st CENTURY TRAUMA CARE</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>ELSEVIER</p>
</availability>
<date>1999</date>
</publicationStmt>
<notesStmt>
<note>Address reprint requests to David C. Elliott, MD, 7016 53rd Street, University Place, WA 98467</note>
<note>The opinions and assertions herein are those of the authors and are not to be construed as official policy or reflecting the views of the Department of Defense.</note>
<note type="content">Figure 1: The life support for trauma and transport (LSTAT) system is a self-contained medical evacuation platform with advanced life-support systems.</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">VIRTUAL REALITY, ROBOTICS, AND OTHER WIZARDRY IN 21st CENTURY TRAUMA CARE</title>
<author>
<persName>
<forename type="first">Mary E.</forename>
<surname>Maniscalco-Theberge</surname>
</persName>
<roleName type="degree">MD</roleName>
<affiliation>General Surgery Service, Walter Reed Army Medical Center, Washington, DC (MEM-T)</affiliation>
</author>
<author>
<persName>
<forename type="first">David C.</forename>
<surname>Elliott</surname>
</persName>
<roleName type="degree">MD</roleName>
<affiliation>Trauma Service, Madigan Army Medical Center, Fort Lewis, Washington (DCE)</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Surgical Clinics of North America</title>
<title level="j" type="abbrev">SUC</title>
<idno type="pISSN">0039-6109</idno>
<idno type="PII">S0039-6109(05)X7005-0</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1999"></date>
<biblScope unit="volume">79</biblScope>
<biblScope unit="issue">6</biblScope>
<biblScope unit="page" from="1241">1241</biblScope>
<biblScope unit="page" to="1248">1248</biblScope>
</imprint>
</monogr>
<idno type="istex">0F64616DFF4AC44001A75675FC673CEDE2D98D4B</idno>
<idno type="DOI">10.1016/S0039-6109(05)70074-8</idno>
<idno type="PII">S0039-6109(05)70074-8</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1999</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>Sipping the soothing dregs of your double tall nonfat absinthe latte, you are nonetheless startled once again when the alarm sounds. A 4-passenger Acme personal flying saucer (PFC) has crashed into a flying school bus, injuring 14 children and 2 adults. The notice comes to you, the trauma surgeon in charge of Fargo Metropolitan Trauma Center, simultaneous to the accident because all vehicles and all occupants nowadays sport their own status monitors. The status monitor of each involved vehicle broadcasts to the city emergency medical system (EMS) center the exact global positioning satellite (GPS) location and the directional and force vectors of the accident on impact, whereas, on injury, those of each trauma victim broadcast automatically to the trauma center such data as GPS location, vital signs, and noninvasively obtained parameters, such as cardiac output, hemoglobin, and lactate. You note that six people are in shock and will be brought to you and your team of four physicians. The EMS center has triaged the rest of the people to other hospitals in the area, all 16 to be picked up by ambulances dispatched within 60 seconds of the crash. Knowing that the patients will arrive at your hospital within minutes, you alert your colleagues, one of whom has been studying for the upcoming oral board examinations with his virtual reality operative technique trainer. A second alarm from the on-site ambulance notifies you that one of the injured adults is rapidly bleeding from a liver laceration. At your direction, the ambulance paramedic attaches a surgical robot to the victim's abdomen and you quickly perform telepresent laparotomy through the robotic surgical assistant, pack the abdomen, and direct the paramedic to fly the victim to your location as first priority. Donning your universal precautions suit (UPS), you lament, When will this madness ever end. After all, this is 2062! More reality than fantasy, the devices described above are already being developed. This article focuses on probable technologic advancements that will have daily impact on trauma care in the next 20 years; included are discussions regarding information technology, virtual reality, and robotics (Fig. 1).</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="1999">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier doc found" wicri:toSee="Elsevier, no converted or simple article">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 5.0.1//EN//XML" URI="art501.dtd" name="istex:docType">
<istex:entity SYSTEM="f124101" NDATA="IMAGE" name="f124101"></istex:entity>
</istex:docType>
<istex:document>
<article docsubtype="fla">
<item-info>
<jid>SUC</jid>
<aid>70074</aid>
<ce:pii>S0039-6109(05)70074-8</ce:pii>
<ce:doi>10.1016/S0039-6109(05)70074-8</ce:doi>
<ce:copyright type="other" year="1999">W. B. Saunders Company</ce:copyright>
</item-info>
<ce:floats>
<ce:figure id="f1">
<ce:label>Figure 1</ce:label>
<ce:caption>
<ce:simple-para>The life support for trauma and transport (LSTAT) system is a self-contained medical evacuation platform with advanced life-support systems.</ce:simple-para>
</ce:caption>
<ce:link locator="f124101"></ce:link>
</ce:figure>
</ce:floats>
<head>
<ce:article-footnote>
<ce:note-para>
<ce:italic>Address reprint requests to</ce:italic>
David C. Elliott, MD, 7016 53rd Street, University Place, WA 98467</ce:note-para>
</ce:article-footnote>
<ce:article-footnote>
<ce:note-para>The opinions and assertions herein are those of the authors and are not to be construed as official policy or reflecting the views of the Department of Defense.</ce:note-para>
</ce:article-footnote>
<ce:title>VIRTUAL REALITY, ROBOTICS, AND OTHER WIZARDRY IN 21st CENTURY TRAUMA CARE</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Mary E.</ce:given-name>
<ce:surname>Maniscalco-Theberge</ce:surname>
<ce:degrees>MD</ce:degrees>
<ce:cross-ref refid="aff1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>David C.</ce:given-name>
<ce:surname>Elliott</ce:surname>
<ce:degrees>MD</ce:degrees>
<ce:cross-ref refid="aff2">
<ce:sup>b</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:affiliation id="aff1">
<ce:label>a</ce:label>
<ce:textfn>General Surgery Service, Walter Reed Army Medical Center, Washington, DC (MEM-T)</ce:textfn>
</ce:affiliation>
<ce:affiliation id="aff2">
<ce:label>b</ce:label>
<ce:textfn>Trauma Service, Madigan Army Medical Center, Fort Lewis, Washington (DCE)</ce:textfn>
</ce:affiliation>
</ce:author-group>
<ce:abstract>
<ce:abstract-sec>
<ce:simple-para>Sipping the soothing dregs of your double tall nonfat absinthe latte, you are nonetheless startled once again when the alarm sounds. A 4-passenger Acme personal flying saucer (PFC) has crashed into a flying school bus, injuring 14 children and 2 adults. The notice comes to you, the trauma surgeon in charge of Fargo Metropolitan Trauma Center, simultaneous to the accident because all vehicles and all occupants nowadays sport their own status monitors. The status monitor of each involved vehicle broadcasts to the city emergency medical system (EMS) center the exact global positioning satellite (GPS) location and the directional and force vectors of the accident on impact, whereas, on injury, those of each trauma victim broadcast automatically to the trauma center such data as GPS location, vital signs, and noninvasively obtained parameters, such as cardiac output, hemoglobin, and lactate. You note that six people are in shock and will be brought to you and your team of four physicians. The EMS center has triaged the rest of the people to other hospitals in the area, all 16 to be picked up by ambulances dispatched within 60 seconds of the crash.</ce:simple-para>
<ce:simple-para>Knowing that the patients will arrive at your hospital within minutes, you alert your colleagues, one of whom has been studying for the upcoming oral board examinations with his virtual reality operative technique trainer. A second alarm from the on-site ambulance notifies you that one of the injured adults is rapidly bleeding from a liver laceration. At your direction, the ambulance paramedic attaches a surgical robot to the victim's abdomen and you quickly perform telepresent laparotomy through the robotic surgical assistant, pack the abdomen, and direct the paramedic to fly the victim to your location as first priority.</ce:simple-para>
<ce:simple-para>
<ce:italic>Donning your universal precautions suit (UPS), you lament,</ce:italic>
<ce:italic>When will this madness ever end. After all, this is 2062!</ce:italic>
</ce:simple-para>
<ce:simple-para>More reality than fantasy, the devices described above are already being developed. This article focuses on probable technologic advancements that will have daily impact on trauma care in the next 20 years; included are discussions regarding information technology, virtual reality, and robotics
<ce:cross-ref refid="f1">(Fig. 1)</ce:cross-ref>
.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
</head>
<body>
<ce:sections>
<ce:section id="cesec1">
<ce:section-title>INFORMATION TECHNOLOGY</ce:section-title>
<ce:para>
<ce:float-anchor refid="f1"></ce:float-anchor>
The exponential explosion in personal and professional access to information and in the capabilities to organize and handle this information will continue in the near future. Already, access to information by way of a personal computer (PC) is gradually replacing that found in textbooks and journals. Compact disc (CD) and digital video disk (DVD) read-only memory (ROM) storage provides any PC user rapid, organized access to large information databases, with minimal size and space requirements. An entire 24-volume encyclopedia currently can be stored on a 4 × 4–in disk and placed in a coat pocket. Within the next 10 years, all surgical texts and surgical review and multimedia instructional courses (e.g., ultrasound techniques for surgeons) available today
<ce:cross-refs refid="bib9 bib29 bib33">
<ce:sup>9,29,33</ce:sup>
</ce:cross-refs>
will be converted to digital data and stored on CD-ROMs and DVDs. These disks will permanently replace the bulky, heavy textbooks that have been on surgeons' bookshelves for the past 100 years.</ce:para>
<ce:para>Of equal importance, the
<ce:italic>information superhighway</ce:italic>
also will obviate the need for multiple, expensive medical journal subscriptions and the resultant mountains of unread, unfiled magazines that clutter surgeons' offices. Currently, many medical journals, such as the Centers for Disease Control's
<ce:italic>Morbidity and Mortality Weekly Report</ce:italic>
<ce:cross-ref refid="bib19">
<ce:sup>19</ce:sup>
</ce:cross-ref>
and
<ce:italic>Complications in Surgery,</ce:italic>
<ce:cross-ref refid="bib8">
<ce:sup>8</ce:sup>
</ce:cross-ref>
are free to PC users on the Internet; notices of new issues also are sent gratis to them. In the next 10 years, all peer-reviewed surgical journals will be available at minimal or no cost on the Internet. PC subscribers will be able to screen quickly, download, and efficiently file articles of interest—printing or reading them at their leisure. Currently, OVID
<ce:cross-ref refid="bib22">
<ce:sup>22</ce:sup>
</ce:cross-ref>
allows Internet browsers to access entire journal articles in a limited number of medical journals that are cross-referenced by title, author, journal, and key words. This technology also will be expanded. For educational and research purposes, surgical literature searches will become increasingly facilitated through the Internet, although they have already become simplified by search engines, such as the National Library of Medicine's PubMed and Internet Grateful Med.
<ce:cross-ref refid="bib35">
<ce:sup>35</ce:sup>
</ce:cross-ref>
Further, Internet and World Wide Web potential also will be realized as information clearinghouses, providing researchers and clinicians alike with instant, current access to data and news regarding medical topics of interest, such as the limited ones currently available regarding fluid resuscitation
<ce:cross-ref refid="bib7">
<ce:sup>7</ce:sup>
</ce:cross-ref>
and surgical robotics.
<ce:cross-ref refid="bib31">
<ce:sup>31</ce:sup>
</ce:cross-ref>
</ce:para>
<ce:para>Another type of information, the conveyance of which will change, is real-time video images. Known in its current form as
<ce:italic>telemedicine,</ce:italic>
this technology allows high-resolution digital video and audio information to be transferred, almost instantaneously, to other locations. Its use today is limited to teleconferences and anecdotal clinical applications,
<ce:cross-ref refid="bib37">
<ce:sup>37</ce:sup>
</ce:cross-ref>
but within the next decade, its use will expand to include routine on-site telebroadcasting by ambulance crews using wireless local area networks (LAN), allowing hospital physicians the ability to view trauma victims at the scene of the accident, diagnose immediate life-threatening conditions, and direct treatment by paramedics.
<ce:cross-ref refid="bib16">
<ce:sup>16</ce:sup>
</ce:cross-ref>
This technologic advance will become possible because of continuing advances in digital imagery and the capability to transmit these digital data by radio frequency (i.e., wireless) communication.</ce:para>
<ce:para>The Information Age will become expanded further as PCs become smaller, evolving to palm-sized units similar to personal digital assistants (e.g., PalmPilot, [3Com, Santa Clara, CA])
<ce:cross-ref refid="bib17">
<ce:sup>17</ce:sup>
</ce:cross-ref>
available today but with more power and speed than today's larger desk-sized PCs. Paperless communication will predominate through the ubiquity of electronic mail, the Internet, and the perfection of voice-recognition software (through elaboration of current prototypes such as Dragon
<ce:italic>Naturally Speaking</ce:italic>
[Dragon Systems, Newton, MA] and IBM
<ce:italic>ViaVoice</ce:italic>
[IBM North America, White Plains, NY]).</ce:para>
<ce:para>Knowing when and where trauma occurs and the severity of the resulting injuries would greatly improve EMS systems' ability to react in an effective and timely fashion. To that end, a consortium of private industry and academic institutions, under the coordination of the Department of Defense's Advanced Research Projects Agency, has conducted initial development of an information architecture for trauma care called the Trauma Care Information Management System (TCIMS). Participating members of the consortium include AT&T; Digital Equipment; Rockwell International; Texas Instruments; ISX Corp.; Science Application International Corp.; the Universities of Southern California, Texas (at Arlington), and Maryland (R Adams Cowley Shock Trauma Center); the Uniformed Services University of the Health Sciences; and the Medical College of Georgia.
<ce:cross-ref refid="bib25">
<ce:sup>25</ce:sup>
</ce:cross-ref>
The initial paradigm developed between 1993 and 1995, applicable to military and civilian trauma use, consists of a personal status monitor (PSM) inconspicuously worn by an individual (e.g., as a wristwatch) and a vehicular status monitor (VSM), mounted as standard equipment on new automobiles and trucks. The PSM continually samples and monitors variables such as GPS location, heart rate, blood pressure, and arterial hemoglobin oxygen saturation, and it would automatically report the individual's current data to the local EMS center by wireless radio–frequency communication (wireless LAN) if physiologic deterioration from trauma is sensed. In addition, a
<ce:italic>panic-button mode</ce:italic>
allows the conscious trauma victim with a disabling injury but no sensed vital sign abnormality the ability to activate EMS notification on his or her own. Once activated, the PSM continually broadcasts data, enabling automatic in-transit monitoring until reception at the receiving hospital. The VSM senses deformation incurred during vehicular collisions and relays the information to the EMS base station, allowing immediate notification of the time and exact location of a crash.</ce:para>
<ce:para>Also essential to the TCIMS paradigm are the Field Medic Associate (FMA) and Field Medic Coordinator (FMC), computers maintained by ambulance crews that perform on-site wireless query of all local PSMs, comparing parameters and initiating the triage process. Ambulance crews then transmit actual injuries witnessed and treatments administered through voice input or with stylus taps on the FMA screen anatoglyph (i.e., a computer pictorial representation of the anatomy of the human body). Medics also download past medical history information by swiping magnetic strips on individual trauma victim
<ce:italic>smart cards.</ce:italic>
These accumulated on-scene data begin an initial medical record that follows the patient through his or her hospital course, enabling better continuity of care. In addition, the composite record appears instantaneously at the receiving hospital, allowing better preparation for trauma care before the patient arrives.</ce:para>
</ce:section>
<ce:section id="cesec2">
<ce:section-title>VIRTUAL REALITY</ce:section-title>
<ce:para>The same explosion in computer size and capacity that has facilitated information access also has enabled development of virtual reality devices that will enhance surgical education and clinical care in the decades ahead. First termed by Jaron Lanier in 1989,
<ce:italic>virtual reality</ce:italic>
refers to a computer-generated simulation of a three-dimensional (3-D) environment that allows sensory (i.e., sound, sight, touch) interaction, creating the illusion of actual human presence.
<ce:cross-ref refid="bib1">
<ce:sup>1</ce:sup>
</ce:cross-ref>
Presently, the virtual environment is achieved through the use of a helmet-mounted visual display and digital tactile gloves.
<ce:cross-ref refid="bib26">
<ce:sup>26</ce:sup>
</ce:cross-ref>
The challenge of a virtual reality surgical education trainer is to produce an interactive device that allows the student the requisite visual and haptic (i.e., tactile, force, and proprioceptive) input with a sufficiently high degree of accurate detail, low rate of latency (i.e., reaction), and high rate of frame-refreshment (i.e., visual frames per second).
<ce:cross-ref refid="bib6">
<ce:sup>6</ce:sup>
</ce:cross-ref>
Such a trainer would provide the student with an accurate simulation of performing an actual surgical procedure, enabling the development of surgical technical competence without the real risks involved in practicing on live patients. Already, virtual reality surgical simulators have been developed for learning laparoscopic cholecystectomy,
<ce:cross-refs refid="bib6 bib38">
<ce:sup>6,38</ce:sup>
</ce:cross-refs>
angioplasty,
<ce:cross-ref refid="bib2">
<ce:sup>2</ce:sup>
</ce:cross-ref>
nasal endoscopy,
<ce:cross-ref refid="bib11">
<ce:sup>11</ce:sup>
</ce:cross-ref>
sinus surgery,
<ce:cross-ref refid="bib11">
<ce:sup>11</ce:sup>
</ce:cross-ref>
arthroscopy,
<ce:cross-ref refid="bib40">
<ce:sup>40</ce:sup>
</ce:cross-ref>
and gynecologic laparoscopy.
<ce:cross-ref refid="bib3">
<ce:sup>3</ce:sup>
</ce:cross-ref>
Virtual reality devices for testing knowledge of anatomy and competence in performing surgical procedures also have been developed.
<ce:cross-refs refid="bib21 bib34">
<ce:sup>21,34</ce:sup>
</ce:cross-refs>
Within a few years, the care of trauma patients could be enhanced through virtual reality surgical training for challenging operations such as complex hepatic injury repair and ruptured thoracic aorta repair.</ce:para>
<ce:para>The practical aspects of virtual reality images also have become apparent. Virtual endoscopy has been achieved through 3-D reconstruction of thin-section helical CT images of the abdomen. Compared with standard colonoscopy, virtual endoscopy allows similar
<ce:italic>fly-through</ce:italic>
visualization, accurate localization of abnormalities, visualization proximal to obstructing lesions, and elimination of discomfort and complications associated with the invasive procedure.
<ce:cross-refs refid="bib12 bib23 bib28">
<ce:sup>12,23,28</ce:sup>
</ce:cross-refs>
Similar advantages for virtual bronchoscopy also have been reported.
<ce:cross-ref refid="bib36">
<ce:sup>36</ce:sup>
</ce:cross-ref>
3-D
<ce:italic>augmented reality</ce:italic>
overlays also have been employed during neurosurgical operations, superimposed on the patient's cranium to allow the neurosurgeon anatomic and functional information during the procedure to aid more precise operative navigation.
<ce:cross-ref refid="bib15">
<ce:sup>15</ce:sup>
</ce:cross-ref>
Virtual reality simulations of common environments, such as a
<ce:italic>virtual kitchen,</ce:italic>
have been used for rehabilitative purposes for victims of traumatic brain injury, enabling occupational therapists a reproducible training tool for restoring basic living skills in patients with head injuries.
<ce:cross-ref refid="bib5">
<ce:sup>5</ce:sup>
</ce:cross-ref>
One can envision that further developments and refinements in the clinical applications of virtual reality will become commonplace instruments for rehabilitative training and will replace invasive diagnostic procedures, such as arteriography and endoscopy.</ce:para>
</ce:section>
<ce:section id="cesec3">
<ce:section-title>ROBOTICS</ce:section-title>
<ce:para>The surgical assistance of a mechanical device includes direct robotic assistance, augmentation of skills, remote application of skills, and trainer robots.</ce:para>
<ce:para>The voice-controlled
<ce:italic>third</ce:italic>
arm used in laparoscopic or thoracoscopic surgery provides direct robotic assistance to the surgeon. Dunlap and Wanzer
<ce:cross-ref refid="bib10">
<ce:sup>10</ce:sup>
</ce:cross-ref>
showed that the robotic arm out-performed human camera holders and reduced operation time. The use of the robotic arm results in more operating room efficiency and cost savings for an institution.</ce:para>
<ce:para>Robotic enhancement also facilitates the surgeon's skills by translating gross motor movement into microscopic motion; ophthalmologists are able to perform intravascular (< 70 μm) drug delivery, implant microdrainage devices, and perform intraretinal manipulation of electrodes with minimal damage in animal models.
<ce:cross-ref refid="bib39">
<ce:sup>39</ce:sup>
</ce:cross-ref>
Robotically assisted laparoscopic instruments have been demonstrated to filter out hand tremors,
<ce:cross-ref refid="bib14">
<ce:sup>14</ce:sup>
</ce:cross-ref>
a feature desirable in most microsurgical techniques. Synchronization of the patient's EKG with instruments could filter out the motion of the heartbeat. The motion would appear to cease, facilitating surgery on a beating heart.
<ce:cross-ref refid="bib13">
<ce:sup>13</ce:sup>
</ce:cross-ref>
</ce:para>
<ce:para>Minimally invasive procedures are enhanced by robotic systems. The Intuitive System (Mountain View, CA) uses advanced robotics combined with enhanced visualization and proprietary electronics to perform coronary artery bypass grafting (CABGs) through 1-cm incisions. This system has been used in France and Germany; FDA approval is currently pending in the United States.
<ce:cross-ref refid="bib32">
<ce:sup>32</ce:sup>
</ce:cross-ref>
The advantage of decreasing the insult to the patient, and therefore speeding recovery, is beneficial to the patient and society.</ce:para>
<ce:para>An understanding of telepresence surgery requires an understanding of the following terms. A
<ce:italic>video image</ce:italic>
is the information equivalent of seeing.
<ce:italic>Telemanipulation</ce:italic>
is the information equivalent of hand motion.
<ce:italic>Latency</ce:italic>
is the delay from when the surgeon's hand on the instrument handle moves until the signal travels to the remote manipulator; Satava
<ce:cross-ref refid="bib27">
<ce:sup>27</ce:sup>
</ce:cross-ref>
has noted this latency to be the biggest problem in developing a live trauma model scenario.</ce:para>
<ce:para>Telepresence Surgical System (TESS) allows the surgeon to be located remotely and conduct an operation or do remote teaching. This model is based on 40 years of experience with flight simulators. The system can work with live patients or 3-D reconstructions, allows recording of the motions, and has several applications. The system with 3-D reconstruction can be used to rehearse a planned operation, train young surgeons, and develop new procedures.
<ce:cross-ref refid="bib30">
<ce:sup>30</ce:sup>
</ce:cross-ref>
</ce:para>
<ce:para>A quantum leap in technology and its application to educating surgeons has been the advancement in haptic technology of Thomas Massie's Personal Haptic Interface Mechanism (PHANTOM) 3-D Touch System.
<ce:cross-ref refid="bib20">
<ce:sup>20</ce:sup>
</ce:cross-ref>
The haptic or force feedback technology creates tactile sensations by exerting small precise amounts of force on one's fingers. This technology provides a sense of touch that enables the manipulation and deformation of computer-generated 3-D signals by hand. This technology could revolutionize surgical education and affect the morbidity and mortality associated with complex cases. Using CT-generated 3-D images, trainees could learn a technique without practicing it on a live patient, then could bring developed skills to subsequent patients.</ce:para>
<ce:para>Surgical masters' operations also could be recorded. By recording the movements of the instruments, their techniques would be analyzed and fine-teaching points could be shared with students. Analysis of hand motions could be taught early in one's career and used later. Residents' motions also could be recorded. Subsequent analysis can be used for specific feedback. Thus, educators' good behaviors could be reinforced and bad behaviors could be eliminated. In preparation for complex cases, experienced surgeons could practice different techniques or approaches and have a
<ce:italic>model surgery</ce:italic>
before operating on a live patient. This rehearsal could decrease the procedure and anesthesia time on a live patient and therefore decrease the risk to the patient.</ce:para>
<ce:para>Bowersox et al analyzed the application of this technology to resuscitative surgery.
<ce:cross-ref refid="bib4">
<ce:sup>4</ce:sup>
</ce:cross-ref>
In an experimental study, they used an intuitive telemanipulator system for remote procedures. Although all complex manipulations could be accomplished, the manipulations required more time than conventional surgery. Thus, Bowersox et al concluded that the increase in operative time would inhibit the use of telepresence technology early in the management of the trauma patient.</ce:para>
<ce:para>Several trainer robots are already on the market. The Eagle Trauma Patient Simulator (MedSim, USA, Binghamton, NY) allows anesthetic and drug manipulation of the model with programmed scenario responses for different actions. The monitors respond to the interventions as if the model were alive. This is similar to the flight simulator, which leads to a crash if wrong moves are made. The Eagle Trauma Patient Simulator is interactive; during examination, the pupils react, the arm responds to stimuli, and the monitors physiologically respond to chest tubes, needle decompression, and central line placements.
<ce:cross-ref refid="bib18">
<ce:sup>18</ce:sup>
</ce:cross-ref>
This system currently is used at St. Michael's Hospital in Toronto, Canada.</ce:para>
</ce:section>
<ce:section id="cesec4">
<ce:section-title>SUMMARY</ce:section-title>
<ce:para>The former Special Assistant to the Director on Biomedical Technology, Defense Advanced Research Projects Agency (DARPA), COL RM Satava, notes “Predicting the future trends in any profession jeopardizes the credibility of the author.”
<ce:cross-ref refid="bib24">
<ce:sup>24</ce:sup>
</ce:cross-ref>
Thus, we have attempted to outline current systems and prototype models in testing phases. Technologic advances will enable enhanced care of trauma patients. In the acute care setting, they also will affect the educational system in theory and practice.</ce:para>
</ce:section>
</ce:sections>
</body>
<tail>
<ce:bibliography>
<ce:section-title>References</ce:section-title>
<ce:bibliography-sec>
<ce:bib-reference id="bib1">
<ce:label>1</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:given-name>S.</ce:given-name>
<ce:surname>Aukstakalnis</ce:surname>
</sb:author>
<sb:author>
<ce:given-name>D.</ce:given-name>
<ce:surname>Blatner</ce:surname>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Silicon Mirage: The Art and Science of Virtual Reality</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:edited-book>
<sb:date>1992</sb:date>
<sb:publisher>
<sb:name>Peachpit Press</sb:name>
<sb:location>Berkeley, CA</sb:location>
</sb:publisher>
</sb:edited-book>
<sb:pages>
<sb:first-page>16</sb:first-page>
<sb:last-page>18</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib2">
<ce:label>2</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:given-name>S.Z.</ce:given-name>
<ce:surname>Barnes</ce:surname>
</sb:author>
<sb:author>
<ce:given-name>D.R.</ce:given-name>
<ce:surname>Morr</ce:surname>
</sb:author>
<sb:author>
<ce:given-name>E.</ce:given-name>
<ce:surname>Oggero</ce:surname>
</sb:author>
<sb:et-al></sb:et-al>
</sb:authors>
<sb:title>
<sb:maintitle>The realization of a haptic (force feedback) interface device for the purpose of angioplasty surgery simulation</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Biomed Sci Instrum</sb:maintitle>
</sb:title>
<sb:volume-nr>33</sb:volume-nr>
</sb:series>
<sb:date>1997</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>19</sb:first-page>
<sb:last-page>24</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib3">
<ce:label>3</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:given-name>P.</ce:given-name>
<ce:surname>Bernstein</ce:surname>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Virtual reality simulation of gynecologic laparoscopy</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>J Am Assoc Gynecol Laparosc</sb:maintitle>
</sb:title>
<sb:volume-nr>3</sb:volume-nr>
</sb:series>
<sb:issue-nr>suppl</sb:issue-nr>
<sb:date>1996</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>4</sb:first-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib4">
<ce:label>4</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:given-name>J.C.</ce:given-name>
<ce:surname>Bowersox</ce:surname>
</sb:author>
<sb:author>
<ce:given-name>P.R.</ce:given-name>
<ce:surname>Cordts</ce:surname>
</sb:author>
<sb:author>
<ce:given-name>A.J.</ce:given-name>
<ce:surname>LaPorta</ce:surname>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Use of an intuitive telemanipulator system for remote trauma surgery: An experimental study</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>J Am Coll Surg</sb:maintitle>
</sb:title>
<sb:volume-nr>186</sb:volume-nr>
</sb:series>
<sb:date>1998</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>615</sb:first-page>
<sb:last-page>621</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib5">
<ce:label>5</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:given-name>C.</ce:given-name>
<ce:surname>Christiansen</ce:surname>
</sb:author>
<sb:author>
<ce:given-name>B.</ce:given-name>
<ce:surname>Abreu</ce:surname>
</sb:author>
<sb:author>
<ce:given-name>K.</ce:given-name>
<ce:surname>Ottenbacher</ce:surname>
</sb:author>
<sb:et-al></sb:et-al>
</sb:authors>
<sb:title>
<sb:maintitle>Task performance in virtual environments used for cognitive rehabilitation after traumatic brain injury</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Arch Phys Med Rehabil</sb:maintitle>
</sb:title>
<sb:volume-nr>79</sb:volume-nr>
</sb:series>
<sb:date>1998</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>888</sb:first-page>
<sb:last-page>892</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib6">
<ce:label>6</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:given-name>J.</ce:given-name>
<ce:surname>Coleman</ce:surname>
</sb:author>
<sb:author>
<ce:given-name>C.C.</ce:given-name>
<ce:surname>Nduka</ce:surname>
</sb:author>
<sb:author>
<ce:given-name>A.</ce:given-name>
<ce:surname>Darzi</ce:surname>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Virtual reality and laparoscopic surgery</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Br J Surg</sb:maintitle>
</sb:title>
<sb:volume-nr>81</sb:volume-nr>
</sb:series>
<sb:date>1994</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>1709</sb:first-page>
<sb:last-page>1711</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib7">
<ce:label>7</ce:label>
<ce:other-ref>
<ce:textref>Committee on Fluid Resuscitation for Combat Casualties, Health Sciences Policy Program, National Institute of Medicine, National Academy of Sciences, Washington, DC;
<ce:inter-ref xlink:href="http://www2.nas.edu/hsp/2162.html">http://www2.nas.edu/hsp/2162.html</ce:inter-ref>
</ce:textref>
</ce:other-ref>
</ce:bib-reference>
<ce:bib-reference id="bib8">
<ce:label>8</ce:label>
<ce:other-ref>
<ce:textref>Complications in Surgery. New York, NY, SCP Communications;
<ce:inter-ref xlink:href="http://surgery.medscape.com/SCP/CIS/public/journal.CIS.html">
<ce:italic>http://surgery.medscape.com/SCP/CIS/public/journal.CIS.html</ce:italic>
</ce:inter-ref>
</ce:textref>
</ce:other-ref>
</ce:bib-reference>
<ce:bib-reference id="bib9">
<ce:label>9</ce:label>
<ce:other-ref>
<ce:textref>Deutchman M, Manco-Johnson ML: Abdominal ultrasound: Principles and techniques [CD-ROM interactive]. Norwood, MA, SilverPlatter Education, SilverPlatter Information</ce:textref>
</ce:other-ref>
</ce:bib-reference>
<ce:bib-reference id="bib10">
<ce:label>10</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:given-name>K.D.</ce:given-name>
<ce:surname>Dunlap</ce:surname>
</sb:author>
<sb:author>
<ce:given-name>L.</ce:given-name>
<ce:surname>Wanzer</ce:surname>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Is the robotic arm a cost-effective surgical tool?</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>AORN J</sb:maintitle>
</sb:title>
<sb:volume-nr>68</sb:volume-nr>
</sb:series>
<sb:date>1998</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>265</sb:first-page>
<sb:last-page>272</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib11">
<ce:label>11</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:given-name>U.</ce:given-name>
<ce:surname>Ecke</ce:surname>
</sb:author>
<sb:author>
<ce:given-name>L.</ce:given-name>
<ce:surname>Klimek</ce:surname>
</sb:author>
<sb:author>
<ce:given-name>W.</ce:given-name>
<ce:surname>Muller</ce:surname>
</sb:author>
<sb:et-al></sb:et-al>
</sb:authors>
<sb:title>
<sb:maintitle>Virtual reality: Preparation and execution of sinus surgery</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Comput Aided Surg</sb:maintitle>
</sb:title>
<sb:volume-nr>3</sb:volume-nr>
</sb:series>
<sb:date>1998</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>45</sb:first-page>
<sb:last-page>50</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib12">
<ce:label>12</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:given-name>H.M.</ce:given-name>
<ce:surname>Fenlon</ce:surname>
</sb:author>
<sb:author>
<ce:given-name>D.P.</ce:given-name>
<ce:surname>Nunes</ce:surname>
</sb:author>
<sb:author>
<ce:given-name>P.D.</ce:given-name>
<ce:surname>Clarke</ce:surname>
</sb:author>
<sb:et-al></sb:et-al>
</sb:authors>
<sb:title>
<sb:maintitle>Colorectal neoplasm detection using virtual colonoscopy: A feasibility study</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Gut</sb:maintitle>
</sb:title>
<sb:volume-nr>43</sb:volume-nr>
</sb:series>
<sb:date>1998</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>806</sb:first-page>
<sb:last-page>811</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib13">
<ce:label>13</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:given-name>C.</ce:given-name>
<ce:surname>Fenton</ce:surname>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Bionic surgery: Advanced technology training telepresence surgery system</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>USU Quarterly Fall</sb:maintitle>
</sb:title>
</sb:series>
<sb:date>1998</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>4</sb:first-page>
<sb:last-page>7</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib14">
<ce:label>14</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:surname>Garcia-Ruiz</ce:surname>
<ce:given-name>A.</ce:given-name>
</sb:author>
<sb:author>
<ce:given-name>M.</ce:given-name>
<ce:surname>Gagner</ce:surname>
</sb:author>
<sb:author>
<ce:given-name>J.H.</ce:given-name>
<ce:surname>Miller</ce:surname>
</sb:author>
<sb:et-al></sb:et-al>
</sb:authors>
<sb:title>
<sb:maintitle>Manual versus robotically assisted laparoscopic surgery in the performance of basic manipulation and suturing tasks</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Arch Surg</sb:maintitle>
</sb:title>
<sb:volume-nr>133</sb:volume-nr>
</sb:series>
<sb:date>1998</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>957</sb:first-page>
<sb:last-page>961</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib15">
<ce:label>15</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:given-name>H.</ce:given-name>
<ce:surname>Iseki</ce:surname>
</sb:author>
<sb:author>
<ce:given-name>Y.</ce:given-name>
<ce:surname>Masutani</ce:surname>
</sb:author>
<sb:author>
<ce:given-name>M.</ce:given-name>
<ce:surname>Iwahara</ce:surname>
</sb:author>
<sb:et-al></sb:et-al>
</sb:authors>
<sb:title>
<sb:maintitle>Volumegraph (overlaid three-dimensional image-guided navigation): Clinical application of augmented reality in neurosurgery</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Stereotact Funct Neurosurg</sb:maintitle>
</sb:title>
<sb:volume-nr>68</sb:volume-nr>
</sb:series>
<sb:date>1997</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>18</sb:first-page>
<sb:last-page>24</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib16">
<ce:label>16</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:given-name>R.H.</ce:given-name>
<ce:surname>Istepanian</ce:surname>
</sb:author>
<sb:author>
<ce:given-name>B.</ce:given-name>
<ce:surname>Woodward</ce:surname>
</sb:author>
<sb:author>
<ce:given-name>E.</ce:given-name>
<ce:surname>Gorilas</ce:surname>
</sb:author>
<sb:et-al></sb:et-al>
</sb:authors>
<sb:title>
<sb:maintitle>Design of mobile telemedicine systems using GSM and IS-54 cellular telephone standards</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>J Telemed Telecare</sb:maintitle>
</sb:title>
<sb:volume-nr>4</sb:volume-nr>
</sb:series>
<sb:issue-nr>suppl</sb:issue-nr>
<sb:date>1998</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>30</sb:first-page>
<sb:last-page>82</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib17">
<ce:label>17</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:given-name>K.</ce:given-name>
<ce:surname>McCabe</ce:surname>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>What's a Palm computer?</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Palm Computer: The Guide to 3Com Palm Computing</sb:maintitle>
</sb:title>
<sb:volume-nr>1</sb:volume-nr>
</sb:series>
<sb:date>1998</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>7</sb:first-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib18">
<ce:label>18</ce:label>
<ce:other-ref>
<ce:textref>Medical Marketing Document: MedSim-Eagle Simulation. Binghamton NY, 1998;
<ce:inter-ref xlink:href="http://www.eaglesim.com">www.eaglesim.com</ce:inter-ref>
</ce:textref>
</ce:other-ref>
</ce:bib-reference>
<ce:bib-reference id="bib19">
<ce:label>19</ce:label>
<ce:other-ref>
<ce:textref>Morbidity and Mortality Weekly Report. Atlanta, GA, Centers for Disease Control and Prevention;
<ce:inter-ref xlink:href="http://www.cdc.gov/epo/mmwr/mmwr.html">http://www.cdc.gov/epo/mmwr/mmwr.html</ce:inter-ref>
</ce:textref>
</ce:other-ref>
</ce:bib-reference>
<ce:bib-reference id="bib20">
<ce:label>20</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:given-name>C.</ce:given-name>
<ce:surname>Muther</ce:surname>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>The PHANTOM offers a 3-D helping hand</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>The Boston Globe</sb:maintitle>
</sb:title>
</sb:series>
<sb:date>March 25, 1998</sb:date>
</sb:issue>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib21">
<ce:label>21</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:given-name>D.</ce:given-name>
<ce:surname>Ota</ce:surname>
</sb:author>
<sb:author>
<ce:given-name>B.</ce:given-name>
<ce:surname>Loftin</ce:surname>
</sb:author>
<sb:author>
<ce:given-name>T.</ce:given-name>
<ce:surname>Saito</ce:surname>
</sb:author>
<sb:et-al></sb:et-al>
</sb:authors>
<sb:title>
<sb:maintitle>Virtual reality in surgical education</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Comput Biol Med</sb:maintitle>
</sb:title>
<sb:volume-nr>25</sb:volume-nr>
</sb:series>
<sb:date>1995</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>127</sb:first-page>
<sb:last-page>137</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib22">
<ce:label>22</ce:label>
<ce:other-ref>
<ce:textref>OVID Online. New York, NY, Ovid Technologies;
<ce:inter-ref xlink:href="http://gateway.ovid.com/autologin.cgi">http://gateway.ovid.com/autologin.cgi</ce:inter-ref>
</ce:textref>
</ce:other-ref>
</ce:bib-reference>
<ce:bib-reference id="bib23">
<ce:label>23</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:given-name>A.P.</ce:given-name>
<ce:surname>Royster</ce:surname>
</sb:author>
<sb:author>
<ce:given-name>H.M.</ce:given-name>
<ce:surname>Fenlon</ce:surname>
</sb:author>
<sb:author>
<ce:given-name>P.D.</ce:given-name>
<ce:surname>Clarke</ce:surname>
</sb:author>
<sb:et-al></sb:et-al>
</sb:authors>
<sb:title>
<sb:maintitle>CT colonoscopy of colorectal neoplasms: Two-dimensional and three-dimensional virtual-reality techniques with colonoscopic correlation</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Am J Roentgenol</sb:maintitle>
</sb:title>
<sb:volume-nr>169</sb:volume-nr>
</sb:series>
<sb:date>1997</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>1237</sb:first-page>
<sb:last-page>1242</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib24">
<ce:label>24</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:given-name>J.M.</ce:given-name>
<ce:surname>Sackier</ce:surname>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Phantoms and pixels: Apparitions: Image-guided general surgery</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>J Image Guide Surg</sb:maintitle>
</sb:title>
<sb:volume-nr>1</sb:volume-nr>
</sb:series>
<sb:date>1995</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>75</sb:first-page>
<sb:last-page>79</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib25">
<ce:label>25</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:given-name>K.</ce:given-name>
<ce:surname>Sandrick</ce:surname>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Science goes to battle to save lives</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Health Data Management</sb:maintitle>
</sb:title>
<sb:volume-nr>2</sb:volume-nr>
</sb:series>
<sb:date>1994</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>28</sb:first-page>
<sb:last-page>32</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib26">
<ce:label>26</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:given-name>R.M.</ce:given-name>
<ce:surname>Satava</ce:surname>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Medical applications of virtual reality</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>J Med Syst</sb:maintitle>
</sb:title>
<sb:volume-nr>19</sb:volume-nr>
</sb:series>
<sb:date>1995</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>275</sb:first-page>
<sb:last-page>280</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib27">
<ce:label>27</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:given-name>R.M.</ce:given-name>
<ce:surname>Satava</ce:surname>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Transitioning to the future</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>JACS</sb:maintitle>
</sb:title>
<sb:volume-nr>186</sb:volume-nr>
</sb:series>
<sb:date>1998</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>691</sb:first-page>
<sb:last-page>692</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib28">
<ce:label>28</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:given-name>R.M.</ce:given-name>
<ce:surname>Satava</ce:surname>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Virtual endoscopy: Diagnosis using 3-D visualization and virtual representation</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Surg Endosc</sb:maintitle>
</sb:title>
<sb:volume-nr>10</sb:volume-nr>
</sb:series>
<sb:date>1996</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>173</sb:first-page>
<sb:last-page>174</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib29">
<ce:label>29</ce:label>
<ce:other-ref>
<ce:textref>Scientific American Surgery CD-ROM. New York, NY, Scientific American</ce:textref>
</ce:other-ref>
</ce:bib-reference>
<ce:bib-reference id="bib30">
<ce:label>30</ce:label>
<ce:other-ref>
<ce:textref>SensAble Technologies: About SensAble Technologies;
<ce:inter-ref xlink:href="http://www.SensAble.com">www.SensAble.com</ce:inter-ref>
</ce:textref>
</ce:other-ref>
</ce:bib-reference>
<ce:bib-reference id="bib31">
<ce:label>31</ce:label>
<ce:other-ref>
<ce:textref>Shefman D: Medical Robotics and Computer-assisted Surgery. Pittsburgh, PA, Carnegie Mellon University;
<ce:inter-ref xlink:href="http://www.ius.cs.cmu.edu/mrcas/mmenu.html">http://www.ius.cs.cmu.edu/mrcas/mmenu.html</ce:inter-ref>
</ce:textref>
</ce:other-ref>
</ce:bib-reference>
<ce:bib-reference id="bib32">
<ce:label>32</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:given-name>T.</ce:given-name>
<ce:surname>Skari</ce:surname>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>The cutting edge: Heart surgery enters the age of robotics</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Life [special issue]</sb:maintitle>
</sb:title>
</sb:series>
<sb:date>Fall, 1998</sb:date>
</sb:issue>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib33">
<ce:label>33</ce:label>
<sb:reference>
<sb:host>
<sb:edited-book>
<sb:title>
<sb:maintitle>Surgical Education and Self-Assessment Program (SESAP)</sb:maintitle>
</sb:title>
<sb:date>1998</sb:date>
<sb:publisher>
<sb:name>American College of Surgeons</sb:name>
<sb:location>Chicago, IL</sb:location>
</sb:publisher>
</sb:edited-book>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib34">
<ce:label>34</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:given-name>R.B.</ce:given-name>
<ce:surname>Trelease</ce:surname>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>The virtual anatomy practical: A stereoscopic 3-D interactive multimedia computer examination program</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Clin Anat</sb:maintitle>
</sb:title>
<sb:volume-nr>11</sb:volume-nr>
</sb:series>
<sb:date>1998</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>89</sb:first-page>
<sb:last-page>94</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib35">
<ce:label>35</ce:label>
<ce:other-ref>
<ce:textref>US National Library of Medicine. Bethesda, MD, National Institutes of Health;
<ce:inter-ref xlink:href="http://www.ncbi.nlm.nih.gov/PubMed/">http://www.ncbi.nlm.nih.gov/PubMed/</ce:inter-ref>
and
<ce:inter-ref xlink:href="http://igm.nlm.nib.gov">http://igm.nlm.nib.gov</ce:inter-ref>
</ce:textref>
</ce:other-ref>
</ce:bib-reference>
<ce:bib-reference id="bib36">
<ce:label>36</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:given-name>D.J.</ce:given-name>
<ce:surname>Vining</ce:surname>
</sb:author>
<sb:author>
<ce:given-name>K.</ce:given-name>
<ce:surname>Liu</ce:surname>
</sb:author>
<sb:author>
<ce:given-name>R.H.</ce:given-name>
<ce:surname>Choplin</ce:surname>
</sb:author>
<sb:et-al></sb:et-al>
</sb:authors>
<sb:title>
<sb:maintitle>Virtual bronchoscopy: Relationships of virtual reality endobronchial simulations to actual bronchoscopic findings</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Chest</sb:maintitle>
</sb:title>
<sb:volume-nr>109</sb:volume-nr>
</sb:series>
<sb:date>1996</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>549</sb:first-page>
<sb:last-page>553</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib37">
<ce:label>37</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:given-name>T.J.</ce:given-name>
<ce:surname>Walters</ce:surname>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Deployment telemedicine: The Walter Reed Army Medical Center experience</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Military Medicine</sb:maintitle>
</sb:title>
<sb:volume-nr>161</sb:volume-nr>
</sb:series>
<sb:date>1996</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>531</sb:first-page>
<sb:last-page>536</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib38">
<ce:label>38</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:given-name>M.S.</ce:given-name>
<ce:surname>Wilson</ce:surname>
</sb:author>
<sb:author>
<ce:given-name>A.</ce:given-name>
<ce:surname>Middlebrook</ce:surname>
</sb:author>
<sb:author>
<ce:given-name>C.</ce:given-name>
<ce:surname>Sutton</ce:surname>
</sb:author>
<sb:et-al></sb:et-al>
</sb:authors>
<sb:title>
<sb:maintitle>MIST VR: A virtual reality trainer for laparoscopic surgery assesses performance</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Ann R Coll Surg Engl</sb:maintitle>
</sb:title>
<sb:volume-nr>79</sb:volume-nr>
</sb:series>
<sb:date>1997</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>403</sb:first-page>
<sb:last-page>404</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib39">
<ce:label>39</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:given-name>D.Y.</ce:given-name>
<ce:surname>Yu</ce:surname>
</sb:author>
<sb:author>
<ce:given-name>S.J.</ce:given-name>
<ce:surname>Cringle</ce:surname>
</sb:author>
<sb:author>
<ce:given-name>I.J.</ce:given-name>
<ce:surname>Constable</ce:surname>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Robotic ocular ultramicrosurgery</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Aust N Z J Ophthalmol</sb:maintitle>
</sb:title>
<sb:volume-nr>1</sb:volume-nr>
</sb:series>
<sb:issue-nr>suppl</sb:issue-nr>
<sb:date>1998</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>6</sb:first-page>
<sb:last-page>8</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib40">
<ce:label>40</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:given-name>R.</ce:given-name>
<ce:surname>Ziegler</ce:surname>
</sb:author>
<sb:author>
<ce:given-name>G.</ce:given-name>
<ce:surname>Fischer</ce:surname>
</sb:author>
<sb:author>
<ce:given-name>W.</ce:given-name>
<ce:surname>Muller</ce:surname>
</sb:author>
<sb:et-al></sb:et-al>
</sb:authors>
<sb:title>
<sb:maintitle>Virtual reality arthroscopy training simulator</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Comput Biol Med</sb:maintitle>
</sb:title>
<sb:volume-nr>25</sb:volume-nr>
</sb:series>
<sb:date>1995</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>193</sb:first-page>
<sb:last-page>203</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
</ce:bibliography-sec>
</ce:bibliography>
</tail>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>VIRTUAL REALITY, ROBOTICS, AND OTHER WIZARDRY IN 21st CENTURY TRAUMA CARE</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>VIRTUAL REALITY, ROBOTICS, AND OTHER WIZARDRY IN 21st CENTURY TRAUMA CARE</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mary E.</namePart>
<namePart type="family">Maniscalco-Theberge</namePart>
<namePart type="termsOfAddress">MD</namePart>
<affiliation>General Surgery Service, Walter Reed Army Medical Center, Washington, DC (MEM-T)</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David C.</namePart>
<namePart type="family">Elliott</namePart>
<namePart type="termsOfAddress">MD</namePart>
<affiliation>Trauma Service, Madigan Army Medical Center, Fort Lewis, Washington (DCE)</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article"></genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1999</dateIssued>
<copyrightDate encoding="w3cdtf">1999</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract>Sipping the soothing dregs of your double tall nonfat absinthe latte, you are nonetheless startled once again when the alarm sounds. A 4-passenger Acme personal flying saucer (PFC) has crashed into a flying school bus, injuring 14 children and 2 adults. The notice comes to you, the trauma surgeon in charge of Fargo Metropolitan Trauma Center, simultaneous to the accident because all vehicles and all occupants nowadays sport their own status monitors. The status monitor of each involved vehicle broadcasts to the city emergency medical system (EMS) center the exact global positioning satellite (GPS) location and the directional and force vectors of the accident on impact, whereas, on injury, those of each trauma victim broadcast automatically to the trauma center such data as GPS location, vital signs, and noninvasively obtained parameters, such as cardiac output, hemoglobin, and lactate. You note that six people are in shock and will be brought to you and your team of four physicians. The EMS center has triaged the rest of the people to other hospitals in the area, all 16 to be picked up by ambulances dispatched within 60 seconds of the crash. Knowing that the patients will arrive at your hospital within minutes, you alert your colleagues, one of whom has been studying for the upcoming oral board examinations with his virtual reality operative technique trainer. A second alarm from the on-site ambulance notifies you that one of the injured adults is rapidly bleeding from a liver laceration. At your direction, the ambulance paramedic attaches a surgical robot to the victim's abdomen and you quickly perform telepresent laparotomy through the robotic surgical assistant, pack the abdomen, and direct the paramedic to fly the victim to your location as first priority. Donning your universal precautions suit (UPS), you lament, When will this madness ever end. After all, this is 2062! More reality than fantasy, the devices described above are already being developed. This article focuses on probable technologic advancements that will have daily impact on trauma care in the next 20 years; included are discussions regarding information technology, virtual reality, and robotics (Fig. 1).</abstract>
<note>Address reprint requests to David C. Elliott, MD, 7016 53rd Street, University Place, WA 98467</note>
<note>The opinions and assertions herein are those of the authors and are not to be construed as official policy or reflecting the views of the Department of Defense.</note>
<note type="content">Figure 1: The life support for trauma and transport (LSTAT) system is a self-contained medical evacuation platform with advanced life-support systems.</note>
<relatedItem type="host">
<titleInfo>
<title>Surgical Clinics of North America</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>SUC</title>
</titleInfo>
<genre type="Journal">journal</genre>
<originInfo>
<dateIssued encoding="w3cdtf">19991201</dateIssued>
</originInfo>
<identifier type="ISSN">0039-6109</identifier>
<identifier type="PII">S0039-6109(05)X7005-0</identifier>
<part>
<date>19991201</date>
<detail type="volume">
<number>79</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>6</number>
<caption>no.</caption>
</detail>
<extent unit="issue pages">
<start>1229</start>
<end>1552</end>
</extent>
<extent unit="pages">
<start>1241</start>
<end>1248</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">0F64616DFF4AC44001A75675FC673CEDE2D98D4B</identifier>
<identifier type="DOI">10.1016/S0039-6109(05)70074-8</identifier>
<identifier type="PII">S0039-6109(05)70074-8</identifier>
<accessCondition type="use and reproduction" contentType="">© 1999W. B. Saunders Company</accessCondition>
<recordInfo>
<recordContentSource>ELSEVIER</recordContentSource>
<recordOrigin>W. B. Saunders Company, ©1999</recordOrigin>
</recordInfo>
</mods>
</metadata>
<enrichments>
<istex:catWosTEI uri="https://api.istex.fr/document/0F64616DFF4AC44001A75675FC673CEDE2D98D4B/enrichments/catWos">
<teiHeader>
<profileDesc>
<textClass>
<classCode scheme="WOS">SURGERY</classCode>
</textClass>
</profileDesc>
</teiHeader>
</istex:catWosTEI>
</enrichments>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003248 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 003248 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:0F64616DFF4AC44001A75675FC673CEDE2D98D4B
   |texte=   VIRTUAL REALITY, ROBOTICS, AND OTHER WIZARDRY IN 21st CENTURY TRAUMA CARE
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024