Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Box 1. Perceptual remappings are complex

Identifieur interne : 002580 ( Istex/Corpus ); précédent : 002579; suivant : 002581

Box 1. Perceptual remappings are complex

Auteurs : James R. Lackner ; Paul A. Dizio ; James R. Lackner ; Paul A. Dizio ; James R. Lackner ; Paul A. Dizio ; James R. Lackner ; Paul A. Dizio

Source :

RBID : ISTEX:3897DE5D5AAEE7EF5D9B28ED66F646F6DC65A55B

Abstract

The representation of body orientation and configuration is dependent on multiple sources of afferent and efferent information about ongoing and intended patterns of movement and posture. Under normal terrestrial conditions, we feel virtually weightless and we do not perceive the actual forces associated with movement and support of our body. It is during exposure to unusual forces and patterns of sensory feedback during locomotion that computations and mechanisms underlying the ongoing calibration of our body dimensions and movements are revealed. This review discusses the normal mechanisms of our position sense and calibration of our kinaesthetic, visual and auditory sensory systems, and then explores the adaptations that take place to transient Coriolis forces generated during passive body rotation. The latter are very rapid adaptations that allow body movements to become accurate again, even in the absence of visual feedback. Muscle spindle activity interpreted in relation to motor commands and internally modeled reafference is an important component in permitting this adaptation. During voluntary rotary movements of the body, the central nervous system automatically compensates for the Coriolis forces generated by limb movements. This allows accurate control to be maintained without our perceiving the forces generated.

Url:
DOI: 10.1016/S1364-6613(00)01493-5

Links to Exploration step

ISTEX:3897DE5D5AAEE7EF5D9B28ED66F646F6DC65A55B

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Box 1. Perceptual remappings are complex</title>
<author>
<name sortKey="Lackner, James R" sort="Lackner, James R" uniqKey="Lackner J" first="James R." last="Lackner">James R. Lackner</name>
<affiliation>
<mods:affiliation></mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dizio, Paul A" sort="Dizio, Paul A" uniqKey="Dizio P" first="Paul A." last="Dizio">Paul A. Dizio</name>
<affiliation>
<mods:affiliation></mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lackner, James R" sort="Lackner, James R" uniqKey="Lackner J" first="James R." last="Lackner">James R. Lackner</name>
<affiliation>
<mods:affiliation></mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dizio, Paul A" sort="Dizio, Paul A" uniqKey="Dizio P" first="Paul A." last="Dizio">Paul A. Dizio</name>
<affiliation>
<mods:affiliation></mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lackner, James R" sort="Lackner, James R" uniqKey="Lackner J" first="James R." last="Lackner">James R. Lackner</name>
<affiliation>
<mods:affiliation></mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dizio, Paul A" sort="Dizio, Paul A" uniqKey="Dizio P" first="Paul A." last="Dizio">Paul A. Dizio</name>
<affiliation>
<mods:affiliation></mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lackner, James R" sort="Lackner, James R" uniqKey="Lackner J" first="James R." last="Lackner">James R. Lackner</name>
<affiliation>
<mods:affiliation>Ashton Graybiel Spatial Orientation Laboratory, Volen Center for Complex Systems, Brandeis University, MS 033, 415 South Street, Waltham, MA 02454, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: lackner@brandeis.edu</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dizio, Paul A" sort="Dizio, Paul A" uniqKey="Dizio P" first="Paul A." last="Dizio">Paul A. Dizio</name>
<affiliation>
<mods:affiliation>Ashton Graybiel Spatial Orientation Laboratory, Volen Center for Complex Systems, Brandeis University, MS 033, 415 South Street, Waltham, MA 02454, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:3897DE5D5AAEE7EF5D9B28ED66F646F6DC65A55B</idno>
<date when="2000" year="2000">2000</date>
<idno type="doi">10.1016/S1364-6613(00)01493-5</idno>
<idno type="url">https://api.istex.fr/document/3897DE5D5AAEE7EF5D9B28ED66F646F6DC65A55B/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002580</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Box 1. Perceptual remappings are complex</title>
<author>
<name sortKey="Lackner, James R" sort="Lackner, James R" uniqKey="Lackner J" first="James R." last="Lackner">James R. Lackner</name>
<affiliation>
<mods:affiliation></mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dizio, Paul A" sort="Dizio, Paul A" uniqKey="Dizio P" first="Paul A." last="Dizio">Paul A. Dizio</name>
<affiliation>
<mods:affiliation></mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lackner, James R" sort="Lackner, James R" uniqKey="Lackner J" first="James R." last="Lackner">James R. Lackner</name>
<affiliation>
<mods:affiliation></mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dizio, Paul A" sort="Dizio, Paul A" uniqKey="Dizio P" first="Paul A." last="Dizio">Paul A. Dizio</name>
<affiliation>
<mods:affiliation></mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lackner, James R" sort="Lackner, James R" uniqKey="Lackner J" first="James R." last="Lackner">James R. Lackner</name>
<affiliation>
<mods:affiliation></mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dizio, Paul A" sort="Dizio, Paul A" uniqKey="Dizio P" first="Paul A." last="Dizio">Paul A. Dizio</name>
<affiliation>
<mods:affiliation></mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lackner, James R" sort="Lackner, James R" uniqKey="Lackner J" first="James R." last="Lackner">James R. Lackner</name>
<affiliation>
<mods:affiliation>Ashton Graybiel Spatial Orientation Laboratory, Volen Center for Complex Systems, Brandeis University, MS 033, 415 South Street, Waltham, MA 02454, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: lackner@brandeis.edu</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dizio, Paul A" sort="Dizio, Paul A" uniqKey="Dizio P" first="Paul A." last="Dizio">Paul A. Dizio</name>
<affiliation>
<mods:affiliation>Ashton Graybiel Spatial Orientation Laboratory, Volen Center for Complex Systems, Brandeis University, MS 033, 415 South Street, Waltham, MA 02454, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Trends in Cognitive Sciences</title>
<title level="j" type="abbrev">TICS</title>
<idno type="ISSN">1364-6613</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2000">2000</date>
<biblScope unit="volume">4</biblScope>
<biblScope unit="issue">7</biblScope>
<biblScope unit="page" from="279">279</biblScope>
<biblScope unit="page" to="288">288</biblScope>
</imprint>
<idno type="ISSN">1364-6613</idno>
</series>
<idno type="istex">3897DE5D5AAEE7EF5D9B28ED66F646F6DC65A55B</idno>
<idno type="DOI">10.1016/S1364-6613(00)01493-5</idno>
<idno type="PII">S1364-6613(00)01493-5</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1364-6613</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The representation of body orientation and configuration is dependent on multiple sources of afferent and efferent information about ongoing and intended patterns of movement and posture. Under normal terrestrial conditions, we feel virtually weightless and we do not perceive the actual forces associated with movement and support of our body. It is during exposure to unusual forces and patterns of sensory feedback during locomotion that computations and mechanisms underlying the ongoing calibration of our body dimensions and movements are revealed. This review discusses the normal mechanisms of our position sense and calibration of our kinaesthetic, visual and auditory sensory systems, and then explores the adaptations that take place to transient Coriolis forces generated during passive body rotation. The latter are very rapid adaptations that allow body movements to become accurate again, even in the absence of visual feedback. Muscle spindle activity interpreted in relation to motor commands and internally modeled reafference is an important component in permitting this adaptation. During voluntary rotary movements of the body, the central nervous system automatically compensates for the Coriolis forces generated by limb movements. This allows accurate control to be maintained without our perceiving the forces generated.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<author>
<json:item>
<name>James R. Lackner</name>
<affiliations>
<json:null></json:null>
</affiliations>
</json:item>
<json:item>
<name>Paul A. DiZio</name>
<affiliations>
<json:null></json:null>
</affiliations>
</json:item>
<json:item>
<name>James R. Lackner</name>
<affiliations>
<json:null></json:null>
</affiliations>
</json:item>
<json:item>
<name>Paul A. DiZio</name>
<affiliations>
<json:null></json:null>
</affiliations>
</json:item>
<json:item>
<name>James R. Lackner</name>
<affiliations>
<json:null></json:null>
</affiliations>
</json:item>
<json:item>
<name>Paul A. DiZio</name>
<affiliations>
<json:null></json:null>
</affiliations>
</json:item>
<json:item>
<name>James R. Lackner</name>
<affiliations>
<json:string>Ashton Graybiel Spatial Orientation Laboratory, Volen Center for Complex Systems, Brandeis University, MS 033, 415 South Street, Waltham, MA 02454, USA</json:string>
<json:string>E-mail: lackner@brandeis.edu</json:string>
</affiliations>
</json:item>
<json:item>
<name>Paul A. DiZio</name>
<affiliations>
<json:string>Ashton Graybiel Spatial Orientation Laboratory, Volen Center for Complex Systems, Brandeis University, MS 033, 415 South Street, Waltham, MA 02454, USA</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Cognitive science</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Physiology</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Orientation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Body schema</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Motor control</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Sensory-motor adaptation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Sensory localisation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Virtual environments</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Muscle spindles</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<abstract>The representation of body orientation and configuration is dependent on multiple sources of afferent and efferent information about ongoing and intended patterns of movement and posture. Under normal terrestrial conditions, we feel virtually weightless and we do not perceive the actual forces associated with movement and support of our body. It is during exposure to unusual forces and patterns of sensory feedback during locomotion that computations and mechanisms underlying the ongoing calibration of our body dimensions and movements are revealed. This review discusses the normal mechanisms of our position sense and calibration of our kinaesthetic, visual and auditory sensory systems, and then explores the adaptations that take place to transient Coriolis forces generated during passive body rotation. The latter are very rapid adaptations that allow body movements to become accurate again, even in the absence of visual feedback. Muscle spindle activity interpreted in relation to motor commands and internally modeled reafference is an important component in permitting this adaptation. During voluntary rotary movements of the body, the central nervous system automatically compensates for the Coriolis forces generated by limb movements. This allows accurate control to be maintained without our perceiving the forces generated.</abstract>
<qualityIndicators>
<score>7.316</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>592 x 811 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>9</keywordCount>
<abstractCharCount>1345</abstractCharCount>
<pdfWordCount>7649</pdfWordCount>
<pdfCharCount>47754</pdfCharCount>
<pdfPageCount>10</pdfPageCount>
<abstractWordCount>193</abstractWordCount>
</qualityIndicators>
<title>Box 1. Perceptual remappings are complex</title>
<pii>
<json:string>S1364-6613(00)01493-5</json:string>
</pii>
<genre>
<json:string>review-article</json:string>
</genre>
<host>
<volume>4</volume>
<pii>
<json:string>S1364-6613(00)X0031-9</json:string>
</pii>
<pages>
<last>288</last>
<first>279</first>
</pages>
<issn>
<json:string>1364-6613</json:string>
</issn>
<issue>7</issue>
<genre>
<json:string>Journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<title>Trends in Cognitive Sciences</title>
<publicationDate>2000</publicationDate>
</host>
<categories>
<wos>
<json:string>PSYCHOLOGY, EXPERIMENTAL</json:string>
<json:string>BEHAVIORAL SCIENCES</json:string>
<json:string>NEUROSCIENCES</json:string>
</wos>
</categories>
<publicationDate>2000</publicationDate>
<copyrightDate>2000</copyrightDate>
<doi>
<json:string>10.1016/S1364-6613(00)01493-5</json:string>
</doi>
<id>3897DE5D5AAEE7EF5D9B28ED66F646F6DC65A55B</id>
<score>1</score>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/3897DE5D5AAEE7EF5D9B28ED66F646F6DC65A55B/fulltext/pdf</uri>
</json:item>
<json:item>
<original>true</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/3897DE5D5AAEE7EF5D9B28ED66F646F6DC65A55B/fulltext/txt</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/3897DE5D5AAEE7EF5D9B28ED66F646F6DC65A55B/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/3897DE5D5AAEE7EF5D9B28ED66F646F6DC65A55B/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Box 1. Perceptual remappings are complex</title>
<title level="a">Box 2. Failure of equilibrium point theories</title>
<title level="a">Box 3. Factors influencing self-calibration</title>
<title level="a">Aspects of body self-calibration</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>ELSEVIER</p>
</availability>
<date>2000</date>
</publicationStmt>
<notesStmt>
<note type="content">Section title: Review</note>
<note type="content">Fig. 1: Perception of arm weight. Raising the unloaded forearm from a 45° angle with respect to gravity (a) to a horizontal position (b) requires increased biceps muscle force (gray), owing to changes in the effective lever arm of the forearm’s center of mass (m) accelerated by Earth gravity (g) and in the biceps muscle force about the elbow joint46. No sensation of force is localized at the muscle or its attachment points and the forearm feels almost weightless. If a weight equivalent to that of the forearm is placed in the hand (c), about 20 newtons (N) (or 4.5 lb), the biceps muscle force increases threefold in order to keep the arm horizontal. The object’s weight is perceived as being substantial and is localized at the hand where the cutaneous contact force (broken arrow) applied by the hand supports the object. All calculations of muscle force involve the simplifying assumption that the biceps brachii supplies all the resistance to gravity.</note>
<note type="content">Fig. 2: Proprioception influences visual direction. An experiment in which small target lights are attached to both index fingers and both biceps brachii are vibrated. The arms and targets are restrained from moving and subjects stably fixate on one of the targets in an otherwise dark room. Illusory extension of both unseen forearms is felt (unbroken arrows) and the distance between the two lights appears to increase (broken arrows).</note>
<note type="content">Fig. 3: Locomotor remappings. (a) A subject in an apparatus that permits independent control of the floor, drum and bar motion. (b)–(e) Aerial view of four experimental conditions (left) and the perceptual remappings of self, floor, drum, bar and voluntary stepping motion that are experienced (right). The arrows represent the rate and direction of the drum (striped) and floor (light gray) motion. The subject and bar are always spatially fixed.</note>
<note type="content">Fig. 4: Gravity and leg length determine maximum walking speed. A model of walking in which each foot is on the ground for 50% of each stride (λ). The speed at which the center of mass can move forward (V) increases in proportion to the rate at which it is accelerated downward by gravity (g) and to the length of the stance leg (L) about which it pivots.</note>
<note type="content">Fig. 5: Reaching in a rotating room. (a) A subject in darkness experiences no self-motion after 2 min of constant velocity counterclockwise (ccw) rotation, 60°/s, because the semicircular canals are only stimulated by a changing rotation speed. In the subject’s initial per-rotation attempt to reach forward, his hand is deviated rightwards (open symbols) by a transient rightward Coriolis force (FCor) that arises when the arm is in forward motion (Varm). Fcor=−2m(ωVarm) where m is the mass of the arm, ω is the velocity of rotation in radians/s and Varm is the velocity of the arm in m/s. After 10–15 reaches, the subject’s movements become as straight and accurate as pre-rotation (unbroken line). The first post-rotation reach (filled symbols) is a mirror image of the initial per-rotation one. (b) The endpoints and path curvatures of 40 reaches made during pre-, per- and post-rotation periods.</note>
<note type="content">Fig. 6: Fingertip contact forces map-reaching endpoint. When a reaching movement ends in contact with a surface, the shear forces generated during the first 30 ms after impact specify where the hand is relative to the body. The shear reaction force vectors associated with touching different locations on the surface point to the same body relative location near the shoulder (cross). The origin of each vector indicates where the finger made contact with the surface. One newton (N) equals 102 grams of force.</note>
<note type="content">Fig. 7: Reaching during virtual rotation. (a) The subject is wearing a head-mounted-display, is stationary physically but experiences counterclockwise self-rotation when viewing a scene transmitted from a telehead (stereo video cameras) that is rotating counterclockwise in a remote laboratory room. He cannot see his arm and the visually presented desktop and target appear stationary relative to his body. (b) His initial per-exposure reaches (open symbols) are curved and deviate leftwards. This reveals that the subject has compensated for the rightward Coriolis force that would be associated with actual physical counterclockwise rotation. A reaching error occurs because the subject is actually stationary.</note>
<note type="content">Fig. I: Self-calibration process. Block diagram of self-calibration of spatial orientation and movement control</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Box 1. Perceptual remappings are complex</title>
<title level="a">Box 2. Failure of equilibrium point theories</title>
<title level="a">Box 3. Factors influencing self-calibration</title>
<title level="a">Aspects of body self-calibration</title>
<author>
<persName>
<forename type="first">James R.</forename>
<surname>Lackner</surname>
</persName>
<affiliation></affiliation>
</author>
<author>
<persName>
<forename type="first">Paul A.</forename>
<surname>DiZio</surname>
</persName>
<affiliation></affiliation>
</author>
<author>
<persName>
<forename type="first">James R.</forename>
<surname>Lackner</surname>
</persName>
<affiliation></affiliation>
</author>
<author>
<persName>
<forename type="first">Paul A.</forename>
<surname>DiZio</surname>
</persName>
<affiliation></affiliation>
</author>
<author>
<persName>
<forename type="first">James R.</forename>
<surname>Lackner</surname>
</persName>
<affiliation></affiliation>
</author>
<author>
<persName>
<forename type="first">Paul A.</forename>
<surname>DiZio</surname>
</persName>
<affiliation></affiliation>
</author>
<author>
<persName>
<forename type="first">James R.</forename>
<surname>Lackner</surname>
</persName>
<email>lackner@brandeis.edu</email>
<note type="biography">tel: +1 781 736 2033 fax: +1 781 736 2031</note>
<affiliation>tel: +1 781 736 2033 fax: +1 781 736 2031</affiliation>
<affiliation>Ashton Graybiel Spatial Orientation Laboratory, Volen Center for Complex Systems, Brandeis University, MS 033, 415 South Street, Waltham, MA 02454, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">Paul A.</forename>
<surname>DiZio</surname>
</persName>
<affiliation>Ashton Graybiel Spatial Orientation Laboratory, Volen Center for Complex Systems, Brandeis University, MS 033, 415 South Street, Waltham, MA 02454, USA</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Trends in Cognitive Sciences</title>
<title level="j" type="abbrev">TICS</title>
<idno type="pISSN">1364-6613</idno>
<idno type="PII">S1364-6613(00)X0031-9</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2000"></date>
<biblScope unit="volume">4</biblScope>
<biblScope unit="issue">7</biblScope>
<biblScope unit="page" from="279">279</biblScope>
<biblScope unit="page" to="288">288</biblScope>
</imprint>
</monogr>
<idno type="istex">3897DE5D5AAEE7EF5D9B28ED66F646F6DC65A55B</idno>
<idno type="DOI">10.1016/S1364-6613(00)01493-5</idno>
<idno type="PII">S1364-6613(00)01493-5</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2000</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>The representation of body orientation and configuration is dependent on multiple sources of afferent and efferent information about ongoing and intended patterns of movement and posture. Under normal terrestrial conditions, we feel virtually weightless and we do not perceive the actual forces associated with movement and support of our body. It is during exposure to unusual forces and patterns of sensory feedback during locomotion that computations and mechanisms underlying the ongoing calibration of our body dimensions and movements are revealed. This review discusses the normal mechanisms of our position sense and calibration of our kinaesthetic, visual and auditory sensory systems, and then explores the adaptations that take place to transient Coriolis forces generated during passive body rotation. The latter are very rapid adaptations that allow body movements to become accurate again, even in the absence of visual feedback. Muscle spindle activity interpreted in relation to motor commands and internally modeled reafference is an important component in permitting this adaptation. During voluntary rotary movements of the body, the central nervous system automatically compensates for the Coriolis forces generated by limb movements. This allows accurate control to be maintained without our perceiving the forces generated.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Cognitive science</term>
</item>
<item>
<term>Physiology</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Orientation</term>
</item>
<item>
<term>Body schema</term>
</item>
<item>
<term>Motor control</term>
</item>
<item>
<term>Sensory-motor adaptation</term>
</item>
<item>
<term>Sensory localisation</term>
</item>
<item>
<term>Virtual environments</term>
</item>
<item>
<term>Muscle spindles</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2000">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="gr2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="gr3"></istex:entity>
<istex:entity SYSTEM="gr4" NDATA="IMAGE" name="gr4"></istex:entity>
<istex:entity SYSTEM="gr5" NDATA="IMAGE" name="gr5"></istex:entity>
<istex:entity SYSTEM="gr6" NDATA="IMAGE" name="gr6"></istex:entity>
<istex:entity SYSTEM="gr7" NDATA="IMAGE" name="gr7"></istex:entity>
<istex:entity SYSTEM="gr8" NDATA="IMAGE" name="gr8"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="rev">
<item-info>
<jid>TICS</jid>
<aid>1493</aid>
<ce:pii>S1364-6613(00)01493-5</ce:pii>
<ce:doi>10.1016/S1364-6613(00)01493-5</ce:doi>
<ce:copyright type="full-transfer" year="2000">Elsevier Science Ltd</ce:copyright>
</item-info>
<head>
<ce:dochead>
<ce:textfn>Review</ce:textfn>
</ce:dochead>
<ce:title>Aspects of body self-calibration</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>James R.</ce:given-name>
<ce:surname>Lackner</ce:surname>
<ce:cross-ref refid="CORR1">*</ce:cross-ref>
<ce:e-address>lackner@brandeis.edu</ce:e-address>
</ce:author>
<ce:author>
<ce:given-name>Paul A.</ce:given-name>
<ce:surname>DiZio</ce:surname>
</ce:author>
<ce:affiliation>
<ce:textfn>Ashton Graybiel Spatial Orientation Laboratory, Volen Center for Complex Systems, Brandeis University, MS 033, 415 South Street, Waltham, MA 02454, USA</ce:textfn>
</ce:affiliation>
<ce:correspondence id="CORR1">
<ce:label>*</ce:label>
<ce:text>tel: +1 781 736 2033 fax: +1 781 736 2031</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>The representation of body orientation and configuration is dependent on multiple sources of afferent and efferent information about ongoing and intended patterns of movement and posture. Under normal terrestrial conditions, we feel virtually weightless and we do not perceive the actual forces associated with movement and support of our body. It is during exposure to unusual forces and patterns of sensory feedback during locomotion that computations and mechanisms underlying the ongoing calibration of our body dimensions and movements are revealed. This review discusses the normal mechanisms of our position sense and calibration of our kinaesthetic, visual and auditory sensory systems, and then explores the adaptations that take place to transient Coriolis forces generated during passive body rotation. The latter are very rapid adaptations that allow body movements to become accurate again, even in the absence of visual feedback. Muscle spindle activity interpreted in relation to motor commands and internally modeled reafference is an important component in permitting this adaptation. During voluntary rotary movements of the body, the central nervous system automatically compensates for the Coriolis forces generated by limb movements. This allows accurate control to be maintained without our perceiving the forces generated.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="idt">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>Cognitive science</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Physiology</ce:text>
</ce:keyword>
</ce:keywords>
<ce:keywords class="keyword">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>Orientation</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Body schema</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Motor control</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Sensory-motor adaptation</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Sensory localisation</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Virtual environments</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Muscle spindles</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Box 1. Perceptual remappings are complex</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Box 1. Perceptual remappings are complex</title>
</titleInfo>
<titleInfo>
<title>Box 2. Failure of equilibrium point theories</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Box 2. Failure of equilibrium point theories</title>
</titleInfo>
<titleInfo>
<title>Box 3. Factors influencing self-calibration</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Box 3. Factors influencing self-calibration</title>
</titleInfo>
<titleInfo>
<title>Aspects of body self-calibration</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Aspects of body self-calibration</title>
</titleInfo>
<name type="personal">
<namePart type="given">James R.</namePart>
<namePart type="family">Lackner</namePart>
<affiliation></affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul A.</namePart>
<namePart type="family">DiZio</namePart>
<affiliation></affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James R.</namePart>
<namePart type="family">Lackner</namePart>
<affiliation></affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul A.</namePart>
<namePart type="family">DiZio</namePart>
<affiliation></affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James R.</namePart>
<namePart type="family">Lackner</namePart>
<affiliation></affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul A.</namePart>
<namePart type="family">DiZio</namePart>
<affiliation></affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James R.</namePart>
<namePart type="family">Lackner</namePart>
<affiliation>Ashton Graybiel Spatial Orientation Laboratory, Volen Center for Complex Systems, Brandeis University, MS 033, 415 South Street, Waltham, MA 02454, USA</affiliation>
<affiliation>E-mail: lackner@brandeis.edu</affiliation>
<description>tel: +1 781 736 2033 fax: +1 781 736 2031</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul A.</namePart>
<namePart type="family">DiZio</namePart>
<affiliation>Ashton Graybiel Spatial Orientation Laboratory, Volen Center for Complex Systems, Brandeis University, MS 033, 415 South Street, Waltham, MA 02454, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="review-article" displayLabel="Review article"></genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">2000</dateIssued>
<copyrightDate encoding="w3cdtf">2000</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">The representation of body orientation and configuration is dependent on multiple sources of afferent and efferent information about ongoing and intended patterns of movement and posture. Under normal terrestrial conditions, we feel virtually weightless and we do not perceive the actual forces associated with movement and support of our body. It is during exposure to unusual forces and patterns of sensory feedback during locomotion that computations and mechanisms underlying the ongoing calibration of our body dimensions and movements are revealed. This review discusses the normal mechanisms of our position sense and calibration of our kinaesthetic, visual and auditory sensory systems, and then explores the adaptations that take place to transient Coriolis forces generated during passive body rotation. The latter are very rapid adaptations that allow body movements to become accurate again, even in the absence of visual feedback. Muscle spindle activity interpreted in relation to motor commands and internally modeled reafference is an important component in permitting this adaptation. During voluntary rotary movements of the body, the central nervous system automatically compensates for the Coriolis forces generated by limb movements. This allows accurate control to be maintained without our perceiving the forces generated.</abstract>
<note type="content">Section title: Review</note>
<note type="content">Fig. 1: Perception of arm weight. Raising the unloaded forearm from a 45° angle with respect to gravity (a) to a horizontal position (b) requires increased biceps muscle force (gray), owing to changes in the effective lever arm of the forearm’s center of mass (m) accelerated by Earth gravity (g) and in the biceps muscle force about the elbow joint46. No sensation of force is localized at the muscle or its attachment points and the forearm feels almost weightless. If a weight equivalent to that of the forearm is placed in the hand (c), about 20 newtons (N) (or 4.5 lb), the biceps muscle force increases threefold in order to keep the arm horizontal. The object’s weight is perceived as being substantial and is localized at the hand where the cutaneous contact force (broken arrow) applied by the hand supports the object. All calculations of muscle force involve the simplifying assumption that the biceps brachii supplies all the resistance to gravity.</note>
<note type="content">Fig. 2: Proprioception influences visual direction. An experiment in which small target lights are attached to both index fingers and both biceps brachii are vibrated. The arms and targets are restrained from moving and subjects stably fixate on one of the targets in an otherwise dark room. Illusory extension of both unseen forearms is felt (unbroken arrows) and the distance between the two lights appears to increase (broken arrows).</note>
<note type="content">Fig. 3: Locomotor remappings. (a) A subject in an apparatus that permits independent control of the floor, drum and bar motion. (b)–(e) Aerial view of four experimental conditions (left) and the perceptual remappings of self, floor, drum, bar and voluntary stepping motion that are experienced (right). The arrows represent the rate and direction of the drum (striped) and floor (light gray) motion. The subject and bar are always spatially fixed.</note>
<note type="content">Fig. 4: Gravity and leg length determine maximum walking speed. A model of walking in which each foot is on the ground for 50% of each stride (λ). The speed at which the center of mass can move forward (V) increases in proportion to the rate at which it is accelerated downward by gravity (g) and to the length of the stance leg (L) about which it pivots.</note>
<note type="content">Fig. 5: Reaching in a rotating room. (a) A subject in darkness experiences no self-motion after 2 min of constant velocity counterclockwise (ccw) rotation, 60°/s, because the semicircular canals are only stimulated by a changing rotation speed. In the subject’s initial per-rotation attempt to reach forward, his hand is deviated rightwards (open symbols) by a transient rightward Coriolis force (FCor) that arises when the arm is in forward motion (Varm). Fcor=−2m(ωVarm) where m is the mass of the arm, ω is the velocity of rotation in radians/s and Varm is the velocity of the arm in m/s. After 10–15 reaches, the subject’s movements become as straight and accurate as pre-rotation (unbroken line). The first post-rotation reach (filled symbols) is a mirror image of the initial per-rotation one. (b) The endpoints and path curvatures of 40 reaches made during pre-, per- and post-rotation periods.</note>
<note type="content">Fig. 6: Fingertip contact forces map-reaching endpoint. When a reaching movement ends in contact with a surface, the shear forces generated during the first 30 ms after impact specify where the hand is relative to the body. The shear reaction force vectors associated with touching different locations on the surface point to the same body relative location near the shoulder (cross). The origin of each vector indicates where the finger made contact with the surface. One newton (N) equals 102 grams of force.</note>
<note type="content">Fig. 7: Reaching during virtual rotation. (a) The subject is wearing a head-mounted-display, is stationary physically but experiences counterclockwise self-rotation when viewing a scene transmitted from a telehead (stereo video cameras) that is rotating counterclockwise in a remote laboratory room. He cannot see his arm and the visually presented desktop and target appear stationary relative to his body. (b) His initial per-exposure reaches (open symbols) are curved and deviate leftwards. This reveals that the subject has compensated for the rightward Coriolis force that would be associated with actual physical counterclockwise rotation. A reaching error occurs because the subject is actually stationary.</note>
<note type="content">Fig. I: Self-calibration process. Block diagram of self-calibration of spatial orientation and movement control</note>
<subject>
<genre>Keywords</genre>
<topic>Cognitive science</topic>
<topic>Physiology</topic>
</subject>
<subject>
<genre>Keywords</genre>
<topic>Orientation</topic>
<topic>Body schema</topic>
<topic>Motor control</topic>
<topic>Sensory-motor adaptation</topic>
<topic>Sensory localisation</topic>
<topic>Virtual environments</topic>
<topic>Muscle spindles</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Trends in Cognitive Sciences</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>TICS</title>
</titleInfo>
<genre type="Journal">journal</genre>
<originInfo>
<dateIssued encoding="w3cdtf">20000701</dateIssued>
</originInfo>
<identifier type="ISSN">1364-6613</identifier>
<identifier type="PII">S1364-6613(00)X0031-9</identifier>
<part>
<date>20000701</date>
<detail type="volume">
<number>4</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>7</number>
<caption>no.</caption>
</detail>
<extent unit="issue pages">
<start>251</start>
<end>291</end>
</extent>
<extent unit="pages">
<start>279</start>
<end>288</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">3897DE5D5AAEE7EF5D9B28ED66F646F6DC65A55B</identifier>
<identifier type="DOI">10.1016/S1364-6613(00)01493-5</identifier>
<identifier type="PII">S1364-6613(00)01493-5</identifier>
<accessCondition type="use and reproduction" contentType="">© 2000Elsevier Science Ltd</accessCondition>
<recordInfo>
<recordContentSource>ELSEVIER</recordContentSource>
<recordOrigin>Elsevier Science Ltd, ©2000</recordOrigin>
</recordInfo>
</mods>
</metadata>
<enrichments>
<istex:catWosTEI uri="https://api.istex.fr/document/3897DE5D5AAEE7EF5D9B28ED66F646F6DC65A55B/enrichments/catWos">
<teiHeader>
<profileDesc>
<textClass>
<classCode scheme="WOS">PSYCHOLOGY, EXPERIMENTAL</classCode>
<classCode scheme="WOS">BEHAVIORAL SCIENCES</classCode>
<classCode scheme="WOS">NEUROSCIENCES</classCode>
</textClass>
</profileDesc>
</teiHeader>
</istex:catWosTEI>
</enrichments>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002580 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002580 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:3897DE5D5AAEE7EF5D9B28ED66F646F6DC65A55B
   |texte=   Box 1. Perceptual remappings are complex
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024