Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A study on computer-based geometric modelling in engineering graphics

Identifieur interne : 002148 ( Istex/Corpus ); précédent : 002147; suivant : 002149

A study on computer-based geometric modelling in engineering graphics

Auteurs : Zlatko Gradinscak

Source :

RBID : ISTEX:2114D611E07FEBF67C5265996328B10882AED023

Abstract

Conventional projection techniques used in engineering graphics are based on planar projection methods. In modern computer graphics applications the projection methods are not explicitly presented, however, the projection is integrated with the software by implementation of the mathematical relationships of projective geometry. Because of this `automatic' projection, the conventional engineering graphics methods when used for spatial construction in projective space of computer graphics fail to provide students with real spatial geometrical concepts. The students exposed to the present day computer-based graphics instruction are not exercising the principles of projection for solving 3D geometrical problems but are mainly trained in mechanics of geometric construction dictated by the software used. This deficiency in applying basic principles of projection needs to be addressed. The author has used computer graphics systems for improving student's visual abilities, and a research project was conducted to analyse the effect of the use of new technology on students engineering graphics learning. The underlining contemporary computer and engineering graphics methods are analysed and the students' apparent visual learning mechanism was monitored. As a result a new, more computer graphics orientated graphical method for spatial problem solving was developed. This problem solving method independent on the used 3D CAD system is particularly suitable for developing the web-based teaching and learning materials. The paper presents the resulting graphics method, counsel improvements in the instruction methods of 3D engineering graphics, and suggests development of the distance-learning network-based teaching and learning materials.

Url:
DOI: 10.1016/S0169-7552(98)00207-4

Links to Exploration step

ISTEX:2114D611E07FEBF67C5265996328B10882AED023

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>A study on computer-based geometric modelling in engineering graphics</title>
<author>
<name sortKey="Gradinscak, Zlatko" sort="Gradinscak, Zlatko" uniqKey="Gradinscak Z" first="Zlatko" last="Gradinscak">Zlatko Gradinscak</name>
<affiliation>
<mods:affiliation>RMIT University, Department of Mechanical and Manufacturing Engineering, GPO Box 71, Bundoora, VIC 3083, Australia</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:2114D611E07FEBF67C5265996328B10882AED023</idno>
<date when="1998" year="1998">1998</date>
<idno type="doi">10.1016/S0169-7552(98)00207-4</idno>
<idno type="url">https://api.istex.fr/document/2114D611E07FEBF67C5265996328B10882AED023/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002148</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">A study on computer-based geometric modelling in engineering graphics</title>
<author>
<name sortKey="Gradinscak, Zlatko" sort="Gradinscak, Zlatko" uniqKey="Gradinscak Z" first="Zlatko" last="Gradinscak">Zlatko Gradinscak</name>
<affiliation>
<mods:affiliation>RMIT University, Department of Mechanical and Manufacturing Engineering, GPO Box 71, Bundoora, VIC 3083, Australia</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Computer Networks and ISDN Systems</title>
<title level="j" type="abbrev">COMNET</title>
<idno type="ISSN">0169-7552</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1998">1998</date>
<biblScope unit="volume">30</biblScope>
<biblScope unit="issue">20–21</biblScope>
<biblScope unit="page" from="1915">1915</biblScope>
<biblScope unit="page" to="1922">1922</biblScope>
</imprint>
<idno type="ISSN">0169-7552</idno>
</series>
<idno type="istex">2114D611E07FEBF67C5265996328B10882AED023</idno>
<idno type="DOI">10.1016/S0169-7552(98)00207-4</idno>
<idno type="PII">S0169-7552(98)00207-4</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0169-7552</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Conventional projection techniques used in engineering graphics are based on planar projection methods. In modern computer graphics applications the projection methods are not explicitly presented, however, the projection is integrated with the software by implementation of the mathematical relationships of projective geometry. Because of this `automatic' projection, the conventional engineering graphics methods when used for spatial construction in projective space of computer graphics fail to provide students with real spatial geometrical concepts. The students exposed to the present day computer-based graphics instruction are not exercising the principles of projection for solving 3D geometrical problems but are mainly trained in mechanics of geometric construction dictated by the software used. This deficiency in applying basic principles of projection needs to be addressed. The author has used computer graphics systems for improving student's visual abilities, and a research project was conducted to analyse the effect of the use of new technology on students engineering graphics learning. The underlining contemporary computer and engineering graphics methods are analysed and the students' apparent visual learning mechanism was monitored. As a result a new, more computer graphics orientated graphical method for spatial problem solving was developed. This problem solving method independent on the used 3D CAD system is particularly suitable for developing the web-based teaching and learning materials. The paper presents the resulting graphics method, counsel improvements in the instruction methods of 3D engineering graphics, and suggests development of the distance-learning network-based teaching and learning materials.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<author>
<json:item>
<name>Zlatko Gradinscak</name>
<affiliations>
<json:string>RMIT University, Department of Mechanical and Manufacturing Engineering, GPO Box 71, Bundoora, VIC 3083, Australia</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Computer graphics</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Engineering graphics</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Computer aided design</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Computer aided instruction</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<abstract>Conventional projection techniques used in engineering graphics are based on planar projection methods. In modern computer graphics applications the projection methods are not explicitly presented, however, the projection is integrated with the software by implementation of the mathematical relationships of projective geometry. Because of this `automatic' projection, the conventional engineering graphics methods when used for spatial construction in projective space of computer graphics fail to provide students with real spatial geometrical concepts. The students exposed to the present day computer-based graphics instruction are not exercising the principles of projection for solving 3D geometrical problems but are mainly trained in mechanics of geometric construction dictated by the software used. This deficiency in applying basic principles of projection needs to be addressed. The author has used computer graphics systems for improving student's visual abilities, and a research project was conducted to analyse the effect of the use of new technology on students engineering graphics learning. The underlining contemporary computer and engineering graphics methods are analysed and the students' apparent visual learning mechanism was monitored. As a result a new, more computer graphics orientated graphical method for spatial problem solving was developed. This problem solving method independent on the used 3D CAD system is particularly suitable for developing the web-based teaching and learning materials. The paper presents the resulting graphics method, counsel improvements in the instruction methods of 3D engineering graphics, and suggests development of the distance-learning network-based teaching and learning materials.</abstract>
<qualityIndicators>
<score>5.991</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>540 x 712 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>4</keywordCount>
<abstractCharCount>1751</abstractCharCount>
<pdfWordCount>3123</pdfWordCount>
<pdfCharCount>19470</pdfCharCount>
<pdfPageCount>8</pdfPageCount>
<abstractWordCount>239</abstractWordCount>
</qualityIndicators>
<title>A study on computer-based geometric modelling in engineering graphics</title>
<pii>
<json:string>S0169-7552(98)00207-4</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>30</volume>
<pii>
<json:string>S0169-7552(00)X0040-2</json:string>
</pii>
<pages>
<last>1922</last>
<first>1915</first>
</pages>
<issn>
<json:string>0169-7552</json:string>
</issn>
<issue>20–21</issue>
<genre>
<json:string>Journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<title>Computer Networks and ISDN Systems</title>
<publicationDate>1998</publicationDate>
</host>
<categories>
<wos>
<json:string>COMPUTER SCIENCE, INFORMATION SYSTEMS</json:string>
<json:string>ENGINEERING, ELECTRICAL & ELECTRONIC</json:string>
<json:string>TELECOMMUNICATIONS</json:string>
</wos>
</categories>
<publicationDate>1998</publicationDate>
<copyrightDate>1998</copyrightDate>
<doi>
<json:string>10.1016/S0169-7552(98)00207-4</json:string>
</doi>
<id>2114D611E07FEBF67C5265996328B10882AED023</id>
<score>1</score>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/2114D611E07FEBF67C5265996328B10882AED023/fulltext/pdf</uri>
</json:item>
<json:item>
<original>true</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/2114D611E07FEBF67C5265996328B10882AED023/fulltext/txt</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/2114D611E07FEBF67C5265996328B10882AED023/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/2114D611E07FEBF67C5265996328B10882AED023/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">A study on computer-based geometric modelling in engineering graphics</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>ELSEVIER</p>
</availability>
<date>1998</date>
</publicationStmt>
<notesStmt>
<note type="content">Fig. 1: Line–plane intersection using the new projecting plane method.</note>
<note type="content">Fig. 2: Starting diagram for the circle–cylinder intersection problem.</note>
<note type="content">Fig. 3: Descriptive geometry solution to the circle–cylinder intersection problem.</note>
<note type="content">Fig. 4: Determining the major axis of ellipse using the projecting plane method.</note>
<note type="content">Fig. 5: Final stage for the circle–cylinder intersection using the projecting plane method.</note>
<note type="content">Fig. 6: Starting diagram for the plane–sphere intersection.</note>
<note type="content">Fig. 7: Final construction for the plane–sphere intersection.</note>
<note type="content">Fig. 8: Intersection line–sphere using traditional descriptive geometry: combining the cutting plane method and auxiliary projections.</note>
<note type="content">Fig. 9: Content of a computer aided engineering graphics fundamentals course.</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">A study on computer-based geometric modelling in engineering graphics</title>
<author>
<persName>
<forename type="first">Zlatko</forename>
<surname>Gradinscak</surname>
</persName>
<affiliation>RMIT University, Department of Mechanical and Manufacturing Engineering, GPO Box 71, Bundoora, VIC 3083, Australia</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Computer Networks and ISDN Systems</title>
<title level="j" type="abbrev">COMNET</title>
<idno type="pISSN">0169-7552</idno>
<idno type="PII">S0169-7552(00)X0040-2</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1998"></date>
<biblScope unit="volume">30</biblScope>
<biblScope unit="issue">20–21</biblScope>
<biblScope unit="page" from="1915">1915</biblScope>
<biblScope unit="page" to="1922">1922</biblScope>
</imprint>
</monogr>
<idno type="istex">2114D611E07FEBF67C5265996328B10882AED023</idno>
<idno type="DOI">10.1016/S0169-7552(98)00207-4</idno>
<idno type="PII">S0169-7552(98)00207-4</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1998</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Conventional projection techniques used in engineering graphics are based on planar projection methods. In modern computer graphics applications the projection methods are not explicitly presented, however, the projection is integrated with the software by implementation of the mathematical relationships of projective geometry. Because of this `automatic' projection, the conventional engineering graphics methods when used for spatial construction in projective space of computer graphics fail to provide students with real spatial geometrical concepts. The students exposed to the present day computer-based graphics instruction are not exercising the principles of projection for solving 3D geometrical problems but are mainly trained in mechanics of geometric construction dictated by the software used. This deficiency in applying basic principles of projection needs to be addressed. The author has used computer graphics systems for improving student's visual abilities, and a research project was conducted to analyse the effect of the use of new technology on students engineering graphics learning. The underlining contemporary computer and engineering graphics methods are analysed and the students' apparent visual learning mechanism was monitored. As a result a new, more computer graphics orientated graphical method for spatial problem solving was developed. This problem solving method independent on the used 3D CAD system is particularly suitable for developing the web-based teaching and learning materials. The paper presents the resulting graphics method, counsel improvements in the instruction methods of 3D engineering graphics, and suggests development of the distance-learning network-based teaching and learning materials.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Computer graphics</term>
</item>
<item>
<term>Engineering graphics</term>
</item>
<item>
<term>Computer aided design</term>
</item>
<item>
<term>Computer aided instruction</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1998">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="gr2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="gr3"></istex:entity>
<istex:entity SYSTEM="gr4" NDATA="IMAGE" name="gr4"></istex:entity>
<istex:entity SYSTEM="gr5" NDATA="IMAGE" name="gr5"></istex:entity>
<istex:entity SYSTEM="gr6" NDATA="IMAGE" name="gr6"></istex:entity>
<istex:entity SYSTEM="gr7" NDATA="IMAGE" name="gr7"></istex:entity>
<istex:entity SYSTEM="gr8" NDATA="IMAGE" name="gr8"></istex:entity>
<istex:entity SYSTEM="gr9" NDATA="IMAGE" name="gr9"></istex:entity>
<istex:entity SYSTEM="fx1" NDATA="IMAGE" name="fx1"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>COMNET</jid>
<aid>2015</aid>
<ce:pii>S0169-7552(98)00207-4</ce:pii>
<ce:doi>10.1016/S0169-7552(98)00207-4</ce:doi>
<ce:copyright year="1998" type="full-transfer">Elsevier Science B.V.</ce:copyright>
</item-info>
<head>
<ce:title>A study on computer-based geometric modelling in engineering graphics</ce:title>
<ce:author-group>
<ce:author biographyid="BIO1">
<ce:given-name>Zlatko</ce:given-name>
<ce:surname>Gradinscak</ce:surname>
<ce:cross-ref refid="CORR1">*</ce:cross-ref>
</ce:author>
<ce:affiliation>
<ce:textfn>RMIT University, Department of Mechanical and Manufacturing Engineering, GPO Box 71, Bundoora, VIC 3083, Australia</ce:textfn>
</ce:affiliation>
<ce:correspondence id="CORR1">
<ce:label>*</ce:label>
<ce:text>Corresponding author. Tel.: +61-3-9925-6087; Fax: +61-3-9925-6108; E-mail: rmezg@rmit.edu.au; http://www.me.rmit.edu.au/about/staff/zlatko/zlatko.htm.</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>Conventional projection techniques used in engineering graphics are based on planar projection methods. In modern computer graphics applications the projection methods are not explicitly presented, however, the projection is integrated with the software by implementation of the mathematical relationships of projective geometry. Because of this `automatic' projection, the conventional engineering graphics methods when used for spatial construction in projective space of computer graphics fail to provide students with real spatial geometrical concepts. The students exposed to the present day computer-based graphics instruction are not exercising the principles of projection for solving 3D geometrical problems but are mainly trained in mechanics of geometric construction dictated by the software used. This deficiency in applying basic principles of projection needs to be addressed. The author has used computer graphics systems for improving student's visual abilities, and a research project was conducted to analyse the effect of the use of new technology on students engineering graphics learning. The underlining contemporary computer and engineering graphics methods are analysed and the students' apparent visual learning mechanism was monitored. As a result a new, more computer graphics orientated graphical method for spatial problem solving was developed. This problem solving method independent on the used 3D CAD system is particularly suitable for developing the web-based teaching and learning materials. The paper presents the resulting graphics method, counsel improvements in the instruction methods of 3D engineering graphics, and suggests development of the distance-learning network-based teaching and learning materials.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="keyword">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>Computer graphics</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Engineering graphics</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Computer aided design</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Computer aided instruction</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>A study on computer-based geometric modelling in engineering graphics</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>A study on computer-based geometric modelling in engineering graphics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zlatko</namePart>
<namePart type="family">Gradinscak</namePart>
<affiliation>RMIT University, Department of Mechanical and Manufacturing Engineering, GPO Box 71, Bundoora, VIC 3083, Australia</affiliation>
<description>Corresponding author. Tel.: +61-3-9925-6087; Fax: +61-3-9925-6108; E-mail: rmezg@rmit.edu.au; http://www.me.rmit.edu.au/about/staff/zlatko/zlatko.htm.</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article"></genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1998</dateIssued>
<copyrightDate encoding="w3cdtf">1998</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">Conventional projection techniques used in engineering graphics are based on planar projection methods. In modern computer graphics applications the projection methods are not explicitly presented, however, the projection is integrated with the software by implementation of the mathematical relationships of projective geometry. Because of this `automatic' projection, the conventional engineering graphics methods when used for spatial construction in projective space of computer graphics fail to provide students with real spatial geometrical concepts. The students exposed to the present day computer-based graphics instruction are not exercising the principles of projection for solving 3D geometrical problems but are mainly trained in mechanics of geometric construction dictated by the software used. This deficiency in applying basic principles of projection needs to be addressed. The author has used computer graphics systems for improving student's visual abilities, and a research project was conducted to analyse the effect of the use of new technology on students engineering graphics learning. The underlining contemporary computer and engineering graphics methods are analysed and the students' apparent visual learning mechanism was monitored. As a result a new, more computer graphics orientated graphical method for spatial problem solving was developed. This problem solving method independent on the used 3D CAD system is particularly suitable for developing the web-based teaching and learning materials. The paper presents the resulting graphics method, counsel improvements in the instruction methods of 3D engineering graphics, and suggests development of the distance-learning network-based teaching and learning materials.</abstract>
<note type="content">Fig. 1: Line–plane intersection using the new projecting plane method.</note>
<note type="content">Fig. 2: Starting diagram for the circle–cylinder intersection problem.</note>
<note type="content">Fig. 3: Descriptive geometry solution to the circle–cylinder intersection problem.</note>
<note type="content">Fig. 4: Determining the major axis of ellipse using the projecting plane method.</note>
<note type="content">Fig. 5: Final stage for the circle–cylinder intersection using the projecting plane method.</note>
<note type="content">Fig. 6: Starting diagram for the plane–sphere intersection.</note>
<note type="content">Fig. 7: Final construction for the plane–sphere intersection.</note>
<note type="content">Fig. 8: Intersection line–sphere using traditional descriptive geometry: combining the cutting plane method and auxiliary projections.</note>
<note type="content">Fig. 9: Content of a computer aided engineering graphics fundamentals course.</note>
<subject>
<genre>Keywords</genre>
<topic>Computer graphics</topic>
<topic>Engineering graphics</topic>
<topic>Computer aided design</topic>
<topic>Computer aided instruction</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Computer Networks and ISDN Systems</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>COMNET</title>
</titleInfo>
<genre type="Journal">journal</genre>
<originInfo>
<dateIssued encoding="w3cdtf">19981112</dateIssued>
</originInfo>
<identifier type="ISSN">0169-7552</identifier>
<identifier type="PII">S0169-7552(00)X0040-2</identifier>
<part>
<date>19981112</date>
<detail type="volume">
<number>30</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>20–21</number>
<caption>no.</caption>
</detail>
<extent unit="issue pages">
<start>1829</start>
<end>2078</end>
</extent>
<extent unit="pages">
<start>1915</start>
<end>1922</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">2114D611E07FEBF67C5265996328B10882AED023</identifier>
<identifier type="DOI">10.1016/S0169-7552(98)00207-4</identifier>
<identifier type="PII">S0169-7552(98)00207-4</identifier>
<accessCondition type="use and reproduction" contentType="">© 1998Elsevier Science B.V.</accessCondition>
<recordInfo>
<recordContentSource>ELSEVIER</recordContentSource>
<recordOrigin>Elsevier Science B.V., ©1998</recordOrigin>
</recordInfo>
</mods>
</metadata>
<enrichments>
<istex:catWosTEI uri="https://api.istex.fr/document/2114D611E07FEBF67C5265996328B10882AED023/enrichments/catWos">
<teiHeader>
<profileDesc>
<textClass>
<classCode scheme="WOS">COMPUTER SCIENCE, INFORMATION SYSTEMS</classCode>
<classCode scheme="WOS">ENGINEERING, ELECTRICAL & ELECTRONIC</classCode>
<classCode scheme="WOS">TELECOMMUNICATIONS</classCode>
</textClass>
</profileDesc>
</teiHeader>
</istex:catWosTEI>
</enrichments>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002148 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002148 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:2114D611E07FEBF67C5265996328B10882AED023
   |texte=   A study on computer-based geometric modelling in engineering graphics
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024