Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Design of a force control grasper through stiffness modulation for endosurgery: theory and experiments

Identifieur interne : 001569 ( Istex/Corpus ); précédent : 001568; suivant : 001570

Design of a force control grasper through stiffness modulation for endosurgery: theory and experiments

Auteurs : Ali Faraz ; Shahram Payandeh ; Andon Salvarinov

Source :

RBID : ISTEX:399C7289D4138642D6DD12E7DB14D4089EF5AC57

Abstract

In endosurgery, tissue manipulation is performed by long graspers which have a poor force-reflection property, i.e. they do not reflect the grasping force to the hand of the surgeon. In this paper, a novel design of an electro-mechanical system is considered which can enhance the force–reflecting capability of endosurgical graspers. The type of synthesis of such a haptic interface leads to the application of a tunable spring. The design of a tunable spring is optimized based on the haptic and surgical requirements. Moreover, by using suitable control laws, it is shown that the primary requirements of the design application can be met. Simulation and experimental results are presented using a prototype model of such a haptic interface to demonstrate the practicality of such a design concept.

Url:
DOI: 10.1016/S0957-4158(99)00090-2

Links to Exploration step

ISTEX:399C7289D4138642D6DD12E7DB14D4089EF5AC57

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Design of a force control grasper through stiffness modulation for endosurgery: theory and experiments</title>
<author>
<name sortKey="Faraz, Ali" sort="Faraz, Ali" uniqKey="Faraz A" first="Ali" last="Faraz">Ali Faraz</name>
<affiliation>
<mods:affiliation>Experimental Robotics Laboratory (ERL), School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Payandeh, Shahram" sort="Payandeh, Shahram" uniqKey="Payandeh S" first="Shahram" last="Payandeh">Shahram Payandeh</name>
<affiliation>
<mods:affiliation>Experimental Robotics Laboratory (ERL), School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Salvarinov, Andon" sort="Salvarinov, Andon" uniqKey="Salvarinov A" first="Andon" last="Salvarinov">Andon Salvarinov</name>
<affiliation>
<mods:affiliation>Experimental Robotics Laboratory (ERL), School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:399C7289D4138642D6DD12E7DB14D4089EF5AC57</idno>
<date when="2000" year="2000">2000</date>
<idno type="doi">10.1016/S0957-4158(99)00090-2</idno>
<idno type="url">https://api.istex.fr/document/399C7289D4138642D6DD12E7DB14D4089EF5AC57/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001569</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Design of a force control grasper through stiffness modulation for endosurgery: theory and experiments</title>
<author>
<name sortKey="Faraz, Ali" sort="Faraz, Ali" uniqKey="Faraz A" first="Ali" last="Faraz">Ali Faraz</name>
<affiliation>
<mods:affiliation>Experimental Robotics Laboratory (ERL), School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Payandeh, Shahram" sort="Payandeh, Shahram" uniqKey="Payandeh S" first="Shahram" last="Payandeh">Shahram Payandeh</name>
<affiliation>
<mods:affiliation>Experimental Robotics Laboratory (ERL), School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Salvarinov, Andon" sort="Salvarinov, Andon" uniqKey="Salvarinov A" first="Andon" last="Salvarinov">Andon Salvarinov</name>
<affiliation>
<mods:affiliation>Experimental Robotics Laboratory (ERL), School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Mechatronics</title>
<title level="j" type="abbrev">MECH</title>
<idno type="ISSN">0957-4158</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1999">1999</date>
<biblScope unit="volume">10</biblScope>
<biblScope unit="issue">6</biblScope>
<biblScope unit="page" from="627">627</biblScope>
<biblScope unit="page" to="648">648</biblScope>
</imprint>
<idno type="ISSN">0957-4158</idno>
</series>
<idno type="istex">399C7289D4138642D6DD12E7DB14D4089EF5AC57</idno>
<idno type="DOI">10.1016/S0957-4158(99)00090-2</idno>
<idno type="PII">S0957-4158(99)00090-2</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0957-4158</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In endosurgery, tissue manipulation is performed by long graspers which have a poor force-reflection property, i.e. they do not reflect the grasping force to the hand of the surgeon. In this paper, a novel design of an electro-mechanical system is considered which can enhance the force–reflecting capability of endosurgical graspers. The type of synthesis of such a haptic interface leads to the application of a tunable spring. The design of a tunable spring is optimized based on the haptic and surgical requirements. Moreover, by using suitable control laws, it is shown that the primary requirements of the design application can be met. Simulation and experimental results are presented using a prototype model of such a haptic interface to demonstrate the practicality of such a design concept.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<author>
<json:item>
<name>Ali Faraz</name>
<affiliations>
<json:string>Experimental Robotics Laboratory (ERL), School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6</json:string>
</affiliations>
</json:item>
<json:item>
<name>Shahram Payandeh</name>
<affiliations>
<json:string>Experimental Robotics Laboratory (ERL), School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6</json:string>
</affiliations>
</json:item>
<json:item>
<name>Andon Salvarinov</name>
<affiliations>
<json:string>Experimental Robotics Laboratory (ERL), School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6</json:string>
</affiliations>
</json:item>
</author>
<language>
<json:string>eng</json:string>
</language>
<abstract>In endosurgery, tissue manipulation is performed by long graspers which have a poor force-reflection property, i.e. they do not reflect the grasping force to the hand of the surgeon. In this paper, a novel design of an electro-mechanical system is considered which can enhance the force–reflecting capability of endosurgical graspers. The type of synthesis of such a haptic interface leads to the application of a tunable spring. The design of a tunable spring is optimized based on the haptic and surgical requirements. Moreover, by using suitable control laws, it is shown that the primary requirements of the design application can be met. Simulation and experimental results are presented using a prototype model of such a haptic interface to demonstrate the practicality of such a design concept.</abstract>
<qualityIndicators>
<score>6.512</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>595 x 792 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>801</abstractCharCount>
<pdfWordCount>5254</pdfWordCount>
<pdfCharCount>28652</pdfCharCount>
<pdfPageCount>22</pdfPageCount>
<abstractWordCount>126</abstractWordCount>
</qualityIndicators>
<title>Design of a force control grasper through stiffness modulation for endosurgery: theory and experiments</title>
<pii>
<json:string>S0957-4158(99)00090-2</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>10</volume>
<pii>
<json:string>S0957-4158(00)X0043-8</json:string>
</pii>
<pages>
<last>648</last>
<first>627</first>
</pages>
<issn>
<json:string>0957-4158</json:string>
</issn>
<issue>6</issue>
<genre>
<json:string>Journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<title>Mechatronics</title>
<publicationDate>2000</publicationDate>
</host>
<categories>
<wos>
<json:string>AUTOMATION & CONTROL SYSTEMS</json:string>
<json:string>COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE</json:string>
<json:string>ENGINEERING, ELECTRICAL & ELECTRONIC</json:string>
<json:string>ENGINEERING, MECHANICAL</json:string>
<json:string>ROBOTICS</json:string>
</wos>
</categories>
<publicationDate>1999</publicationDate>
<copyrightDate>2000</copyrightDate>
<doi>
<json:string>10.1016/S0957-4158(99)00090-2</json:string>
</doi>
<id>399C7289D4138642D6DD12E7DB14D4089EF5AC57</id>
<score>1</score>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/399C7289D4138642D6DD12E7DB14D4089EF5AC57/fulltext/pdf</uri>
</json:item>
<json:item>
<original>true</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/399C7289D4138642D6DD12E7DB14D4089EF5AC57/fulltext/txt</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/399C7289D4138642D6DD12E7DB14D4089EF5AC57/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/399C7289D4138642D6DD12E7DB14D4089EF5AC57/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Design of a force control grasper through stiffness modulation for endosurgery: theory and experiments</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>ELSEVIER</p>
</availability>
<date>2000</date>
</publicationStmt>
<notesStmt>
<note type="content">Fig. 1: Four different classes of design for endosurgical graspers with adjustable grasping force.</note>
<note type="content">Fig. 2: Three types of support for tunable springs using leaf springs.</note>
<note type="content">Fig. 3: Loads on the symmetrical half of the leaf spring.</note>
<note type="content">Fig. 4: Stiffness K and bending movement M vs X/L for three types of spring support.</note>
<note type="content">Fig. 5: Compliance C vs effective length ratio X/L based on linear and non-linear finite-element analysis.</note>
<note type="content">Fig. 6: The force reflecting the grasper with the tunable leaf spring design.</note>
<note type="content">Fig. 7: Control block diagram of the haptic interface.</note>
<note type="content">Fig. 8: Dynamic response of the system.</note>
<note type="content">Fig. 9: Simulation results of the haptic interface.</note>
<note type="content">Fig. 10: The experimental set-up of the endosurgical haptic interface grasper with a tunable spring.</note>
<note type="content">Fig. 11: Experimental results showing the effect of adjusting r′ on the actual grasping force Fout.</note>
<note type="content">Fig. 12: Experimental results showing the effect of adjusting the force limit Flim on the actual grasping force Fout.</note>
<note type="content">Fig. 13: The effect of the bandwidth on the grasping force with the limit Flim.</note>
<note type="content">Table 1: The design parameters of different spring materials</note>
<note type="content">Table 2: The optimum design variables based on different spring materials</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Design of a force control grasper through stiffness modulation for endosurgery: theory and experiments</title>
<author>
<persName>
<forename type="first">Ali</forename>
<surname>Faraz</surname>
</persName>
<affiliation>Experimental Robotics Laboratory (ERL), School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6</affiliation>
</author>
<author>
<persName>
<forename type="first">Shahram</forename>
<surname>Payandeh</surname>
</persName>
<note type="correspondence">
<p>Corresponding author</p>
</note>
<affiliation>Experimental Robotics Laboratory (ERL), School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6</affiliation>
</author>
<author>
<persName>
<forename type="first">Andon</forename>
<surname>Salvarinov</surname>
</persName>
<affiliation>Experimental Robotics Laboratory (ERL), School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Mechatronics</title>
<title level="j" type="abbrev">MECH</title>
<idno type="pISSN">0957-4158</idno>
<idno type="PII">S0957-4158(00)X0043-8</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1999"></date>
<biblScope unit="volume">10</biblScope>
<biblScope unit="issue">6</biblScope>
<biblScope unit="page" from="627">627</biblScope>
<biblScope unit="page" to="648">648</biblScope>
</imprint>
</monogr>
<idno type="istex">399C7289D4138642D6DD12E7DB14D4089EF5AC57</idno>
<idno type="DOI">10.1016/S0957-4158(99)00090-2</idno>
<idno type="PII">S0957-4158(99)00090-2</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2000</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>In endosurgery, tissue manipulation is performed by long graspers which have a poor force-reflection property, i.e. they do not reflect the grasping force to the hand of the surgeon. In this paper, a novel design of an electro-mechanical system is considered which can enhance the force–reflecting capability of endosurgical graspers. The type of synthesis of such a haptic interface leads to the application of a tunable spring. The design of a tunable spring is optimized based on the haptic and surgical requirements. Moreover, by using suitable control laws, it is shown that the primary requirements of the design application can be met. Simulation and experimental results are presented using a prototype model of such a haptic interface to demonstrate the practicality of such a design concept.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="1999-09-17">Registration</change>
<change when="1999">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="gr2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="gr3"></istex:entity>
<istex:entity SYSTEM="gr4" NDATA="IMAGE" name="gr4"></istex:entity>
<istex:entity SYSTEM="gr5" NDATA="IMAGE" name="gr5"></istex:entity>
<istex:entity SYSTEM="gr6" NDATA="IMAGE" name="gr6"></istex:entity>
<istex:entity SYSTEM="gr7" NDATA="IMAGE" name="gr7"></istex:entity>
<istex:entity SYSTEM="gr8" NDATA="IMAGE" name="gr8"></istex:entity>
<istex:entity SYSTEM="gr9" NDATA="IMAGE" name="gr9"></istex:entity>
<istex:entity SYSTEM="gr10" NDATA="IMAGE" name="gr10"></istex:entity>
<istex:entity SYSTEM="gr11" NDATA="IMAGE" name="gr11"></istex:entity>
<istex:entity SYSTEM="gr12" NDATA="IMAGE" name="gr12"></istex:entity>
<istex:entity SYSTEM="gr13" NDATA="IMAGE" name="gr13"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>MECH</jid>
<aid>407</aid>
<ce:pii>S0957-4158(99)00090-2</ce:pii>
<ce:doi>10.1016/S0957-4158(99)00090-2</ce:doi>
<ce:copyright type="full-transfer" year="2000">Elsevier Science Ltd</ce:copyright>
</item-info>
<head>
<ce:title>Design of a force control grasper through stiffness modulation for endosurgery: theory and experiments</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Ali</ce:given-name>
<ce:surname>Faraz</ce:surname>
</ce:author>
<ce:author>
<ce:given-name>Shahram</ce:given-name>
<ce:surname>Payandeh</ce:surname>
<ce:cross-ref refid="COR1">*</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Andon</ce:given-name>
<ce:surname>Salvarinov</ce:surname>
</ce:author>
<ce:affiliation>
<ce:textfn>Experimental Robotics Laboratory (ERL), School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6</ce:textfn>
</ce:affiliation>
<ce:correspondence id="COR1">
<ce:label>*</ce:label>
<ce:text>Corresponding author</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-received day="18" month="3" year="1999"></ce:date-received>
<ce:date-accepted day="17" month="9" year="1999"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>In endosurgery, tissue manipulation is performed by long graspers which have a poor force-reflection property, i.e. they do not reflect the grasping force to the hand of the surgeon. In this paper, a novel design of an electro-mechanical system is considered which can enhance the force–reflecting capability of endosurgical graspers. The type of synthesis of such a haptic interface leads to the application of a
<ce:italic>tunable spring</ce:italic>
. The design of a tunable spring is optimized based on the haptic and surgical requirements. Moreover, by using suitable control laws, it is shown that the primary requirements of the design application can be met. Simulation and experimental results are presented using a prototype model of such a haptic interface to demonstrate the practicality of such a design concept.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Design of a force control grasper through stiffness modulation for endosurgery: theory and experiments</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Design of a force control grasper through stiffness modulation for endosurgery: theory and experiments</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ali</namePart>
<namePart type="family">Faraz</namePart>
<affiliation>Experimental Robotics Laboratory (ERL), School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shahram</namePart>
<namePart type="family">Payandeh</namePart>
<affiliation>Experimental Robotics Laboratory (ERL), School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6</affiliation>
<description>Corresponding author</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andon</namePart>
<namePart type="family">Salvarinov</namePart>
<affiliation>Experimental Robotics Laboratory (ERL), School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article"></genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1999</dateIssued>
<dateValid encoding="w3cdtf">1999-09-17</dateValid>
<copyrightDate encoding="w3cdtf">2000</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">In endosurgery, tissue manipulation is performed by long graspers which have a poor force-reflection property, i.e. they do not reflect the grasping force to the hand of the surgeon. In this paper, a novel design of an electro-mechanical system is considered which can enhance the force–reflecting capability of endosurgical graspers. The type of synthesis of such a haptic interface leads to the application of a tunable spring. The design of a tunable spring is optimized based on the haptic and surgical requirements. Moreover, by using suitable control laws, it is shown that the primary requirements of the design application can be met. Simulation and experimental results are presented using a prototype model of such a haptic interface to demonstrate the practicality of such a design concept.</abstract>
<note type="content">Fig. 1: Four different classes of design for endosurgical graspers with adjustable grasping force.</note>
<note type="content">Fig. 2: Three types of support for tunable springs using leaf springs.</note>
<note type="content">Fig. 3: Loads on the symmetrical half of the leaf spring.</note>
<note type="content">Fig. 4: Stiffness K and bending movement M vs X/L for three types of spring support.</note>
<note type="content">Fig. 5: Compliance C vs effective length ratio X/L based on linear and non-linear finite-element analysis.</note>
<note type="content">Fig. 6: The force reflecting the grasper with the tunable leaf spring design.</note>
<note type="content">Fig. 7: Control block diagram of the haptic interface.</note>
<note type="content">Fig. 8: Dynamic response of the system.</note>
<note type="content">Fig. 9: Simulation results of the haptic interface.</note>
<note type="content">Fig. 10: The experimental set-up of the endosurgical haptic interface grasper with a tunable spring.</note>
<note type="content">Fig. 11: Experimental results showing the effect of adjusting r′ on the actual grasping force Fout.</note>
<note type="content">Fig. 12: Experimental results showing the effect of adjusting the force limit Flim on the actual grasping force Fout.</note>
<note type="content">Fig. 13: The effect of the bandwidth on the grasping force with the limit Flim.</note>
<note type="content">Table 1: The design parameters of different spring materials</note>
<note type="content">Table 2: The optimum design variables based on different spring materials</note>
<relatedItem type="host">
<titleInfo>
<title>Mechatronics</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>MECH</title>
</titleInfo>
<genre type="Journal">journal</genre>
<originInfo>
<dateIssued encoding="w3cdtf">20000901</dateIssued>
</originInfo>
<identifier type="ISSN">0957-4158</identifier>
<identifier type="PII">S0957-4158(00)X0043-8</identifier>
<part>
<date>20000901</date>
<detail type="volume">
<number>10</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>6</number>
<caption>no.</caption>
</detail>
<extent unit="issue pages">
<start>595</start>
<end>716</end>
</extent>
<extent unit="pages">
<start>627</start>
<end>648</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">399C7289D4138642D6DD12E7DB14D4089EF5AC57</identifier>
<identifier type="DOI">10.1016/S0957-4158(99)00090-2</identifier>
<identifier type="PII">S0957-4158(99)00090-2</identifier>
<accessCondition type="use and reproduction" contentType="">© 2000Elsevier Science Ltd</accessCondition>
<recordInfo>
<recordContentSource>ELSEVIER</recordContentSource>
<recordOrigin>Elsevier Science Ltd, ©2000</recordOrigin>
</recordInfo>
</mods>
</metadata>
<enrichments>
<istex:catWosTEI uri="https://api.istex.fr/document/399C7289D4138642D6DD12E7DB14D4089EF5AC57/enrichments/catWos">
<teiHeader>
<profileDesc>
<textClass>
<classCode scheme="WOS">AUTOMATION & CONTROL SYSTEMS</classCode>
<classCode scheme="WOS">COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE</classCode>
<classCode scheme="WOS">ENGINEERING, ELECTRICAL & ELECTRONIC</classCode>
<classCode scheme="WOS">ENGINEERING, MECHANICAL</classCode>
<classCode scheme="WOS">ROBOTICS</classCode>
</textClass>
</profileDesc>
</teiHeader>
</istex:catWosTEI>
</enrichments>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001569 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001569 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:399C7289D4138642D6DD12E7DB14D4089EF5AC57
   |texte=   Design of a force control grasper through stiffness modulation for endosurgery: theory and experiments
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024