Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Interactive Cuts through 3‐Dimensional Soft Tissue

Identifieur interne : 000C66 ( Istex/Corpus ); précédent : 000C65; suivant : 000C67

Interactive Cuts through 3‐Dimensional Soft Tissue

Auteurs : Daniel Bielser ; Volker A. Maiwald ; Markus H. Gross

Source :

RBID : ISTEX:B3C6647C40D8E228B2750D70AD2C3320940AE160

English descriptors

Abstract

We describe a physically based framework for interactive modeling and cutting of 3‐dimensional soft tissue that can be used for surgery simulation. Unlike existing approaches which are mostly designed for tensorproduct grids our methods operate on tetrahedral decompositions giving more topological and geometric flexibility for the efficient modeling of complex anatomical structures. We start from an initial tetrahedralization such as being provided by any conventional meshing method. In order to track topological changes tetrahedra intersected by the virtual scalpel are split into substructures whose connectivity follows the trajectory of the cut, which can be arbitrary. For the efficient computation of collisions between the scalpel and individual tetrahedra we devised a local collision detection algorithm. The underlying physics is approximated through masses and springs attached to each tetrahedral vertex and edge. A hierarchical Runge‐Kutta iteration computes the relaxation of the system by traversing the designed data structures in a breadth‐first order. The framework includes a force‐feedback interface and uses real‐time texture mapping to enhance the visual realism.

Url:
DOI: 10.1111/1467-8659.00325

Links to Exploration step

ISTEX:B3C6647C40D8E228B2750D70AD2C3320940AE160

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Interactive Cuts through 3‐Dimensional Soft Tissue</title>
<author>
<name sortKey="Bielser, Daniel" sort="Bielser, Daniel" uniqKey="Bielser D" first="Daniel" last="Bielser">Daniel Bielser</name>
<affiliation>
<mods:affiliation>Computer Science Department, ETH Zurich, Switzerland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Maiwald, Volker A" sort="Maiwald, Volker A" uniqKey="Maiwald V" first="Volker A." last="Maiwald">Volker A. Maiwald</name>
<affiliation>
<mods:affiliation>Computer Science Department, ETH Zurich, Switzerland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gross, Markus H" sort="Gross, Markus H" uniqKey="Gross M" first="Markus H." last="Gross">Markus H. Gross</name>
<affiliation>
<mods:affiliation>Computer Science Department, ETH Zurich, Switzerland</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:B3C6647C40D8E228B2750D70AD2C3320940AE160</idno>
<date when="1999" year="1999">1999</date>
<idno type="doi">10.1111/1467-8659.00325</idno>
<idno type="url">https://api.istex.fr/document/B3C6647C40D8E228B2750D70AD2C3320940AE160/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000C66</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Interactive Cuts through 3‐Dimensional Soft Tissue</title>
<author>
<name sortKey="Bielser, Daniel" sort="Bielser, Daniel" uniqKey="Bielser D" first="Daniel" last="Bielser">Daniel Bielser</name>
<affiliation>
<mods:affiliation>Computer Science Department, ETH Zurich, Switzerland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Maiwald, Volker A" sort="Maiwald, Volker A" uniqKey="Maiwald V" first="Volker A." last="Maiwald">Volker A. Maiwald</name>
<affiliation>
<mods:affiliation>Computer Science Department, ETH Zurich, Switzerland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gross, Markus H" sort="Gross, Markus H" uniqKey="Gross M" first="Markus H." last="Gross">Markus H. Gross</name>
<affiliation>
<mods:affiliation>Computer Science Department, ETH Zurich, Switzerland</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Computer Graphics Forum</title>
<idno type="ISSN">0167-7055</idno>
<idno type="eISSN">1467-8659</idno>
<imprint>
<publisher>Blackwell Publishers Ltd</publisher>
<pubPlace>Oxford, UK and Boston, USA</pubPlace>
<date type="published" when="1999-09">1999-09</date>
<biblScope unit="volume">18</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="31">31</biblScope>
<biblScope unit="page" to="38">38</biblScope>
</imprint>
<idno type="ISSN">0167-7055</idno>
</series>
<idno type="istex">B3C6647C40D8E228B2750D70AD2C3320940AE160</idno>
<idno type="DOI">10.1111/1467-8659.00325</idno>
<idno type="ArticleID">CGF325</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0167-7055</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Interactive Cut</term>
<term>Physically Based Modeling</term>
<term>Runge Kutta Method</term>
<term>Soft Tissue</term>
<term>Surgery Simulation</term>
<term>Tetrahedralization</term>
<term>Virtual Scalpel</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We describe a physically based framework for interactive modeling and cutting of 3‐dimensional soft tissue that can be used for surgery simulation. Unlike existing approaches which are mostly designed for tensorproduct grids our methods operate on tetrahedral decompositions giving more topological and geometric flexibility for the efficient modeling of complex anatomical structures. We start from an initial tetrahedralization such as being provided by any conventional meshing method. In order to track topological changes tetrahedra intersected by the virtual scalpel are split into substructures whose connectivity follows the trajectory of the cut, which can be arbitrary. For the efficient computation of collisions between the scalpel and individual tetrahedra we devised a local collision detection algorithm. The underlying physics is approximated through masses and springs attached to each tetrahedral vertex and edge. A hierarchical Runge‐Kutta iteration computes the relaxation of the system by traversing the designed data structures in a breadth‐first order. The framework includes a force‐feedback interface and uses real‐time texture mapping to enhance the visual realism.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Daniel Bielser</name>
<affiliations>
<json:string>Computer Science Department, ETH Zurich, Switzerland</json:string>
</affiliations>
</json:item>
<json:item>
<name>Volker A. Maiwald</name>
<affiliations>
<json:string>Computer Science Department, ETH Zurich, Switzerland</json:string>
</affiliations>
</json:item>
<json:item>
<name>Markus H. Gross</name>
<affiliations>
<json:string>Computer Science Department, ETH Zurich, Switzerland</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Physically Based Modeling</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Surgery Simulation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Soft Tissue</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Tetrahedralization</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Interactive Cut</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Virtual Scalpel</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Runge Kutta Method</value>
</json:item>
</subject>
<articleId>
<json:string>CGF325</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<abstract>We describe a physically based framework for interactive modeling and cutting of 3‐dimensional soft tissue that can be used for surgery simulation. Unlike existing approaches which are mostly designed for tensorproduct grids our methods operate on tetrahedral decompositions giving more topological and geometric flexibility for the efficient modeling of complex anatomical structures. We start from an initial tetrahedralization such as being provided by any conventional meshing method. In order to track topological changes tetrahedra intersected by the virtual scalpel are split into substructures whose connectivity follows the trajectory of the cut, which can be arbitrary. For the efficient computation of collisions between the scalpel and individual tetrahedra we devised a local collision detection algorithm. The underlying physics is approximated through masses and springs attached to each tetrahedral vertex and edge. A hierarchical Runge‐Kutta iteration computes the relaxation of the system by traversing the designed data structures in a breadth‐first order. The framework includes a force‐feedback interface and uses real‐time texture mapping to enhance the visual realism.</abstract>
<qualityIndicators>
<score>6.992</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>595 x 842 pts (A4)</pdfPageSize>
<refBibsNative>false</refBibsNative>
<keywordCount>7</keywordCount>
<abstractCharCount>1191</abstractCharCount>
<pdfWordCount>5130</pdfWordCount>
<pdfCharCount>30147</pdfCharCount>
<pdfPageCount>9</pdfPageCount>
<abstractWordCount>166</abstractWordCount>
</qualityIndicators>
<title>Interactive Cuts through 3‐Dimensional Soft Tissue</title>
<genre.original>
<json:string>article</json:string>
</genre.original>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>18</volume>
<publisherId>
<json:string>CGF</json:string>
</publisherId>
<pages>
<total>9</total>
<last>38</last>
<first>31</first>
</pages>
<issn>
<json:string>0167-7055</json:string>
</issn>
<issue>3</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1467-8659</json:string>
</eissn>
<title>Computer Graphics Forum</title>
<doi>
<json:string>10.1111/(ISSN)1467-8659</json:string>
</doi>
</host>
<publicationDate>1999</publicationDate>
<copyrightDate>1999</copyrightDate>
<doi>
<json:string>10.1111/1467-8659.00325</json:string>
</doi>
<id>B3C6647C40D8E228B2750D70AD2C3320940AE160</id>
<score>1</score>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/B3C6647C40D8E228B2750D70AD2C3320940AE160/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/B3C6647C40D8E228B2750D70AD2C3320940AE160/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/B3C6647C40D8E228B2750D70AD2C3320940AE160/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Interactive Cuts through 3‐Dimensional Soft Tissue</title>
<respStmt xml:id="ISTEX-API" resp="Références bibliographiques récupérées via GROBID" name="ISTEX-API (INIST-CNRS)"></respStmt>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishers Ltd</publisher>
<pubPlace>Oxford, UK and Boston, USA</pubPlace>
<availability>
<p>WILEY</p>
</availability>
<date>1999</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Interactive Cuts through 3‐Dimensional Soft Tissue</title>
<author>
<persName>
<forename type="first">Daniel</forename>
<surname>Bielser</surname>
</persName>
<affiliation>Computer Science Department, ETH Zurich, Switzerland</affiliation>
</author>
<author>
<persName>
<forename type="first">Volker A.</forename>
<surname>Maiwald</surname>
</persName>
<affiliation>Computer Science Department, ETH Zurich, Switzerland</affiliation>
</author>
<author>
<persName>
<forename type="first">Markus H.</forename>
<surname>Gross</surname>
</persName>
<affiliation>Computer Science Department, ETH Zurich, Switzerland</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Computer Graphics Forum</title>
<idno type="pISSN">0167-7055</idno>
<idno type="eISSN">1467-8659</idno>
<idno type="DOI">10.1111/(ISSN)1467-8659</idno>
<imprint>
<publisher>Blackwell Publishers Ltd</publisher>
<pubPlace>Oxford, UK and Boston, USA</pubPlace>
<date type="published" when="1999-09"></date>
<biblScope unit="volume">18</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="31">31</biblScope>
<biblScope unit="page" to="38">38</biblScope>
</imprint>
</monogr>
<idno type="istex">B3C6647C40D8E228B2750D70AD2C3320940AE160</idno>
<idno type="DOI">10.1111/1467-8659.00325</idno>
<idno type="ArticleID">CGF325</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1999</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>We describe a physically based framework for interactive modeling and cutting of 3‐dimensional soft tissue that can be used for surgery simulation. Unlike existing approaches which are mostly designed for tensorproduct grids our methods operate on tetrahedral decompositions giving more topological and geometric flexibility for the efficient modeling of complex anatomical structures. We start from an initial tetrahedralization such as being provided by any conventional meshing method. In order to track topological changes tetrahedra intersected by the virtual scalpel are split into substructures whose connectivity follows the trajectory of the cut, which can be arbitrary. For the efficient computation of collisions between the scalpel and individual tetrahedra we devised a local collision detection algorithm. The underlying physics is approximated through masses and springs attached to each tetrahedral vertex and edge. A hierarchical Runge‐Kutta iteration computes the relaxation of the system by traversing the designed data structures in a breadth‐first order. The framework includes a force‐feedback interface and uses real‐time texture mapping to enhance the visual realism.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>Physically Based Modeling</term>
</item>
<item>
<term>Surgery Simulation</term>
</item>
<item>
<term>Soft Tissue</term>
</item>
<item>
<term>Tetrahedralization</term>
</item>
<item>
<term>Interactive Cut</term>
</item>
<item>
<term>Virtual Scalpel</term>
</item>
<item>
<term>Runge Kutta Method</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1999-09">Published</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2016-4-23">References added</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/B3C6647C40D8E228B2750D70AD2C3320940AE160/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley component found">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Publishers Ltd</publisherName>
<publisherLoc>Oxford, UK and Boston, USA</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1467-8659</doi>
<issn type="print">0167-7055</issn>
<issn type="electronic">1467-8659</issn>
<idGroup>
<id type="product" value="CGF"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="COMPUTER GRAPHICS FORUM">Computer Graphics Forum</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="09003">
<doi origin="wiley">10.1111/cgf.1999.18.issue-3</doi>
<numberingGroup>
<numbering type="journalVolume" number="18">18</numbering>
<numbering type="journalIssue" number="3">3</numbering>
</numberingGroup>
<coverDate startDate="1999-09">September 1999</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="0003100" status="forIssue">
<doi origin="wiley">10.1111/1467-8659.00325</doi>
<idGroup>
<id type="unit" value="CGF325"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="9"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Original Article</title>
</titleGroup>
<copyright>The Eurographics Association 1999</copyright>
<eventGroup>
<event type="firstOnline" date="2001-12-24"></event>
<event type="publishedOnlineFinalForm" date="2001-12-24"></event>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.3.3 mode:FullText source:Header result:Header" date="2010-03-19"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-15"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-16"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="31">31</numbering>
<numbering type="pageLast" number="38">38</numbering>
</numberingGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:CGF.CGF325.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="0"></count>
<count type="tableTotal" number="0"></count>
<count type="linksPubMed" number="0"></count>
<count type="linksCrossRef" number="0"></count>
</countGroup>
<titleGroup>
<title type="main">Interactive Cuts through 3‐Dimensional Soft Tissue</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1">
<personName>
<givenNames>Daniel</givenNames>
<familyName>Bielser</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a1">
<personName>
<givenNames>Volker A.</givenNames>
<familyName>Maiwald</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" affiliationRef="#a1">
<personName>
<givenNames>Markus H.</givenNames>
<familyName>Gross</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="CH">
<unparsedAffiliation>Computer Science Department, ETH Zurich, Switzerland</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">Physically Based Modeling</keyword>
<keyword xml:id="k2">Surgery Simulation</keyword>
<keyword xml:id="k3">Soft Tissue</keyword>
<keyword xml:id="k4">Tetrahedralization</keyword>
<keyword xml:id="k5">Interactive Cut</keyword>
<keyword xml:id="k6">Virtual Scalpel</keyword>
<keyword xml:id="k7">Runge Kutta Method</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<p>We describe a physically based framework for interactive modeling and cutting of 3‐dimensional soft tissue that can be used for surgery simulation. Unlike existing approaches which are mostly designed for tensorproduct grids our methods operate on tetrahedral decompositions giving more topological and geometric flexibility for the efficient modeling of complex anatomical structures. We start from an initial tetrahedralization such as being provided by any conventional meshing method. In order to track topological changes tetrahedra intersected by the virtual scalpel are split into substructures whose connectivity follows the trajectory of the cut, which can be arbitrary. For the efficient computation of collisions between the scalpel and individual tetrahedra we devised a local collision detection algorithm. The underlying physics is approximated through masses and springs attached to each tetrahedral vertex and edge. A hierarchical Runge‐Kutta iteration computes the relaxation of the system by traversing the designed data structures in a breadth‐first order. The framework includes a force‐feedback interface and uses real‐time texture mapping to enhance the visual realism.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Interactive Cuts through 3‐Dimensional Soft Tissue</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Interactive Cuts through 3‐Dimensional Soft Tissue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Bielser</namePart>
<affiliation>Computer Science Department, ETH Zurich, Switzerland</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Volker A.</namePart>
<namePart type="family">Maiwald</namePart>
<affiliation>Computer Science Department, ETH Zurich, Switzerland</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Markus H.</namePart>
<namePart type="family">Gross</namePart>
<affiliation>Computer Science Department, ETH Zurich, Switzerland</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishers Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK and Boston, USA</placeTerm>
</place>
<dateIssued encoding="w3cdtf">1999-09</dateIssued>
<copyrightDate encoding="w3cdtf">1999</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">We describe a physically based framework for interactive modeling and cutting of 3‐dimensional soft tissue that can be used for surgery simulation. Unlike existing approaches which are mostly designed for tensorproduct grids our methods operate on tetrahedral decompositions giving more topological and geometric flexibility for the efficient modeling of complex anatomical structures. We start from an initial tetrahedralization such as being provided by any conventional meshing method. In order to track topological changes tetrahedra intersected by the virtual scalpel are split into substructures whose connectivity follows the trajectory of the cut, which can be arbitrary. For the efficient computation of collisions between the scalpel and individual tetrahedra we devised a local collision detection algorithm. The underlying physics is approximated through masses and springs attached to each tetrahedral vertex and edge. A hierarchical Runge‐Kutta iteration computes the relaxation of the system by traversing the designed data structures in a breadth‐first order. The framework includes a force‐feedback interface and uses real‐time texture mapping to enhance the visual realism.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>Physically Based Modeling</topic>
<topic>Surgery Simulation</topic>
<topic>Soft Tissue</topic>
<topic>Tetrahedralization</topic>
<topic>Interactive Cut</topic>
<topic>Virtual Scalpel</topic>
<topic>Runge Kutta Method</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Computer Graphics Forum</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">0167-7055</identifier>
<identifier type="eISSN">1467-8659</identifier>
<identifier type="DOI">10.1111/(ISSN)1467-8659</identifier>
<identifier type="PublisherID">CGF</identifier>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>18</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>31</start>
<end>38</end>
<total>9</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">B3C6647C40D8E228B2750D70AD2C3320940AE160</identifier>
<identifier type="DOI">10.1111/1467-8659.00325</identifier>
<identifier type="ArticleID">CGF325</identifier>
<accessCondition type="use and reproduction" contentType="copyright">The Eurographics Association 1999</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Blackwell Publishers Ltd</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C66 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000C66 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:B3C6647C40D8E228B2750D70AD2C3320940AE160
   |texte=   Interactive Cuts through 3‐Dimensional Soft Tissue
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024