Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A systematic characterization method for gravity-feed micro-hole drilling in glass with spark assisted chemical engraving (SACE)

Identifieur interne : 000629 ( Istex/Corpus ); précédent : 000628; suivant : 000630

A systematic characterization method for gravity-feed micro-hole drilling in glass with spark assisted chemical engraving (SACE)

Auteurs : R. Wthrich ; U. Spaelter ; Y. Wu ; H. Bleuler

Source :

RBID : ISTEX:489F64498AB22745373916B971F4E30A3AEADF4F

Abstract

Gravity-feed drilling is the most commonly used method for micro-hole drilling in glass with spark assisted chemical engraving (SACE). This paper proposes a method allowing the systematic characterization of this drilling method. The influences of voltage, tool shape and force are investigated. It is found that SACE gravity-feed drilling shows two regimes depending on the drilling depth. During the first 200300 m, the discharge regime, controlled by the number of discharges inside the gas film, allows fast drilling (up to about 100 m s1). For deeper depths, the drilling is controlled by the hydrodynamic regime in which the drilling speed is limited by the flow of the electrolyte inside the micro-hole resulting in slow drilling of typically 10 m s1. Furthermore, it is shown how the gas film build-up time is limiting the drilling speed.

Url:
DOI: 10.1088/0960-1317/16/9/019

Links to Exploration step

ISTEX:489F64498AB22745373916B971F4E30A3AEADF4F

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>A systematic characterization method for gravity-feed micro-hole drilling in glass with spark assisted chemical engraving (SACE)</title>
<author>
<name sortKey="Wthrich, R" sort="Wthrich, R" uniqKey="Wthrich R" first="R" last="Wthrich">R. Wthrich</name>
<affiliation>
<mods:affiliation>cole Polytechnique Fdrale de Lausanne, Laboratoire de systmes robotiques, CH-1015 Lausanne, Switzerland</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail:Rolf.Wuethrich@a3.epfl.ch</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Spaelter, U" sort="Spaelter, U" uniqKey="Spaelter U" first="U" last="Spaelter">U. Spaelter</name>
<affiliation>
<mods:affiliation>cole Polytechnique Fdrale de Lausanne, Laboratoire de systmes robotiques, CH-1015 Lausanne, Switzerland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wu, Y" sort="Wu, Y" uniqKey="Wu Y" first="Y" last="Wu">Y. Wu</name>
<affiliation>
<mods:affiliation>Department of Mechanical Sciences and Engineering, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro-ku, Tokyo 152-8552, Japan</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bleuler, H" sort="Bleuler, H" uniqKey="Bleuler H" first="H" last="Bleuler">H. Bleuler</name>
<affiliation>
<mods:affiliation>cole Polytechnique Fdrale de Lausanne, Laboratoire de systmes robotiques, CH-1015 Lausanne, Switzerland</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:489F64498AB22745373916B971F4E30A3AEADF4F</idno>
<date when="2006" year="2006">2006</date>
<idno type="doi">10.1088/0960-1317/16/9/019</idno>
<idno type="url">https://api.istex.fr/document/489F64498AB22745373916B971F4E30A3AEADF4F/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000629</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">A systematic characterization method for gravity-feed micro-hole drilling in glass with spark assisted chemical engraving (SACE)</title>
<author>
<name sortKey="Wthrich, R" sort="Wthrich, R" uniqKey="Wthrich R" first="R" last="Wthrich">R. Wthrich</name>
<affiliation>
<mods:affiliation>cole Polytechnique Fdrale de Lausanne, Laboratoire de systmes robotiques, CH-1015 Lausanne, Switzerland</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail:Rolf.Wuethrich@a3.epfl.ch</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Spaelter, U" sort="Spaelter, U" uniqKey="Spaelter U" first="U" last="Spaelter">U. Spaelter</name>
<affiliation>
<mods:affiliation>cole Polytechnique Fdrale de Lausanne, Laboratoire de systmes robotiques, CH-1015 Lausanne, Switzerland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wu, Y" sort="Wu, Y" uniqKey="Wu Y" first="Y" last="Wu">Y. Wu</name>
<affiliation>
<mods:affiliation>Department of Mechanical Sciences and Engineering, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro-ku, Tokyo 152-8552, Japan</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bleuler, H" sort="Bleuler, H" uniqKey="Bleuler H" first="H" last="Bleuler">H. Bleuler</name>
<affiliation>
<mods:affiliation>cole Polytechnique Fdrale de Lausanne, Laboratoire de systmes robotiques, CH-1015 Lausanne, Switzerland</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Micromechanics and Microengineering</title>
<title level="j" type="abbrev">J. Micromech. Microeng.</title>
<idno type="ISSN">0960-1317</idno>
<idno type="eISSN">1361-6439</idno>
<imprint>
<publisher>Institute of Physics Publishing</publisher>
<date type="published" when="2006">2006</date>
<biblScope unit="volume">16</biblScope>
<biblScope unit="issue">9</biblScope>
<biblScope unit="page" from="1891">1891</biblScope>
<biblScope unit="page" to="1896">1896</biblScope>
<biblScope unit="production">Printed in the UK</biblScope>
</imprint>
<idno type="ISSN">0960-1317</idno>
</series>
<idno type="istex">489F64498AB22745373916B971F4E30A3AEADF4F</idno>
<idno type="DOI">10.1088/0960-1317/16/9/019</idno>
<idno type="PII">S0960-1317(06)18793-8</idno>
<idno type="articleID">218793</idno>
<idno type="articleNumber">019</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0960-1317</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Gravity-feed drilling is the most commonly used method for micro-hole drilling in glass with spark assisted chemical engraving (SACE). This paper proposes a method allowing the systematic characterization of this drilling method. The influences of voltage, tool shape and force are investigated. It is found that SACE gravity-feed drilling shows two regimes depending on the drilling depth. During the first 200300 m, the discharge regime, controlled by the number of discharges inside the gas film, allows fast drilling (up to about 100 m s1). For deeper depths, the drilling is controlled by the hydrodynamic regime in which the drilling speed is limited by the flow of the electrolyte inside the micro-hole resulting in slow drilling of typically 10 m s1. Furthermore, it is shown how the gas film build-up time is limiting the drilling speed.</div>
</front>
</TEI>
<istex>
<corpusName>iop</corpusName>
<author>
<json:item>
<name>R Wthrich</name>
<affiliations>
<json:string>cole Polytechnique Fdrale de Lausanne, Laboratoire de systmes robotiques, CH-1015 Lausanne, Switzerland</json:string>
<json:string>E-mail:Rolf.Wuethrich@a3.epfl.ch</json:string>
</affiliations>
</json:item>
<json:item>
<name>U Spaelter</name>
<affiliations>
<json:string>cole Polytechnique Fdrale de Lausanne, Laboratoire de systmes robotiques, CH-1015 Lausanne, Switzerland</json:string>
</affiliations>
</json:item>
<json:item>
<name>Y Wu</name>
<affiliations>
<json:string>Department of Mechanical Sciences and Engineering, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro-ku, Tokyo 152-8552, Japan</json:string>
</affiliations>
</json:item>
<json:item>
<name>H Bleuler</name>
<affiliations>
<json:string>cole Polytechnique Fdrale de Lausanne, Laboratoire de systmes robotiques, CH-1015 Lausanne, Switzerland</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>spark assisted chemical engraving (SACE)</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>gravity feed</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>process monitoring</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>glass micro-drilling</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>electrochemical discharge phenomena</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<abstract>Gravity-feed drilling is the most commonly used method for micro-hole drilling in glass with spark assisted chemical engraving (SACE). This paper proposes a method allowing the systematic characterization of this drilling method. The influences of voltage, tool shape and force are investigated. It is found that SACE gravity-feed drilling shows two regimes depending on the drilling depth. During the first 200300 m, the discharge regime, controlled by the number of discharges inside the gas film, allows fast drilling (up to about 100 m s1). For deeper depths, the drilling is controlled by the hydrodynamic regime in which the drilling speed is limited by the flow of the electrolyte inside the micro-hole resulting in slow drilling of typically 10 m s1. Furthermore, it is shown how the gas film build-up time is limiting the drilling speed.</abstract>
<qualityIndicators>
<score>5.534</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>595 x 842 pts (A4)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>5</keywordCount>
<abstractCharCount>846</abstractCharCount>
<pdfWordCount>3414</pdfWordCount>
<pdfCharCount>20357</pdfCharCount>
<pdfPageCount>6</pdfPageCount>
<abstractWordCount>135</abstractWordCount>
</qualityIndicators>
<title>A systematic characterization method for gravity-feed micro-hole drilling in glass with spark assisted chemical engraving (SACE)</title>
<genre.original>
<json:string>paper</json:string>
</genre.original>
<pii>
<json:string>S0960-1317(06)18793-8</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>16</volume>
<publisherId>
<json:string>JMM</json:string>
</publisherId>
<pages>
<total>6</total>
<last>1896</last>
<first>1891</first>
</pages>
<issn>
<json:string>0960-1317</json:string>
</issn>
<issue>9</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1361-6439</json:string>
</eissn>
<title>Journal of Micromechanics and Microengineering</title>
</host>
<publicationDate>2006</publicationDate>
<copyrightDate>2006</copyrightDate>
<doi>
<json:string>10.1088/0960-1317/16/9/019</json:string>
</doi>
<id>489F64498AB22745373916B971F4E30A3AEADF4F</id>
<score>1</score>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/489F64498AB22745373916B971F4E30A3AEADF4F/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/489F64498AB22745373916B971F4E30A3AEADF4F/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/489F64498AB22745373916B971F4E30A3AEADF4F/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">A systematic characterization method for gravity-feed micro-hole drilling in glass with spark assisted chemical engraving (SACE)</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Institute of Physics Publishing</publisher>
<availability>
<p>IOP</p>
</availability>
<date>2006</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">A systematic characterization method for gravity-feed micro-hole drilling in glass with spark assisted chemical engraving (SACE)</title>
<author>
<persName>
<forename type="first">R</forename>
<surname>Wthrich</surname>
</persName>
<affiliation>cole Polytechnique Fdrale de Lausanne, Laboratoire de systmes robotiques, CH-1015 Lausanne, Switzerland</affiliation>
<affiliation>E-mail:Rolf.Wuethrich@a3.epfl.ch</affiliation>
</author>
<author>
<persName>
<forename type="first">U</forename>
<surname>Spaelter</surname>
</persName>
<affiliation>cole Polytechnique Fdrale de Lausanne, Laboratoire de systmes robotiques, CH-1015 Lausanne, Switzerland</affiliation>
</author>
<author>
<persName>
<forename type="first">Y</forename>
<surname>Wu</surname>
</persName>
<affiliation>Department of Mechanical Sciences and Engineering, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro-ku, Tokyo 152-8552, Japan</affiliation>
</author>
<author>
<persName>
<forename type="first">H</forename>
<surname>Bleuler</surname>
</persName>
<affiliation>cole Polytechnique Fdrale de Lausanne, Laboratoire de systmes robotiques, CH-1015 Lausanne, Switzerland</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Micromechanics and Microengineering</title>
<title level="j" type="abbrev">J. Micromech. Microeng.</title>
<idno type="pISSN">0960-1317</idno>
<idno type="eISSN">1361-6439</idno>
<imprint>
<publisher>Institute of Physics Publishing</publisher>
<date type="published" when="2006"></date>
<biblScope unit="volume">16</biblScope>
<biblScope unit="issue">9</biblScope>
<biblScope unit="page" from="1891">1891</biblScope>
<biblScope unit="page" to="1896">1896</biblScope>
<biblScope unit="production">Printed in the UK</biblScope>
</imprint>
</monogr>
<idno type="istex">489F64498AB22745373916B971F4E30A3AEADF4F</idno>
<idno type="DOI">10.1088/0960-1317/16/9/019</idno>
<idno type="PII">S0960-1317(06)18793-8</idno>
<idno type="articleID">218793</idno>
<idno type="articleNumber">019</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2006</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>Gravity-feed drilling is the most commonly used method for micro-hole drilling in glass with spark assisted chemical engraving (SACE). This paper proposes a method allowing the systematic characterization of this drilling method. The influences of voltage, tool shape and force are investigated. It is found that SACE gravity-feed drilling shows two regimes depending on the drilling depth. During the first 200300 m, the discharge regime, controlled by the number of discharges inside the gas film, allows fast drilling (up to about 100 m s1). For deeper depths, the drilling is controlled by the hydrodynamic regime in which the drilling speed is limited by the flow of the electrolyte inside the micro-hole resulting in slow drilling of typically 10 m s1. Furthermore, it is shown how the gas film build-up time is limiting the drilling speed.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>spark assisted chemical engraving (SACE)</term>
</item>
<item>
<term>gravity feed</term>
</item>
<item>
<term>process monitoring</term>
</item>
<item>
<term>glass micro-drilling</term>
</item>
<item>
<term>electrochemical discharge phenomena</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2006">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/489F64498AB22745373916B971F4E30A3AEADF4F/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus iop not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="ISO-8859-1"</istex:xmlDeclaration>
<istex:docType SYSTEM="http://ej.iop.org/dtd/iopv1_5_1.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article artid="jmm218793">
<article-metadata>
<jnl-data jnlid="jmm">
<jnl-fullname>Journal of Micromechanics and Microengineering</jnl-fullname>
<jnl-abbreviation>J. Micromech. Microeng.</jnl-abbreviation>
<jnl-shortname>JMM</jnl-shortname>
<jnl-issn>0960-1317</jnl-issn>
<jnl-coden>JMMIEZ</jnl-coden>
<jnl-imprint>Institute of Physics Publishing</jnl-imprint>
<jnl-web-address>stacks.iop.org/JMM</jnl-web-address>
</jnl-data>
<volume-data>
<year-publication>2006</year-publication>
<volume-number>16</volume-number>
</volume-data>
<issue-data>
<issue-number>9</issue-number>
<coverdate>September 2006</coverdate>
</issue-data>
<article-data>
<article-type type="paper" sort="regular"></article-type>
<type-number type="paper" artnum="019">19</type-number>
<article-number>218793</article-number>
<first-page>1891</first-page>
<last-page>1896</last-page>
<length>6</length>
<pii>S0960-1317(06)18793-8</pii>
<doi>10.1088/0960-1317/16/9/019</doi>
<copyright>2006 IOP Publishing Ltd</copyright>
<ccc>0960-1317/06/091891+06$30.00</ccc>
<printed>Printed in the UK</printed>
<features colour="global" mmedia="no" suppdata="no"></features>
</article-data>
</article-metadata>
<header>
<title-group>
<title>A systematic characterization method for gravity-feed micro-hole drilling in glass with spark assisted chemical engraving (SACE)</title>
<short-title>A systematic characterization method for gravity-feed micro-hole drilling in glass with SACE</short-title>
<ej-title>A systematic characterization method for gravity-feed micro-hole drilling in glass with SACE</ej-title>
</title-group>
<author-group>
<author address="jmm218793ad1" email="jmm218793ea1">
<first-names>R</first-names>
<second-name>Wüthrich</second-name>
</author>
<author address="jmm218793ad1">
<first-names>U</first-names>
<second-name>Spaelter</second-name>
</author>
<author address="jmm218793ad2">
<first-names>Y</first-names>
<second-name>Wu</second-name>
</author>
<author address="jmm218793ad1">
<first-names>H</first-names>
<second-name>Bleuler</second-name>
</author>
</author-group>
<address-group>
<address id="jmm218793ad1">
<orgname>École Polytechnique Fédérale de Lausanne, Laboratoire de systèmes robotiques</orgname>
, CH-1015 Lausanne,
<country>Switzerland</country>
</address>
<address id="jmm218793ad2">
<orgname>Department of Mechanical Sciences and Engineering, Tokyo Institute of Technology</orgname>
, 2-12-1 O-Okayama, Meguro-ku, Tokyo 152-8552,
<country>Japan</country>
</address>
<e-address id="jmm218793ea1">
<email mailto="Rolf.Wuethrich@a3.epfl.ch">Rolf.Wuethrich@a3.epfl.ch</email>
</e-address>
</address-group>
<history received="15 February 2006" finalform="26 June 2006" online="4 August 2006"></history>
<abstract-group>
<abstract>
<heading>Abstract</heading>
<p indent="no">Gravity-feed drilling is the most commonly used method for micro-hole drilling in glass with spark assisted chemical engraving (SACE). This paper proposes a method allowing the systematic characterization of this drilling method. The influences of voltage, tool shape and force are investigated. It is found that SACE gravity-feed drilling shows two regimes depending on the drilling depth. During the first 200–300 µm, the discharge regime, controlled by the number of discharges inside the gas film, allows fast drilling (up to about 100 µm s
<sup>−1</sup>
). For deeper depths, the drilling is controlled by the hydrodynamic regime in which the drilling speed is limited by the flow of the electrolyte inside the micro-hole resulting in slow drilling of typically 10 µm s
<sup>−1</sup>
. Furthermore, it is shown how the gas film build-up time is limiting the drilling speed.</p>
</abstract>
</abstract-group>
<classifications>
<keywords>
<keyword>spark assisted chemical engraving (SACE)</keyword>
<keyword>gravity feed</keyword>
<keyword>process monitoring</keyword>
<keyword>glass micro-drilling</keyword>
<keyword>electrochemical discharge phenomena</keyword>
</keywords>
</classifications>
</header>
<body numbering="bysection">
<sec-level1 id="jmm218793s1" label="1">
<heading>Introduction</heading>
<p indent="no">Spark assisted chemical engraving (SACE)
<fnref linkend="jmm218793fn01"></fnref>
is a non-traditional micro-machining technology based on electrochemical discharge phenomena [
<cite linkend="jmm218793bib01">1</cite>
] originally developed for micro-hole drilling in glass by Kurafuji and Suda [
<cite linkend="jmm218793bib02">2</cite>
]. SACE uses the heat generated by electrochemical discharges inside a gas film around the tool for locally melting the work sample. Figure
<figref linkend="jmm218793fig01">1</figref>
shows the principle of this technology. When the voltage between the tool electrode and the counter electrode is higher than a critical value, gas bubbles grow so dense that they coalesce into a gas film isolating the tool from the electrolyte [
<cite linkend="jmm218793bib03">3</cite>
,
<cite linkend="jmm218793bib04">4</cite>
]. Discharges take place, which melt locally the substrate by their heat power and simultaneously catalyze chemical etching.
<figure id="jmm218793fig01">
<graphic>
<graphic-file version="print" format="EPS" filename="images/jmm218793fig01.eps" width="18pc"></graphic-file>
<graphic-file version="ej" format="JPEG" filename="images/jmm218793fig01.jpg"></graphic-file>
</graphic>
<caption id="jmm218793fc01" label="Figure 1">
<p indent="no">Principle of SACE machining. Electrical discharges are produced inside a gas film built around the tool electrode.</p>
</caption>
</figure>
</p>
<p>The feeding mechanism of the tool electrode significantly influences the machining performances [
<cite linkend="jmm218793bib01">1</cite>
]. So far, various feeding mechanisms for the tool electrode during drilling have been investigated (see table
<tabref linkend="jmm218793tab01">1</tabref>
).
<table id="jmm218793tab01" frame="topbot">
<caption id="jmm218793tc01" label="Table 1">
<p indent="no">Various feeding methods for SACE micro-hole drilling.</p>
</caption>
<tgroup cols="5">
<colspec colnum="1" colname="col1" align="left"></colspec>
<colspec colnum="2" colname="col2" align="left"></colspec>
<colspec colnum="3" colname="col3" align="left"></colspec>
<colspec colnum="4" colname="col4" align="left"></colspec>
<colspec colnum="5" colname="col5" align="left"></colspec>
<thead>
<row>
<entry>Method</entry>
<entry>Principle</entry>
<entry>Comments</entry>
<entry>Positive</entry>
<entry>Negative</entry>
</row>
</thead>
<tbody>
<row>
<entry>Gravity feed</entry>
<entry>Drilling with a</entry>
<entry>Force has to be in</entry>
<entry>+ Direct monitoring</entry>
<entry>− Danger of breaking</entry>
</row>
<row>
<entry></entry>
<entry>constant force</entry>
<entry>a selected range</entry>
<entry>of drilling progress</entry>
<entry>something</entry>
</row>
<row>
<entry></entry>
<entry>exerted on the</entry>
<entry></entry>
<entry>and depth</entry>
<entry></entry>
</row>
<row>
<entry></entry>
<entry>tool electrode</entry>
<entry></entry>
<entry></entry>
<entry></entry>
</row>
<row>
<entry></entry>
<entry></entry>
<entry></entry>
<entry>+ No additional signal</entry>
<entry></entry>
</row>
<row>
<entry></entry>
<entry></entry>
<entry></entry>
<entry>needed for monitoring</entry>
<entry></entry>
</row>
<row rowsep="yes">
<entry></entry>
<entry></entry>
<entry></entry>
<entry>machining progress</entry>
<entry></entry>
</row>
<row rowsep="yes">
<entry></entry>
<entry>
<inline-eqn></inline-eqn>
</entry>
<entry></entry>
<entry></entry>
<entry></entry>
</row>
<row>
<entry>Constant</entry>
<entry>Drilling at</entry>
<entry>Speed has to be</entry>
<entry>+ Direct monitoring of</entry>
<entry>− Needs some additional</entry>
</row>
<row>
<entry>drilling speed</entry>
<entry>constant speed</entry>
<entry>smaller than the</entry>
<entry>of drilling depth</entry>
<entry>sensor(s) to avoid</entry>
</row>
<row>
<entry></entry>
<entry></entry>
<entry>mean machining</entry>
<entry></entry>
<entry>breaking</entry>
</row>
<row>
<entry></entry>
<entry></entry>
<entry>speed of SACE</entry>
<entry></entry>
<entry></entry>
</row>
<row>
<entry></entry>
<entry></entry>
<entry></entry>
<entry></entry>
<entry>− No monitoring of</entry>
</row>
<row rowsep="yes">
<entry></entry>
<entry></entry>
<entry></entry>
<entry></entry>
<entry>machining progress</entry>
</row>
<row rowsep="yes">
<entry></entry>
<entry>
<inline-eqn></inline-eqn>
</entry>
<entry></entry>
<entry></entry>
<entry></entry>
</row>
<row>
<entry>Constant</entry>
<entry>Drilling by keeping</entry>
<entry></entry>
<entry>+ Direct monitoring</entry>
<entry>− Difficulty to monitor</entry>
</row>
<row>
<entry>gap machining</entry>
<entry>the workpiece to tool</entry>
<entry></entry>
<entry>of drilling depth</entry>
<entry>the machining gap (until</entry>
</row>
<row>
<entry></entry>
<entry>electrode distance constant</entry>
<entry></entry>
<entry></entry>
<entry>today only possible</entry>
</row>
<row rowsep="yes">
<entry></entry>
<entry></entry>
<entry></entry>
<entry></entry>
<entry>in TW-ECDM)</entry>
</row>
<row rowsep="yes">
<entry></entry>
<entry>
<inline-eqn></inline-eqn>
</entry>
<entry></entry>
<entry></entry>
<entry></entry>
</row>
<row>
<entry>Closed loop</entry>
<entry>Adapting drilling (speed,</entry>
<entry>Potential control signals:</entry>
<entry>+ Optimal</entry>
<entry>− No suitable control</entry>
</row>
<row>
<entry>machining</entry>
<entry>force, etc) to the actual</entry>
<entry>current, local temperature,</entry>
<entry>performances</entry>
<entry>signal known so far</entry>
</row>
<row>
<entry></entry>
<entry>machining status</entry>
<entry>force acting on tool</entry>
<entry></entry>
<entry></entry>
</row>
<row>
<entry></entry>
<entry>
<inline-eqn></inline-eqn>
</entry>
<entry></entry>
<entry></entry>
<entry></entry>
</row>
</tbody>
</tgroup>
</table>
</p>
<sec-level2 id="jmm218793s1-1" label="1.1">
<heading>Gravity feed [2, 5–11]</heading>
<p indent="no">A constant force is applied on the tool electrode. In this machining mode, which is most commonly used in SACE machining, the tool is always in contact with the work sample. The progress of machining can therefore be continuously monitored. The force has however to be maintained in an appropriate range in order to avoid breaking (of the work sample or of the tool electrode) and bending of the tool.</p>
</sec-level2>
<sec-level2 id="jmm218793s1-2" label="1.2">
<heading>Constant velocity feed [12–15]</heading>
<p indent="no">In this machining mode, the feed velocity of the tool electrode (or the work piece) is imposed. In order to avoid breaking of the work sample or the tool electrode, the feed rate has to be lower than the mean material removal rate of the SACE process. According to the authors' personal experience, a typical upper limit for this feed rate is around 10–30 µm s
<sup>−1</sup>
(depending strongly on the depth and diameter of the micro-hole) [
<cite linkend="jmm218793bib15">15</cite>
]. In the set-up of Gautam and Jain [
<cite linkend="jmm218793bib12">12</cite>
], feed rates from 2 µm min
<sup>−1</sup>
to 1.2 mm min
<sup>−1</sup>
were used. Contrary to the gravity-feed method, no direct monitoring of the machining process is available. Moreover, there is always the risk to cause damages (workpiece, tool, etc) in the case where the machining process becomes slower than the imposed feed rate. To avoid such a situation, additional sensors are needed, for example, a force sensor monitoring the tool force [
<cite linkend="jmm218793bib15">15</cite>
].</p>
</sec-level2>
<sec-level2 id="jmm218793s1-3" label="1.3">
<heading>Constant gap machining [16]</heading>
<p indent="no">In this method, the gap between the tool electrode and the workpiece is kept constant (in analogy to EDM (electro discharge machining)). So far, this method was only implemented in TW-ECDM (travel wire electro discharge machining), a variant of SACE in which a wire is used as a tool electrode [
<cite linkend="jmm218793bib16">16</cite>
]. The reason is certainly the difficulty of measuring the gap between workpiece and electrode in the case of drilling. A possible solution could be by vibrating the tool and then to detect the change in the eigenfrequency (analogous to the tapping mode in STM).</p>
</sec-level2>
<sec-level2 id="jmm218793s1-4" label="1.4">
<heading>Closed loop machining</heading>
<p indent="no">In this method, the machining is adapted as a function of a signal monitoring the actual process status. Such a machining method is of course highly desired, as optimal performance is expected. However, so far no suitable control signal for SACE is known and therefore no closed loop machining is reported to date. Recently, the possibility of using the current signal as a control input has been discussed [
<cite linkend="jmm218793bib17">17</cite>
]. It has been shown that useful information is available from this signal. The possibility of using the force exerted on the tool electrode has been discussed as well [
<cite linkend="jmm218793bib15">15</cite>
,
<cite linkend="jmm218793bib17">17</cite>
,
<cite linkend="jmm218793bib18">18</cite>
]. As for the current signal, additional research is needed before this signal may become an input signal for a control algorithm for SACE.</p>
<p>These various feeding mechanisms have been only partially characterized so far. In the case of gravity feed, the applied method is usually the following: a hole is drilled under given conditions (given electrolyte, fixed voltage, temperature, etc) during a fixed time. The material removal rate is computed by weighing the amount of material removed in this time interval. It is however well known that during SACE drilling the material removal rate does not remain constant [
<cite linkend="jmm218793bib05">5</cite>
,
<cite linkend="jmm218793bib14">14</cite>
,
<cite linkend="jmm218793bib15">15</cite>
]. Moreover, a systematic characterization of SACE gravity-feed machining as a function of the applied force was never done. The aim of this paper is to give such a systematic analysis. In particular, the online monitoring of the machining process will be done in order to get a better idea of the actual material removal rate and to see how this quantity is changing during progress of micro-hole drilling.</p>
</sec-level2>
</sec-level1>
<sec-level1 id="jmm218793s2" label="2">
<heading>Experimental details</heading>
<p indent="no">The set-up used is depicted in figure
<figref linkend="jmm218793fig02">2</figref>
(described in detail in [
<cite linkend="jmm218793bib10">10</cite>
,
<cite linkend="jmm218793bib17">17</cite>
]). With an XYZ stage, the machining head with the fixed tool electrode can be positioned relatively to the workpiece. The central part of the set-up is the machining head. It consists of a flexible structure which allows SACE machining by gravity feed [
<cite linkend="jmm218793bib10">10</cite>
]. Commercially available optical sensors (SFH 9201 reflective sensor) give the possibility of following the progress of the tool electrode during drilling. A second functionality of this machining head is the possibility of modifying the force exerted on the tool with the help of a voice-coil actuator.
<figure id="jmm218793fig02" width="page">
<graphic>
<graphic-file version="print" format="EPS" filename="images/jmm218793fig02.eps" width="26pc"></graphic-file>
<graphic-file version="ej" format="JPEG" filename="images/jmm218793fig02.jpg"></graphic-file>
</graphic>
<caption id="jmm218793fc02" label="Figure 2">
<p indent="no">Schematic of the experimental set-up. The machining head is mounted on an XYZ stage. The relative displacement
<italic>z</italic>
of the tool electrode to the machining head and the current
<italic>I</italic>
are acquired through an AD card on a standard PC equipped with a DSP.</p>
</caption>
</figure>
</p>
<p>The electrolyte was 30 wt% NaOH. The tool electrodes were cylindrical electrodes of 0.4 mm diameter in 316L stainless steel. The shapes of the electrodes were inspected with an optical microscope and if necessary corrected using emery paper. As a counter electrode, a platinum foil of 3 cm
<sup>2</sup>
was placed about 1 cm from the tool electrode. The workpieces were standard glass sample holders for optical microscopes fixed in a cylindrical processing cell with a diameter of about 11 cm.</p>
<p>The power source (40 V, 4 A) is a home-made device based on a PA92 amplifier which gives a good stability of the output voltage during the discharge activity.</p>
<p>The current has been measured with an in-house made device based on a commercial hall sensor with an overall bandwidth (including the signal conditioning electronics) larger than 200 kHz. Such a high bandwidth is necessary as the discharge pulses last typically in the order of a few 100 µs.</p>
<p>The various signals were acquired with a commercial DSP system using an AD card at 1 kHz sampling rate and transferred to a standard PC.</p>
</sec-level1>
<sec-level1 id="jmm218793s3" label="3">
<heading>Results and discussion</heading>
<sec-level2 id="jmm218793s3-1" label="3.1">
<heading>Reproducibility of measurements</heading>
<p indent="no">It was emphasized several times that the SACE process is unstable and leads to unrepeatable machining even under well-controlled conditions [
<cite linkend="jmm218793bib01">1</cite>
,
<cite linkend="jmm218793bib10">10</cite>
,
<cite linkend="jmm218793bib15">15</cite>
,
<cite linkend="jmm218793bib17">17</cite>
,
<cite linkend="jmm218793bib19">19</cite>
]. The analysis of the current signal [
<cite linkend="jmm218793bib17">17</cite>
] gives strong indications that one of the reasons, besides the gas film instability, is the uncontrolled local temperature. This point is confirmed by the measurements shown in figure
<figref linkend="jmm218793fig03">3</figref>
where the progress
<italic>z</italic>
(
<italic>t</italic>
) of the tool electrode as a function of time is shown. Consecutive drillings at 29 V with a cylindrical tool of 0.4 mm diameter are shown. It is well seen that, how after about five drillings, the evolutions become more and more similar reaching finally an essentially repeatable situation. The authors attribute this effect mainly to the reaching of a steady-state distribution of the local temperature.
<figure id="jmm218793fig03">
<graphic>
<graphic-file version="print" format="EPS" filename="images/jmm218793fig03.eps" width="18pc"></graphic-file>
<graphic-file version="ej" format="JPEG" filename="images/jmm218793fig03.jpg"></graphic-file>
</graphic>
<caption id="jmm218793fc03" label="Figure 3">
<p indent="no">Several consecutive drillings at 29 V with a cylindrical tool of 0.4 mm diameter. Applied force was 0.8 N. After five drillings, the evolutions become similar.</p>
</caption>
</figure>
</p>
<p>In the following, all measurements considered are those reached after several preliminary discarded drillings, in order to compare equivalent thermal conditions. At least ten drillings were done before considering that the steady-state situation is reached.</p>
<p>In the present study, more than 500 micro-holes were drilled using the same tool. No tool wear could be observed, confirming observations done previously under similar conditions [
<cite linkend="jmm218793bib10">10</cite>
].</p>
</sec-level2>
<sec-level2 id="jmm218793s3-2" label="3.2">
<heading>Influence of voltage</heading>
<p indent="no">Figure
<figref linkend="jmm218793fig04">4</figref>
shows the progress of machining as a function of time for various voltages for a cylindrical tool of 0.4 mm diameter with a constant force of 0.8 N. The electrolyte level was adjusted to about 1 mm. As known since the work of Cook
<italic>et al</italic>
[
<cite linkend="jmm218793bib05">5</cite>
], machining becomes faster with increasing voltage. This has a quite straightforward explanation. The mean number of discharges increases with voltage according to a field-emission law [
<cite linkend="jmm218793bib20">20</cite>
,
<cite linkend="jmm218793bib21">21</cite>
]. More discharges result in higher material removal rate [
<cite linkend="jmm218793bib22">22</cite>
,
<cite linkend="jmm218793bib23">23</cite>
]. Figure
<figref linkend="jmm218793fig05">5</figref>
shows a rough estimate of the drilling speed at
<italic>t</italic>
= 0 s (where drilling starts), obtained graphically from figure
<figref linkend="jmm218793fig04">4</figref>
. The interesting point is to compare these values (typically around 50 µm s
<sup>−1</sup>
) with the drilling speed of a few µm s
<sup>−1</sup>
reached after having drilled about 250 µm. The decreasing drilling speed can be attributed to insufficient wetting of the tool by the electrolyte [
<cite linkend="jmm218793bib15">15</cite>
]. When the hole becomes deep, the gas film built up around the tool probably pushes out the electrolyte inside the hole with the consequence that spark generation ceases at the tool tip. Micro-hole drilling by gravity feed can therefore be described by two different regimes.
<figure id="jmm218793fig04">
<graphic>
<graphic-file version="print" format="EPS" filename="images/jmm218793fig04.eps" width="18pc"></graphic-file>
<graphic-file version="ej" format="JPEG" filename="images/jmm218793fig04.jpg"></graphic-file>
</graphic>
<caption id="jmm218793fc04" label="Figure 4">
<p indent="no">Typical evolution at various voltages of SACE gravity-feed drilling with a cylindrical tool of 0.4 mm diameter with a force of 0.8 N pushing on it. The electrolyte level above the workpiece was about 1 mm.</p>
</caption>
</figure>
<figure id="jmm218793fig05">
<graphic>
<graphic-file version="print" format="EPS" filename="images/jmm218793fig05.eps" width="18pc"></graphic-file>
<graphic-file version="ej" format="JPEG" filename="images/jmm218793fig05.jpg"></graphic-file>
</graphic>
<caption id="jmm218793fc05" label="Figure 5">
<p indent="no">Estimation of the drilling speed at the start of the process shown in figure
<figref linkend="jmm218793fig04">4</figref>
. Freely drawn tendency line.</p>
</caption>
</figure>
</p>
<p>The first regime, for depths up to typically 200–300 µm, is mainly controlled by the discharge activity, i.e. directly controlled by the applied voltage. In this situation, some electrolyte can still reach the vicinity of the tool tip allowing sparks to take place. Machining of the workpiece goes on. This regime will be called the discharge regime.</p>
<p>The second regime, for depths higher than typically 300 µm, is no longer solely controlled by the discharge activity, but limited by the ability of aqueous electrolyte to reach the tool extremity. Discharges at the tool tip are significantly reduced and drilling becomes slower. In this situation, the drilling speed (the slope of the curve
<italic>z</italic>
(
<italic>t</italic>
)) depends only slightly on the applied voltage. This regime will be called the hydrodynamic regime, as the drilling speed is limited by the local hydrodynamic fluxes. In this regime, the discharges probably take place mainly in the upper part of the tool where still some electrolyte is available. This could explain why inspection of the current signal in the discharge and the hydrodynamic regime shows no significant difference whereas the drilling speeds differ by almost one order of magnitude.</p>
<p>In an earlier publication [
<cite linkend="jmm218793bib15">15</cite>
], it was already noted that obtaining depths beyond about 300 µm is very difficult. It now seems that the reason for this is, as described above, the absence of aqueous electrolyte at the tip of the tool.</p>
<p>Another interesting point to be noted is the often observed steer case like evolution in the drilling (more pronounced at high voltage). Possible reasons may be mechanical effects (stick–slip, tool bending) or hydrodynamic effects (not sufficient electrolyte inside the micro-hole for example, limit cycles of evaporation and in-flow dynamics). But more investigations are needed in order to clarify this phenomenon.</p>
</sec-level2>
<sec-level2 id="jmm218793s3-3" label="3.3">
<heading>Influence of the inter-electrode resistance</heading>
<p indent="no">In a previous paper [
<cite linkend="jmm218793bib17">17</cite>
], the authors showed that the inter-electrode resistance significantly influences the way the gas film is built up. In particular, the time needed to form the film can vary several orders of magnitude (from typically 10 ms to 1 s). As the gas film is unstable (i.e. the gas film often collapses and has to be build up again), the gas film build-up time is an important parameter for the mean machining speed of SACE. Indeed, the gas film regeneration speed may become a limiting factor for machining speed [
<cite linkend="jmm218793bib17">17</cite>
].</p>
<p>Figure
<figref linkend="jmm218793fig06">6</figref>
shows, as figure
<figref linkend="jmm218793fig04">4</figref>
, for a cylindrical tool of 0.4 mm diameter with a constant force of 0.8 N, the progress of machining as a function of time for various applied voltages. Compared to the case of figure
<figref linkend="jmm218793fig04">4</figref>
, the electrolyte was deposited as a small drop just wetting the two electrodes (tool and counter electrodes). As a consequence, the inter-electrode resistance is higher than that in the previous case. The gas film build-up time is longer [
<cite linkend="jmm218793bib17">17</cite>
]. Comparing figures
<figref linkend="jmm218793fig04">4</figref>
and
<figref linkend="jmm218793fig06">6</figref>
, one can clearly see that for low voltages (up to 32 V) the machining in the case of small inter-electrode resistance (figure
<figref linkend="jmm218793fig04">4</figref>
) is faster than that for high inter-electrode resistance (figure
<figref linkend="jmm218793fig06">6</figref>
). For higher voltage this difference becomes smaller, maybe because at high voltage the gas film build-up time is less sensitive to the inter-electrode resistance. Another reason is that at high voltage the process rapidly changes to the hydrodynamic regime, in which the drilling speed is almost independent of the applied voltage.
<figure id="jmm218793fig06">
<graphic>
<graphic-file version="print" format="EPS" filename="images/jmm218793fig06.eps" width="18pc"></graphic-file>
<graphic-file version="ej" format="JPEG" filename="images/jmm218793fig06.jpg"></graphic-file>
</graphic>
<caption id="jmm218793fc06" label="Figure 6">
<p indent="no">Typical evolution at various voltages of SACE gravity-feed drilling with a cylindrical tool of 0.4 mm diameter with a force of 0.8 N pushing on it. The electrolyte was deposited as a small drop on the workpiece.</p>
</caption>
</figure>
</p>
</sec-level2>
<sec-level2 id="jmm218793s3-4" label="3.4">
<heading>Influence of tool shape</heading>
<p indent="no">Figure
<figref linkend="jmm218793fig07">7</figref>
shows the result of the same experiment as in figure
<figref linkend="jmm218793fig04">4</figref>
, but using a needle-shaped tool. Comparing figures
<figref linkend="jmm218793fig04">4</figref>
and
<figref linkend="jmm218793fig07">7</figref>
, it follows that the needle-shaped tool results in significantly higher drilling speeds for low voltages (smaller than 30 V) and very similar drillings for higher voltages. This can be explained noting that in the needle-shaped tool the discharges are concentrated at the tip of the electrode. The discharge density is in general higher for smaller cross sections resulting in higher material removal rate. This effect is more pronounced at low voltages and is significant only in the discharge regime (up to about 200–300 µm depth). Once the hydrodynamic regime is reached, drilling speed becomes nearly independent of the voltage (very well seen in figure
<figref linkend="jmm218793fig07">7</figref>
). For high voltages, the hydrodynamic regime is quickly reached and the difference between the cylindrical and the needle-shaped tool is hardly observable.
<figure id="jmm218793fig07">
<graphic>
<graphic-file version="print" format="EPS" filename="images/jmm218793fig07.eps" width="18pc"></graphic-file>
<graphic-file version="ej" format="JPEG" filename="images/jmm218793fig07.jpg"></graphic-file>
</graphic>
<caption id="jmm218793fc07" label="Figure 7">
<p indent="no">Typical evolution at various voltages of SACE gravity-feed drilling with a needle-shaped tool with a force of 0.8 N pushing on it. The electrolyte level above the workpiece was about 1 mm.</p>
</caption>
</figure>
</p>
</sec-level2>
<sec-level2 id="jmm218793s3-5" label="3.5">
<heading>Effect of tool feed force</heading>
<p indent="no">Figure
<figref linkend="jmm218793fig08">8</figref>
shows the progress of machining at 27 V for various forces exerted on the cylindrical tool (from 0.5 N to 1.8 N). The figure compares the situation obtained after only a few previous drillings (two in the present case). By increasing the number of drillings, the various evolutions become more and more similar and almost independent of the force pushing on the tool. For experiments at higher voltage, already from the very beginning the variation of the force (in the studied range) shows almost no influence.
<figure id="jmm218793fig08">
<graphic>
<graphic-file version="print" format="EPS" filename="images/jmm218793fig08.eps" width="18pc"></graphic-file>
<graphic-file version="ej" format="JPEG" filename="images/jmm218793fig08.jpg"></graphic-file>
</graphic>
<caption id="jmm218793fc08" label="Figure 8">
<p indent="no">Typical evolution at 27 V of SACE gravity-feed drilling as a function of the applied force (from 0.5 N to 1.8 N). The evolution reached after two consecutive drillings is shown. A cylindrical tool of 0.4 mm diameter was used and the electrolyte level above the workpiece was about 1 mm.</p>
</caption>
</figure>
</p>
<p>According to these results it follows that, for the studied force range, the variation of the force pushing on the tool has only minor influence. At low voltage (where the discharge regime is long), higher force can slightly increase the drilling speed, at least during the first drillings. For higher voltage, such an increase is not significant.</p>
</sec-level2>
</sec-level1>
<sec-level1 id="jmm218793s4" label="4">
<heading>Conclusion</heading>
<p indent="no">A systematic method for the characterization of micro-hole drilling with SACE was presented. Compared to previously published methods, the present one allows us to follow the variation of the actual machining speed during drilling. This method was applied to a cylindrical tool of 0.4 mm diameter. Two different drilling regimes were identified. During the first 200–250 µm, in the discharge regime, the drilling speed is controlled by the number of discharges (i.e. the applied voltage). Drilling speeds are quite high and can reach up to almost 100 µm s
<sup>−1</sup>
. In the hydrodynamic regime, for depths higher than typically 300 µm, the drilling speed is limited by the ability of the electrolyte to reach the tool tip. Drilling speed becomes small (typically 10 µm s
<sup>−1</sup>
) and nearly independent of the applied voltage.</p>
<p>Furthermore, it was shown that needle-shaped tools result in slightly higher machining speeds. A low inter-electrode resistance increases the machining speed too, due to faster gas film build-up time. In the range 0.5–2 N, no significant influence of the force pushing on the tool could be found.</p>
</sec-level1>
<acknowledgment>
<heading>Acknowledgments</heading>
<p indent="no">This work has been partially supported by the Swiss National Foundation for Research by the grant ‘Modelling and experimental investigation of electrode effects—spark assisted chemical engraving (SACE) as example’.</p>
</acknowledgment>
</body>
<back>
<references>
<heading>References</heading>
<reference-list type="numeric">
<journal-ref id="jmm218793bib01">
<authors>
<au>
<second-name>Wüthrich</second-name>
<first-names>R</first-names>
</au>
<au>
<second-name>Fascio</second-name>
<first-names>V</first-names>
</au>
</authors>
<year>2005</year>
<art-title>Machining of non-conductive materials using electrochemical discharge phenomenon—an overview</art-title>
<jnl-title>Int. J. Mach. Tools Manuf.</jnl-title>
<volume>45</volume>
<pages>1095–108</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/j.ijmachtools.2004.11.011</cr_doi>
<cr_issn type="print">08906955</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="jmm218793bib02">
<authors>
<au>
<second-name>Kurafuji</second-name>
<first-names>H</first-names>
</au>
<au>
<second-name>Suda</second-name>
<first-names>K</first-names>
</au>
</authors>
<year>1968</year>
<art-title>Electrical discharge drilling of glass</art-title>
<jnl-title>Ann. CIRP</jnl-title>
<volume>16</volume>
<pages>415–9</pages>
</journal-ref>
<journal-ref id="jmm218793bib03">
<authors>
<au>
<second-name>Wüthrich</second-name>
<first-names>R</first-names>
</au>
<au>
<second-name>Bleuler</second-name>
<first-names>H</first-names>
</au>
</authors>
<year>2004</year>
<art-title>A model for electrode effects using percolation theory</art-title>
<jnl-title>Electrochim. Acta</jnl-title>
<volume>49</volume>
<pages>1547–54</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/j.electacta.2004.12.052</cr_doi>
<cr_issn type="print">00134686</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="jmm218793bib04">
<authors>
<au>
<second-name>Wüthrich</second-name>
<first-names>R</first-names>
</au>
<au>
<second-name>Comninellis</second-name>
<first-names>Ch</first-names>
</au>
<au>
<second-name>Bleuler</second-name>
<first-names>H</first-names>
</au>
</authors>
<year>2005</year>
<art-title>Bubble evolution on vertical electrodes under extreme current densities</art-title>
<jnl-title>Electrochim. Acta</jnl-title>
<volume>50</volume>
<pages>5242–6</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/j.electacta.2004.12.052</cr_doi>
<cr_issn type="print">00134686</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="jmm218793bib05">
<authors>
<au>
<second-name>Cook</second-name>
<first-names>N H</first-names>
</au>
<au>
<second-name>Foote</second-name>
<first-names>G B</first-names>
</au>
<au>
<second-name>Jordan</second-name>
<first-names>P</first-names>
</au>
<au>
<second-name>Kalyani</second-name>
<first-names>B N</first-names>
</au>
</authors>
<year>1973</year>
<art-title>Experimental studies in electro-machining</art-title>
<jnl-title>Trans. ASME J. Eng. Ind.</jnl-title>
<issno>November</issno>
<pages>pp 945–50</pages>
</journal-ref>
<journal-ref id="jmm218793bib06">
<authors>
<au>
<second-name>Tokura</second-name>
<first-names>H</first-names>
</au>
<au>
<second-name>Kondoh</second-name>
<first-names>I</first-names>
</au>
<au>
<second-name>Yoshikswa</second-name>
<first-names>M</first-names>
</au>
</authors>
<year>1989</year>
<art-title>Ceramic material processing by electrical discharge in electrolyte</art-title>
<jnl-title>J. Mater. Sci.</jnl-title>
<volume>24</volume>
<pages>991–8</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1007/BF01148788</cr_doi>
<cr_issn type="print">00222461</cr_issn>
<cr_issn type="electronic">15734803</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="jmm218793bib07">
<authors>
<au>
<second-name>Allesu</second-name>
<first-names>K</first-names>
</au>
<au>
<second-name>Ghosh</second-name>
<first-names>A</first-names>
</au>
<au>
<second-name>Muju</second-name>
<first-names>M K</first-names>
</au>
</authors>
<year>1992</year>
<art-title>Preliminary qualitative approach of a proposed mechanism of material removal in electrical machining of glass</art-title>
<jnl-title>Eur. J. Mech. Eng.</jnl-title>
<volume>36</volume>
<pages>202–7</pages>
</journal-ref>
<journal-ref id="jmm218793bib08">
<authors>
<au>
<second-name>Bhattacharyya</second-name>
<first-names>B</first-names>
</au>
<au>
<second-name>Doloi</second-name>
<first-names>B N</first-names>
</au>
<au>
<second-name>Sorkhel</second-name>
<first-names>S K</first-names>
</au>
</authors>
<year>1999</year>
<art-title>Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials</art-title>
<jnl-title>J. Mater. Process. Technol.</jnl-title>
<volume>95</volume>
<pages>145–54</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/S0924-0136(99)00318-0</cr_doi>
<cr_issn type="print">09240136</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="jmm218793bib09">
<authors>
<au>
<second-name>Yang</second-name>
<first-names>C T</first-names>
</au>
<au>
<second-name>Ho</second-name>
<first-names>S S</first-names>
</au>
<au>
<second-name>Yan</second-name>
<first-names>B H</first-names>
</au>
</authors>
<year>2001</year>
<art-title>Micro hole machining of borosilicate glass trough electrochemical discharge machining (ECDM)</art-title>
<jnl-title>Key Eng. Mater.</jnl-title>
<volume>196</volume>
<pages>149–66</pages>
</journal-ref>
<journal-ref id="jmm218793bib10">
<authors>
<au>
<second-name>Wüthrich</second-name>
<first-names>R</first-names>
</au>
<au>
<second-name>Fujisaki</second-name>
<first-names>K</first-names>
</au>
<au>
<second-name>Couthy</second-name>
<first-names>Ph</first-names>
</au>
<au>
<second-name>Hof</second-name>
<first-names>L A</first-names>
</au>
<au>
<second-name>Bleuler</second-name>
<first-names>H</first-names>
</au>
</authors>
<year>2005</year>
<art-title>Spark assisted chemical engraving (SACE) in microfactory</art-title>
<jnl-title>J. Micromech. Microeng.</jnl-title>
<volume>15</volume>
<pages>276–80</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1088/0960-1317/15/10/S04</cr_doi>
<cr_issn type="print">09601317</cr_issn>
<cr_issn type="electronic">13616439</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="jmm218793bib11">
<authors>
<au>
<second-name>Kim</second-name>
<first-names>D-J</first-names>
</au>
<au>
<second-name>Ahn</second-name>
<first-names>Y</first-names>
</au>
<au>
<second-name>Lee</second-name>
<first-names>S-H</first-names>
</au>
<au>
<second-name>Kim</second-name>
<first-names>Y-K</first-names>
</au>
</authors>
<year>2006</year>
<art-title>Voltage pulse frequency and duty ratio effects in an electrochemical discharge microdrilling process of Pyrex glass</art-title>
<jnl-title>Int. J. Mach. Tools Manuf.</jnl-title>
<volume>46</volume>
<pages>1064–7</pages>
</journal-ref>
<journal-ref id="jmm218793bib12">
<authors>
<au>
<second-name>Gautam</second-name>
<first-names>N</first-names>
</au>
<au>
<second-name>Jain</second-name>
<first-names>V K</first-names>
</au>
</authors>
<year>1998</year>
<art-title>Experimental investigations into ECSD process using various tool kinematics</art-title>
<jnl-title>Int. J. Mach. Tools Manuf.</jnl-title>
<volume>38</volume>
<pages>15–27</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/S0890-6955(98)00034-0</cr_doi>
<cr_issn type="print">08906955</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="jmm218793bib13">
<authors>
<au>
<second-name>Lim</second-name>
<first-names>H-J</first-names>
</au>
<au>
<second-name>Lim</second-name>
<first-names>Y-M</first-names>
</au>
<au>
<second-name>Kim</second-name>
<first-names>S H</first-names>
</au>
<au>
<second-name>Kwak</second-name>
<first-names>Y K</first-names>
</au>
</authors>
<year>2001</year>
<art-title>Self-aligned micro tool and electrochemical discharge machining (ECDM) for ceramic materials</art-title>
<jnl-title>Proc. SPIE</jnl-title>
<volume>4416</volume>
<pages>348–53</pages>
</journal-ref>
<journal-ref id="jmm218793bib14">
<authors>
<au>
<second-name>Daridon</second-name>
<first-names>A</first-names>
</au>
<au>
<second-name>Fascio</second-name>
<first-names>V</first-names>
</au>
<au>
<second-name>Lichtenberg</second-name>
<first-names>J</first-names>
</au>
<au>
<second-name>Wüthrich</second-name>
<first-names>R</first-names>
</au>
<au>
<second-name>Langen</second-name>
<first-names>H</first-names>
</au>
<au>
<second-name>Verpoorte</second-name>
<first-names>E</first-names>
</au>
<au>
<second-name>De Rooij</second-name>
<first-names>N F</first-names>
</au>
</authors>
<year>2001</year>
<art-title>Multi-layer microfluidic glass chips for microanalytical applications</art-title>
<jnl-title>Fresenius J. Anal. Chem.</jnl-title>
<volume>371</volume>
<pages>261–9</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1007/s002160101004</cr_doi>
<cr_issn type="print">09370633</cr_issn>
<cr_issn type="electronic">14321130</cr_issn>
</crossref>
</journal-ref>
<conf-ref id="jmm218793bib15">
<authors>
<au>
<second-name>Wüthrich</second-name>
<first-names>R</first-names>
</au>
<au>
<second-name>Fascio</second-name>
<first-names>V</first-names>
</au>
<au>
<second-name>Viquerat</second-name>
<first-names>D</first-names>
</au>
<au>
<second-name>Langen</second-name>
<first-names>H</first-names>
</au>
</authors>
<year>1999</year>
<art-title>
<italic>In situ</italic>
measurement and micro-machining of glass</art-title>
<conf-title>Int. Symp. on Micromechatronics and Human Science (MHS'99)</conf-title>
<conf-place>Nagoya</conf-place>
<pages>pp 185–91</pages>
</conf-ref>
<journal-ref id="jmm218793bib16">
<authors>
<au>
<second-name>Peng</second-name>
<first-names>W Y</first-names>
</au>
<au>
<second-name>Liao</second-name>
<first-names>Y S</first-names>
</au>
</authors>
<year>2004</year>
<art-title>Study of electrochemical discharge machining technology for slicing non-conductive brittle materials</art-title>
<jnl-title>J. Mater. Process. Technol.</jnl-title>
<volume>149</volume>
<pages>363–9</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/j.jmatprotec.2003.11.054</cr_doi>
<cr_issn type="print">09240136</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="jmm218793bib17">
<authors>
<au>
<second-name>Wüthrich</second-name>
<first-names>R</first-names>
</au>
<au>
<second-name>Spaetler</second-name>
<first-names>U</first-names>
</au>
<au>
<second-name>Bleuler</second-name>
<first-names>H</first-names>
</au>
</authors>
<year>2006</year>
<art-title>The current signal in spark assisted chemical engraving (SACE), what does it tell us?</art-title>
<jnl-title>J. Micromech. Microeng.</jnl-title>
<volume>16</volume>
<pages>779–85</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1088/0960-1317/16/4/014</cr_doi>
<cr_issn type="print">09601317</cr_issn>
<cr_issn type="electronic">13616439</cr_issn>
</crossref>
</journal-ref>
<conf-ref id="jmm218793bib18">
<authors>
<au>
<second-name>Spaelter</second-name>
<first-names>U</first-names>
</au>
<au>
<second-name>Wüthrich</second-name>
<first-names>R</first-names>
</au>
<au>
<second-name>Bleuler</second-name>
<first-names>H</first-names>
</au>
</authors>
<year>2005</year>
<art-title>Spark assisted chemical engraving (SACE) machining—haptic device for the operator</art-title>
<conf-title>Int. Conf. of the European Society for Precision Engineering and Nanotechnology (EUSPEN)</conf-title>
<conf-place>Montpellier, France, 8–11 May 2005</conf-place>
</conf-ref>
<journal-ref id="jmm218793bib19">
<authors>
<au>
<second-name>Wüthrich</second-name>
<first-names>R</first-names>
</au>
<au>
<second-name>Hof</second-name>
<first-names>L A</first-names>
</au>
</authors>
<year>2006</year>
<art-title>The gas film in spark assisted chemical engraving (SACE)—a key element for micro-machining applications</art-title>
<jnl-title>Int. J. Mach. Tools Manuf.</jnl-title>
<volume>46</volume>
<pages>828–35</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/j.ijmachtools.2005.07.029</cr_doi>
<cr_issn type="print">08906955</cr_issn>
</crossref>
</journal-ref>
<misc-ref id="jmm218793bib20">
<authors>
<au>
<second-name>Wüthrich</second-name>
<first-names>R</first-names>
</au>
</authors>
<year>2003</year>
<art-title>Spark assisted chemical engraving—a stochastic modelling approach</art-title>
<thesis>PhD Dissertation</thesis>
<pages>2776</pages>
</misc-ref>
<journal-ref id="jmm218793bib21">
<authors>
<au>
<second-name>Fascio</second-name>
<first-names>V</first-names>
</au>
<au>
<second-name>Wüthrich</second-name>
<first-names>R</first-names>
</au>
<au>
<second-name>Bleuler</second-name>
<first-names>H</first-names>
</au>
</authors>
<year>2004</year>
<art-title>Spark assisted chemical engraving in the light of electrochemistry</art-title>
<jnl-title>Electrochim. Acta</jnl-title>
<volume>49</volume>
<pages>3997–4003</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/j.electacta.2003.12.062</cr_doi>
<cr_issn type="print">00134686</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="jmm218793bib22">
<authors>
<au>
<second-name>Basak</second-name>
<first-names>I</first-names>
</au>
<au>
<second-name>Ghosh</second-name>
<first-names>A</first-names>
</au>
</authors>
<year>1997</year>
<art-title>Mechanism of material removal in electrochemical discharge machining: a theoretical model and experimental verification</art-title>
<jnl-title>J. Mater. Process. Technol.</jnl-title>
<volume>71</volume>
<pages>350–9</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/S0924-0136(97)00097-6</cr_doi>
<cr_issn type="print">09240136</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="jmm218793bib23">
<authors>
<au>
<second-name>Kulkarni</second-name>
<first-names>A</first-names>
</au>
<au>
<second-name>Sharan</second-name>
<first-names>R</first-names>
</au>
<au>
<second-name>Lal</second-name>
<first-names>G K</first-names>
</au>
</authors>
<year>2003</year>
<art-title>Measurement of temperature transients in the electrochemical discharge machining process Temperature: Its Measurement and Control in Science and Industry</art-title>
<jnl-title>AIP Conf. Proc.</jnl-title>
<volume>684</volume>
<pages>1069–74</pages>
</journal-ref>
</reference-list>
</references>
<footnotes>
<footnote id="jmm218793fn01">
<p indent="no">SACE is also known by other names such as electrochemical discharge machining (ECDM) or electrochemical spark machining (ECSM).</p>
</footnote>
</footnotes>
</back>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>A systematic characterization method for gravity-feed micro-hole drilling in glass with spark assisted chemical engraving (SACE)</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>A systematic characterization method for gravity-feed micro-hole drilling in glass with SACE</title>
</titleInfo>
<titleInfo type="alternative">
<title>A systematic characterization method for gravity-feed micro-hole drilling in glass with spark assisted chemical engraving (SACE)</title>
</titleInfo>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Wthrich</namePart>
<affiliation>cole Polytechnique Fdrale de Lausanne, Laboratoire de systmes robotiques, CH-1015 Lausanne, Switzerland</affiliation>
<affiliation>E-mail:Rolf.Wuethrich@a3.epfl.ch</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">U</namePart>
<namePart type="family">Spaelter</namePart>
<affiliation>cole Polytechnique Fdrale de Lausanne, Laboratoire de systmes robotiques, CH-1015 Lausanne, Switzerland</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Y</namePart>
<namePart type="family">Wu</namePart>
<affiliation>Department of Mechanical Sciences and Engineering, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro-ku, Tokyo 152-8552, Japan</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="family">Bleuler</namePart>
<affiliation>cole Polytechnique Fdrale de Lausanne, Laboratoire de systmes robotiques, CH-1015 Lausanne, Switzerland</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="paper"></genre>
<originInfo>
<publisher>Institute of Physics Publishing</publisher>
<dateIssued encoding="w3cdtf">2006</dateIssued>
<copyrightDate encoding="w3cdtf">2006</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<note type="production">Printed in the UK</note>
</physicalDescription>
<abstract>Gravity-feed drilling is the most commonly used method for micro-hole drilling in glass with spark assisted chemical engraving (SACE). This paper proposes a method allowing the systematic characterization of this drilling method. The influences of voltage, tool shape and force are investigated. It is found that SACE gravity-feed drilling shows two regimes depending on the drilling depth. During the first 200300 m, the discharge regime, controlled by the number of discharges inside the gas film, allows fast drilling (up to about 100 m s1). For deeper depths, the drilling is controlled by the hydrodynamic regime in which the drilling speed is limited by the flow of the electrolyte inside the micro-hole resulting in slow drilling of typically 10 m s1. Furthermore, it is shown how the gas film build-up time is limiting the drilling speed.</abstract>
<subject>
<genre>keywords</genre>
<topic>spark assisted chemical engraving (SACE)</topic>
<topic>gravity feed</topic>
<topic>process monitoring</topic>
<topic>glass micro-drilling</topic>
<topic>electrochemical discharge phenomena</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Micromechanics and Microengineering</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Micromech. Microeng.</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">0960-1317</identifier>
<identifier type="eISSN">1361-6439</identifier>
<identifier type="PublisherID">JMM</identifier>
<identifier type="CODEN">JMMIEZ</identifier>
<identifier type="URL">stacks.iop.org/JMM</identifier>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>16</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>9</number>
</detail>
<extent unit="pages">
<start>1891</start>
<end>1896</end>
<total>6</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">489F64498AB22745373916B971F4E30A3AEADF4F</identifier>
<identifier type="DOI">10.1088/0960-1317/16/9/019</identifier>
<identifier type="PII">S0960-1317(06)18793-8</identifier>
<identifier type="articleID">218793</identifier>
<identifier type="articleNumber">019</identifier>
<accessCondition type="use and reproduction" contentType="copyright">2006 IOP Publishing Ltd</accessCondition>
<recordInfo>
<recordContentSource>IOP</recordContentSource>
<recordOrigin>2006 IOP Publishing Ltd</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000629 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000629 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:489F64498AB22745373916B971F4E30A3AEADF4F
   |texte=   A systematic characterization method for gravity-feed micro-hole drilling in glass with spark assisted chemical engraving (SACE)
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024