Serveur d'exploration Cyberinfrastructure

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Host-Specific Phenotypic Plasticity of the Turtle Barnacle Chelonibia testudinaria: A Widespread Generalist Rather than a Specialist

Identifieur interne : 000619 ( Pmc/Corpus ); précédent : 000618; suivant : 000620

Host-Specific Phenotypic Plasticity of the Turtle Barnacle Chelonibia testudinaria: A Widespread Generalist Rather than a Specialist

Auteurs : Chi Chiu Cheang ; Ling Ming Tsang ; Ka Hou Chu ; I-Jiunn Cheng ; Benny K. K. Chan

Source :

RBID : PMC:3585910

Abstract

Turtle barnacles are common epibionts on marine organisms. Chelonibia testudinaria is specific on marine turtles whereas C. patula is a host generalist, but rarely found on turtles. It has been questioned why C. patula, being abundant on a variety of live substrata, is almost absent from turtles. We evaluated the genetic (mitochondrial COI, 16S and 12S rRNA, and amplified fragment length polymorphism (AFLP)) and morphological differentiation of C. testudinaia and C. patula from different hosts, to determine the mode of adaptation exhibited by Chelonibia species on different hosts. The two taxa demonstrate clear differences in shell morphology and length of 4–6th cirri, but very similar in arthropodal characters. Moreover, we detected no genetic differentiation in mitochondrial DNA and AFLP analyses. Outlier detection infers insignificant selection across loci investigated. Based on combined morphological and molecular evidence, we proposed that C. testudinaria and C. patula are conspecific, and the two morphs with contrasting shell morphologies and cirral length found on different host are predominantly shaped by developmental plasticity in response to environmental setting on different hosts. Chelonibia testudinaria is, thus, a successful general epibiotic fouler and the phenotypic responses postulated can increase the fitness of the animals when they attach on hosts with contrasting life-styles.


Url:
DOI: 10.1371/journal.pone.0057592
PubMed: 23469208
PubMed Central: 3585910

Links to Exploration step

PMC:3585910

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Host-Specific Phenotypic Plasticity of the Turtle Barnacle
<italic>Chelonibia testudinaria</italic>
: A Widespread Generalist Rather than a Specialist</title>
<author>
<name sortKey="Cheang, Chi Chiu" sort="Cheang, Chi Chiu" uniqKey="Cheang C" first="Chi Chiu" last="Cheang">Chi Chiu Cheang</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Biodiversity Research Center, Academia Sinica, Taipei, Taiwan</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<addr-line>Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tsang, Ling Ming" sort="Tsang, Ling Ming" uniqKey="Tsang L" first="Ling Ming" last="Tsang">Ling Ming Tsang</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chu, Ka Hou" sort="Chu, Ka Hou" uniqKey="Chu K" first="Ka Hou" last="Chu">Ka Hou Chu</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cheng, I Jiunn" sort="Cheng, I Jiunn" uniqKey="Cheng I" first="I-Jiunn" last="Cheng">I-Jiunn Cheng</name>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chan, Benny K K" sort="Chan, Benny K K" uniqKey="Chan B" first="Benny K. K." last="Chan">Benny K. K. Chan</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Biodiversity Research Center, Academia Sinica, Taipei, Taiwan</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">23469208</idno>
<idno type="pmc">3585910</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3585910</idno>
<idno type="RBID">PMC:3585910</idno>
<idno type="doi">10.1371/journal.pone.0057592</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">000619</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Host-Specific Phenotypic Plasticity of the Turtle Barnacle
<italic>Chelonibia testudinaria</italic>
: A Widespread Generalist Rather than a Specialist</title>
<author>
<name sortKey="Cheang, Chi Chiu" sort="Cheang, Chi Chiu" uniqKey="Cheang C" first="Chi Chiu" last="Cheang">Chi Chiu Cheang</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Biodiversity Research Center, Academia Sinica, Taipei, Taiwan</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<addr-line>Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tsang, Ling Ming" sort="Tsang, Ling Ming" uniqKey="Tsang L" first="Ling Ming" last="Tsang">Ling Ming Tsang</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chu, Ka Hou" sort="Chu, Ka Hou" uniqKey="Chu K" first="Ka Hou" last="Chu">Ka Hou Chu</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cheng, I Jiunn" sort="Cheng, I Jiunn" uniqKey="Cheng I" first="I-Jiunn" last="Cheng">I-Jiunn Cheng</name>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chan, Benny K K" sort="Chan, Benny K K" uniqKey="Chan B" first="Benny K. K." last="Chan">Benny K. K. Chan</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Biodiversity Research Center, Academia Sinica, Taipei, Taiwan</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS ONE</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Turtle barnacles are common epibionts on marine organisms.
<italic>Chelonibia testudinaria</italic>
is specific on marine turtles whereas
<italic>C. patula</italic>
is a host generalist, but rarely found on turtles. It has been questioned why
<italic>C. patula</italic>
, being abundant on a variety of live substrata, is almost absent from turtles. We evaluated the genetic (mitochondrial COI, 16S and 12S rRNA, and amplified fragment length polymorphism (AFLP)) and morphological differentiation of
<italic>C. testudinaia</italic>
and
<italic>C. patula</italic>
from different hosts, to determine the mode of adaptation exhibited by
<italic>Chelonibia</italic>
species on different hosts. The two taxa demonstrate clear differences in shell morphology and length of 4–6
<sup>th</sup>
cirri, but very similar in arthropodal characters. Moreover, we detected no genetic differentiation in mitochondrial DNA and AFLP analyses. Outlier detection infers insignificant selection across loci investigated. Based on combined morphological and molecular evidence, we proposed that
<italic>C. testudinaria</italic>
and
<italic>C. patula</italic>
are conspecific, and the two morphs with contrasting shell morphologies and cirral length found on different host are predominantly shaped by developmental plasticity in response to environmental setting on different hosts.
<italic>Chelonibia testudinaria</italic>
is, thus, a successful general epibiotic fouler and the phenotypic responses postulated can increase the fitness of the animals when they attach on hosts with contrasting life-styles.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hayashi, R" uniqKey="Hayashi R">R Hayashi</name>
</author>
<author>
<name sortKey="Tsuji, K" uniqKey="Tsuji K">K Tsuji</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Frick, Mg" uniqKey="Frick M">MG Frick</name>
</author>
<author>
<name sortKey="Ross, A" uniqKey="Ross A">A Ross</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Monroe, R" uniqKey="Monroe R">R Monroe</name>
</author>
<author>
<name sortKey="Garrett, R" uniqKey="Garrett R">R Garrett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Seigel, Ra" uniqKey="Seigel R">RA Seigel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Frazier, J" uniqKey="Frazier J">J Frazier</name>
</author>
<author>
<name sortKey="Margaritoulis, D" uniqKey="Margaritoulis D">D Margaritoulis</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kitsos, Ms" uniqKey="Kitsos M">MS Kitsos</name>
</author>
<author>
<name sortKey="Christodoulou, M" uniqKey="Christodoulou M">M Christodoulou</name>
</author>
<author>
<name sortKey="Kalpakis, S" uniqKey="Kalpakis S">S Kalpakis</name>
</author>
<author>
<name sortKey="Noidou, M" uniqKey="Noidou M">M Noidou</name>
</author>
<author>
<name sortKey="Koukouras, A" uniqKey="Koukouras A">A Koukouras</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schluter, D" uniqKey="Schluter D">D Schluter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Turellia, M" uniqKey="Turellia M">M Turellia</name>
</author>
<author>
<name sortKey="Bartonb, Nh" uniqKey="Bartonb N">NH Bartonb</name>
</author>
<author>
<name sortKey="Coyne, Ja" uniqKey="Coyne J">JA Coyne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Via, S" uniqKey="Via S">S Via</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mokady, O" uniqKey="Mokady O">O Mokady</name>
</author>
<author>
<name sortKey="Loya, Y" uniqKey="Loya Y">Y Loya</name>
</author>
<author>
<name sortKey="Achituv, Y" uniqKey="Achituv Y">Y Achituv</name>
</author>
<author>
<name sortKey="Geffen, E" uniqKey="Geffen E">E Geffen</name>
</author>
<author>
<name sortKey="Graur, D" uniqKey="Graur D">D Graur</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mokady, O" uniqKey="Mokady O">O Mokady</name>
</author>
<author>
<name sortKey="Brickner, I" uniqKey="Brickner I">I Brickner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tsang, Lm" uniqKey="Tsang L">LM Tsang</name>
</author>
<author>
<name sortKey="Chan, Bkk" uniqKey="Chan B">BKK Chan</name>
</author>
<author>
<name sortKey="Shih, Fl" uniqKey="Shih F">FL Shih</name>
</author>
<author>
<name sortKey="Chu, Kh" uniqKey="Chu K">KH Chu</name>
</author>
<author>
<name sortKey="Chen, Ca" uniqKey="Chen C">CA Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schmidt, Ps" uniqKey="Schmidt P">PS Schmidt</name>
</author>
<author>
<name sortKey="Rand, Dm" uniqKey="Rand D">DM Rand</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schmidt, P" uniqKey="Schmidt P">P Schmidt</name>
</author>
<author>
<name sortKey="Bertness, Md" uniqKey="Bertness M">MD Bertness</name>
</author>
<author>
<name sortKey="Rand, Dm" uniqKey="Rand D">DM Rand</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lively, C" uniqKey="Lively C">C Lively</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alpert, P" uniqKey="Alpert P">P Alpert</name>
</author>
<author>
<name sortKey="Simms, El" uniqKey="Simms E">EL Simms</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Crispo, E" uniqKey="Crispo E">E Crispo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chan, Bkk" uniqKey="Chan B">BKK Chan</name>
</author>
<author>
<name sortKey="Tsang, Lm" uniqKey="Tsang L">LM Tsang</name>
</author>
<author>
<name sortKey="Chu, Kh" uniqKey="Chu K">KH Chu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chan, Bkk" uniqKey="Chan B">BKK Chan</name>
</author>
<author>
<name sortKey="Tsang, Lm" uniqKey="Tsang L">LM Tsang</name>
</author>
<author>
<name sortKey="Ma, Ky" uniqKey="Ma K">KY Ma</name>
</author>
<author>
<name sortKey="Hsu, Ch" uniqKey="Hsu C">CH Hsu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tsang, Lm" uniqKey="Tsang L">LM Tsang</name>
</author>
<author>
<name sortKey="Chan, Bkk" uniqKey="Chan B">BKK Chan</name>
</author>
<author>
<name sortKey="Wu, Th" uniqKey="Wu T">TH Wu</name>
</author>
<author>
<name sortKey="Ng, Wc" uniqKey="Ng W">WC Ng</name>
</author>
<author>
<name sortKey="Chatterjee, T" uniqKey="Chatterjee T">T Chatterjee</name>
</author>
<author>
<name sortKey="Et, Al" uniqKey="Et A">al et</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sanford, E" uniqKey="Sanford E">E Sanford</name>
</author>
<author>
<name sortKey="Kelly, Mw" uniqKey="Kelly M">MW Kelly</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tsang, Lm" uniqKey="Tsang L">LM Tsang</name>
</author>
<author>
<name sortKey="Chan, Bkk" uniqKey="Chan B">BKK Chan</name>
</author>
<author>
<name sortKey="Ma, Ky" uniqKey="Ma K">KY Ma</name>
</author>
<author>
<name sortKey="Chu, Kh" uniqKey="Chu K">KH Chu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johannesson, K" uniqKey="Johannesson K">K Johannesson</name>
</author>
<author>
<name sortKey="Johannesson, B" uniqKey="Johannesson B">B Johannesson</name>
</author>
<author>
<name sortKey="Rolan Alvarez, E" uniqKey="Rolan Alvarez E">E Rolán-Alvarez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ge, D" uniqKey="Ge D">D Ge</name>
</author>
<author>
<name sortKey="Chesters, D" uniqKey="Chesters D">D Chesters</name>
</author>
<author>
<name sortKey="G Mez Zurita, J" uniqKey="G Mez Zurita J">J Gómez-Zurita</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L Zhang</name>
</author>
<author>
<name sortKey="Yang, X" uniqKey="Yang X">X Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rawson, Pd" uniqKey="Rawson P">PD Rawson</name>
</author>
<author>
<name sortKey="Macnamee, R" uniqKey="Macnamee R">R Macnamee</name>
</author>
<author>
<name sortKey="Frick, Mg" uniqKey="Frick M">MG Frick</name>
</author>
<author>
<name sortKey="Williams, Kl" uniqKey="Williams K">KL Williams</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Caballero, A" uniqKey="Caballero A">A Caballero</name>
</author>
<author>
<name sortKey="Quesada, H" uniqKey="Quesada H">H Quesada</name>
</author>
<author>
<name sortKey="Rolan Alvarez, E" uniqKey="Rolan Alvarez E">E Rolán-Alvarez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zardus, Jd" uniqKey="Zardus J">JD Zardus</name>
</author>
<author>
<name sortKey="Hadfield, Mg" uniqKey="Hadfield M">MG Hadfield</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mather, K" uniqKey="Mather K">K Mather</name>
</author>
<author>
<name sortKey="Caligari, Pds" uniqKey="Caligari P">PDS Caligari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wood, Hm" uniqKey="Wood H">HM Wood</name>
</author>
<author>
<name sortKey="Grahame, Jw" uniqKey="Grahame J">JW Grahame</name>
</author>
<author>
<name sortKey="Humphray, S" uniqKey="Humphray S">S Humphray</name>
</author>
<author>
<name sortKey="Rogers, J" uniqKey="Rogers J">J Rogers</name>
</author>
<author>
<name sortKey="Butlin, Rk" uniqKey="Butlin R">RK Butlin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wilding, Cs" uniqKey="Wilding C">CS Wilding</name>
</author>
<author>
<name sortKey="Butlin, Rk" uniqKey="Butlin R">RK Butlin</name>
</author>
<author>
<name sortKey="Grahame, J" uniqKey="Grahame J">J Grahame</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Williams, L" uniqKey="Williams L">L Williams</name>
</author>
<author>
<name sortKey="Oleksiak, Mf" uniqKey="Oleksiak M">MF Oleksiak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ghalambor, Ck" uniqKey="Ghalambor C">CK Ghalambor</name>
</author>
<author>
<name sortKey="Mckay, Jk" uniqKey="Mckay J">JK McKay</name>
</author>
<author>
<name sortKey="Carroll, Sp" uniqKey="Carroll S">SP Carroll</name>
</author>
<author>
<name sortKey="Reznick, Dn" uniqKey="Reznick D">DN Reznick</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lively, Cm" uniqKey="Lively C">CM Lively</name>
</author>
<author>
<name sortKey="Hazel, Wn" uniqKey="Hazel W">WN Hazel</name>
</author>
<author>
<name sortKey="Schellenberger, Mj" uniqKey="Schellenberger M">MJ Schellenberger</name>
</author>
<author>
<name sortKey="Michelson, Ks" uniqKey="Michelson K">KS Michelson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marchinko, Kb" uniqKey="Marchinko K">KB Marchinko</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marchinko, Kb" uniqKey="Marchinko K">KB Marchinko</name>
</author>
<author>
<name sortKey="Palmer, Ar" uniqKey="Palmer A">AR Palmer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Nk" uniqKey="Li N">NK Li</name>
</author>
<author>
<name sortKey="Denny, Mw" uniqKey="Denny M">MW Denny</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chan, Bkk" uniqKey="Chan B">BKK Chan</name>
</author>
<author>
<name sortKey="Hung, Os" uniqKey="Hung O">OS Hung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Josileen, J" uniqKey="Josileen J">J Josileen</name>
</author>
<author>
<name sortKey="Menon, Ng" uniqKey="Menon N">NG Menon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chaloupka, M" uniqKey="Chaloupka M">M Chaloupka</name>
</author>
<author>
<name sortKey="Limpus, C" uniqKey="Limpus C">C Limpus</name>
</author>
<author>
<name sortKey="Miller, J" uniqKey="Miller J">J Miller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, P Y" uniqKey="Chen P">P-Y Chen</name>
</author>
<author>
<name sortKey="Lin, Ay M" uniqKey="Lin A">AY-M Lin</name>
</author>
<author>
<name sortKey="Mckittrick, J" uniqKey="Mckittrick J">J McKittrick</name>
</author>
<author>
<name sortKey="Meyers, Ma" uniqKey="Meyers M">MA Meyers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Espinoza, Eo" uniqKey="Espinoza E">EO Espinoza</name>
</author>
<author>
<name sortKey="Baker, Bw" uniqKey="Baker B">BW Baker</name>
</author>
<author>
<name sortKey="Berry, Ca" uniqKey="Berry C">CA Berry</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Glen, F" uniqKey="Glen F">F Glen</name>
</author>
<author>
<name sortKey="Broderick, Ac" uniqKey="Broderick A">AC Broderick</name>
</author>
<author>
<name sortKey="Godley, Bj" uniqKey="Godley B">BJ Godley</name>
</author>
<author>
<name sortKey="Metcalife, Jd" uniqKey="Metcalife J">JD Metcalife</name>
</author>
<author>
<name sortKey="Hays, Gc" uniqKey="Hays G">GC Hays</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parsons, Ke" uniqKey="Parsons K">KE Parsons</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Espinoza, J" uniqKey="Espinoza J">J Espinoza</name>
</author>
<author>
<name sortKey="Rodriguez, H" uniqKey="Rodriguez H">H Rodriguez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Crispo, E" uniqKey="Crispo E">E Crispo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Clarke, Kr" uniqKey="Clarke K">KR Clarke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chan, Bkk" uniqKey="Chan B">BKK Chan</name>
</author>
<author>
<name sortKey="Garm, A" uniqKey="Garm A">A Garm</name>
</author>
<author>
<name sortKey="H Eg, Jt" uniqKey="H Eg J">JT Høeg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Folmer, O" uniqKey="Folmer O">O Folmer</name>
</author>
<author>
<name sortKey="Black, M" uniqKey="Black M">M Black</name>
</author>
<author>
<name sortKey="Hoeh, W" uniqKey="Hoeh W">W Hoeh</name>
</author>
<author>
<name sortKey="Lutz, R" uniqKey="Lutz R">R Lutz</name>
</author>
<author>
<name sortKey="Vrijenhoek, R" uniqKey="Vrijenhoek R">R Vrijenhoek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mokady, O" uniqKey="Mokady O">O Mokady</name>
</author>
<author>
<name sortKey="Rozenblatt, S" uniqKey="Rozenblatt S">S Rozenblatt</name>
</author>
<author>
<name sortKey="Graur, D" uniqKey="Graur D">D Graur</name>
</author>
<author>
<name sortKey="Loya, Y" uniqKey="Loya Y">Y Loya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Crandall, Ka" uniqKey="Crandall K">KA Crandall</name>
</author>
<author>
<name sortKey="Fitzpatrick J, F" uniqKey="Fitzpatrick J F">F Fitzpatrick, J</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tamura, K" uniqKey="Tamura K">K Tamura</name>
</author>
<author>
<name sortKey="Dudley, J" uniqKey="Dudley J">J Dudley</name>
</author>
<author>
<name sortKey="Nei, M" uniqKey="Nei M">M Nei</name>
</author>
<author>
<name sortKey="Kumar, S" uniqKey="Kumar S">S Kumar</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ronquist, F" uniqKey="Ronquist F">F Ronquist</name>
</author>
<author>
<name sortKey="Huelsenbeck, Jp" uniqKey="Huelsenbeck J">JP Huelsenbeck</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Posada, D" uniqKey="Posada D">D Posada</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Clement, M" uniqKey="Clement M">M Clement</name>
</author>
<author>
<name sortKey="Posada, D" uniqKey="Posada D">D Posada</name>
</author>
<author>
<name sortKey="Crandall, Ka" uniqKey="Crandall K">KA Crandall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kimura, M" uniqKey="Kimura M">M Kimura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Excoffier, L" uniqKey="Excoffier L">L Excoffier</name>
</author>
<author>
<name sortKey="Laval, G" uniqKey="Laval G">G Laval</name>
</author>
<author>
<name sortKey="Schneider, S" uniqKey="Schneider S">S Schneider</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bonin, A" uniqKey="Bonin A">A Bonin</name>
</author>
<author>
<name sortKey="Ehrich, D" uniqKey="Ehrich D">D Ehrich</name>
</author>
<author>
<name sortKey="Manel, S" uniqKey="Manel S">S Manel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pompanon, F" uniqKey="Pompanon F">F Pompanon</name>
</author>
<author>
<name sortKey="Bonin, A" uniqKey="Bonin A">A Bonin</name>
</author>
<author>
<name sortKey="Bellemain, E" uniqKey="Bellemain E">E Bellemain</name>
</author>
<author>
<name sortKey="Taberlet, P" uniqKey="Taberlet P">P Taberlet</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lynch, M" uniqKey="Lynch M">M Lynch</name>
</author>
<author>
<name sortKey="Milligan, Bg" uniqKey="Milligan B">BG Milligan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Foll, M" uniqKey="Foll M">M Foll</name>
</author>
<author>
<name sortKey="Gaggiotti, Oe" uniqKey="Gaggiotti O">OE Gaggiotti</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PLoS One</journal-id>
<journal-id journal-id-type="iso-abbrev">PLoS ONE</journal-id>
<journal-id journal-id-type="publisher-id">plos</journal-id>
<journal-id journal-id-type="pmc">plosone</journal-id>
<journal-title-group>
<journal-title>PLoS ONE</journal-title>
</journal-title-group>
<issn pub-type="epub">1932-6203</issn>
<publisher>
<publisher-name>Public Library of Science</publisher-name>
<publisher-loc>San Francisco, USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">23469208</article-id>
<article-id pub-id-type="pmc">3585910</article-id>
<article-id pub-id-type="publisher-id">PONE-D-12-23525</article-id>
<article-id pub-id-type="doi">10.1371/journal.pone.0057592</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
<subj-group subj-group-type="Discipline-v2">
<subject>Biology</subject>
<subj-group>
<subject>Ecology</subject>
</subj-group>
<subj-group>
<subject>Evolutionary Biology</subject>
<subj-group>
<subject>Evolutionary Processes</subject>
<subj-group>
<subject>Adaptation</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Forms of Evolution</subject>
<subj-group>
<subject>Phenetic Evolution</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group>
<subject>Genetics</subject>
<subj-group>
<subject>Population Genetics</subject>
<subj-group>
<subject>Genetic Polymorphism</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Animal Genetics</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Marine Biology</subject>
</subj-group>
<subj-group>
<subject>Zoology</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Host-Specific Phenotypic Plasticity of the Turtle Barnacle
<italic>Chelonibia testudinaria</italic>
: A Widespread Generalist Rather than a Specialist</article-title>
<alt-title alt-title-type="running-head">Phenotypic Plasticity of Turtle Barnacles</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" equal-contrib="yes">
<name>
<surname>Cheang</surname>
<given-names>Chi Chiu</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author" equal-contrib="yes">
<name>
<surname>Tsang</surname>
<given-names>Ling Ming</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chu</surname>
<given-names>Ka Hou</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Cheng</surname>
<given-names>I-Jiunn</given-names>
</name>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chan</surname>
<given-names>Benny K. K.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="corresp" rid="cor1">
<sup>*</sup>
</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
<addr-line>Biodiversity Research Center, Academia Sinica, Taipei, Taiwan</addr-line>
</aff>
<aff id="aff2">
<label>2</label>
<addr-line>Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong</addr-line>
</aff>
<aff id="aff3">
<label>3</label>
<addr-line>Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan</addr-line>
</aff>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Laudet</surname>
<given-names>Vincent</given-names>
</name>
<role>Editor</role>
<xref ref-type="aff" rid="edit1"></xref>
</contrib>
</contrib-group>
<aff id="edit1">
<addr-line>Ecole Normale Supérieure de Lyon, France</addr-line>
</aff>
<author-notes>
<corresp id="cor1">* E-mail:
<email>chankk@gate.sinica.edu.tw</email>
</corresp>
<fn fn-type="conflict">
<p>
<bold>Competing Interests: </bold>
The authors have declared that no competing interests exist.</p>
</fn>
<fn fn-type="con">
<p>Conceived and designed the experiments: CCC BKKC KHC LMT. Performed the experiments: CCC BKKC. Analyzed the data: CCC BKKC. Contributed reagents/materials/analysis tools: IJC. Wrote the paper: CCC BKKC.</p>
</fn>
</author-notes>
<pub-date pub-type="collection">
<year>2013</year>
</pub-date>
<pub-date pub-type="epub">
<day>1</day>
<month>3</month>
<year>2013</year>
</pub-date>
<volume>8</volume>
<issue>3</issue>
<elocation-id>e57592</elocation-id>
<history>
<date date-type="received">
<day>7</day>
<month>8</month>
<year>2012</year>
</date>
<date date-type="accepted">
<day>24</day>
<month>1</month>
<year>2013</year>
</date>
</history>
<permissions>
<copyright-year>2013</copyright-year>
<copyright-holder>Cheang et al</copyright-holder>
<license>
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</license-p>
</license>
</permissions>
<abstract>
<p>Turtle barnacles are common epibionts on marine organisms.
<italic>Chelonibia testudinaria</italic>
is specific on marine turtles whereas
<italic>C. patula</italic>
is a host generalist, but rarely found on turtles. It has been questioned why
<italic>C. patula</italic>
, being abundant on a variety of live substrata, is almost absent from turtles. We evaluated the genetic (mitochondrial COI, 16S and 12S rRNA, and amplified fragment length polymorphism (AFLP)) and morphological differentiation of
<italic>C. testudinaia</italic>
and
<italic>C. patula</italic>
from different hosts, to determine the mode of adaptation exhibited by
<italic>Chelonibia</italic>
species on different hosts. The two taxa demonstrate clear differences in shell morphology and length of 4–6
<sup>th</sup>
cirri, but very similar in arthropodal characters. Moreover, we detected no genetic differentiation in mitochondrial DNA and AFLP analyses. Outlier detection infers insignificant selection across loci investigated. Based on combined morphological and molecular evidence, we proposed that
<italic>C. testudinaria</italic>
and
<italic>C. patula</italic>
are conspecific, and the two morphs with contrasting shell morphologies and cirral length found on different host are predominantly shaped by developmental plasticity in response to environmental setting on different hosts.
<italic>Chelonibia testudinaria</italic>
is, thus, a successful general epibiotic fouler and the phenotypic responses postulated can increase the fitness of the animals when they attach on hosts with contrasting life-styles.</p>
</abstract>
<funding-group>
<funding-statement>BKK Chan would like to acknowledge the support of a research grant from the National Science Council (NSC-99-2621-B-001-007-MY3) and Career Development Award, Academia Sinica (AS-98-CDA-L15). KH Chu is supported by a grant from the Group Research Scheme of the Research Committee, the Chinese University of Hong Kong. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</funding-statement>
</funding-group>
<counts>
<page-count count="12"></page-count>
</counts>
</article-meta>
</front>
<body>
<sec id="s1">
<title>Introduction</title>
<p>Barnacles of the superfamily Coronunloidea are epibionts on a range of marine organisms including whales and turtles. Most of the species are specialists restricted to one or a few hosts
<xref ref-type="bibr" rid="pone.0057592-Ross1">[1]</xref>
,
<xref ref-type="bibr" rid="pone.0057592-Newman1">[2]</xref>
. The turtle barnacle
<italic>Chelonibia testudinaria</italic>
(Linnaeus, 1758) has long been known to inhibit predominantly on the carapace, flippers and skin of marine turtles
<xref ref-type="bibr" rid="pone.0057592-Hayashi1">[3]</xref>
. It occurs in high abundance on the loggerhead turtle
<italic>Caretta caretta</italic>
(Linnaeus, 1758)
<xref ref-type="bibr" rid="pone.0057592-Frick1">[4]</xref>
, but is rarely found on other animals (but see
<xref ref-type="bibr" rid="pone.0057592-Monroe1">[5]</xref>
,
<xref ref-type="bibr" rid="pone.0057592-Seigel1">[6]</xref>
). In contrast, the cogeneric species,
<italic>Chelonibia patula</italic>
(Ranzani, 1818) that exhibits distinct shell morphology (
<xref ref-type="fig" rid="pone-0057592-g001">Figures 1G, H</xref>
;
<xref ref-type="bibr" rid="pone.0057592-Frazier1">[7]</xref>
), is a generalist, occurring on a wide variety of hosts, including decapods, gastropods, stomatopods and even sea snakes, but rarely observed on turtles (
<xref ref-type="fig" rid="pone-0057592-g001">Figure 1A–C</xref>
;
<xref ref-type="bibr" rid="pone.0057592-Ross1">[1]</xref>
,
<xref ref-type="bibr" rid="pone.0057592-Darwin1">[8]</xref>
). It has been questioned why
<italic>C. patula</italic>
, which is able to survive on such a broad range of hosts, is almost absent from marine turtles
<xref ref-type="bibr" rid="pone.0057592-Frazier1">[7]</xref>
; but see
<xref ref-type="bibr" rid="pone.0057592-Kitsos1">[9]</xref>
,
<xref ref-type="bibr" rid="pone.0057592-Hayashi2">[10]</xref>
.</p>
<fig id="pone-0057592-g001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0057592.g001</object-id>
<label>Figure 1</label>
<caption>
<p>A.
<italic>Chelonibia patula</italic>
is commonly epibiotic on crustaceans surfaces. B., C.
<italic>Chelonibia testudinaria</italic>
(indicated by black arrow in C) is common on shell surface of marine turtles. D. Sampling locations of
<italic>C. patula</italic>
(squares) and
<italic>C. testudinaria</italic>
(circle) in the present study. E. Shell parameters measured for morphological analysis. SL – shell length, OL – orifice length, SH – shell height, ST – shell thickness. F. Cirrus IV of
<italic>C. testudinaria</italic>
, showing the length measured for morphological analysis. Cirri V and VI not shown due to similarity in morphology. G.
<italic>Chelonibia patula</italic>
, showing the small dwarf males (indicated by arrows) settled randomly on shell surface and orifice opening. H.
<italic>Chelonibia testudinaria</italic>
, showing the dwarf males (indicated by arrows) settled on the oval depression in the radii of the shell plates.</p>
</caption>
<graphic xlink:href="pone.0057592.g001"></graphic>
</fig>
<p>One possible scenario is the heterogeneous environment of the turtle host and other animals exert strong selection on the barnacle individuals settle on it. Any individuals with sub-optimal fitness will be selected against which would preclude gene flow between populations on turtle and other animals. This would drive adaptive divergence, resulting in inheritable morphological traits (e.g. shell morphology) and ultimately speciation
<xref ref-type="bibr" rid="pone.0057592-Schluter1">[11]</xref>
,
<xref ref-type="bibr" rid="pone.0057592-Turellia1">[12]</xref>
,
<xref ref-type="bibr" rid="pone.0057592-Via1">[13]</xref>
. Speciation by differential host adaptation under similar scenario is widely observed in other symbiotic barnacles (e.g.
<xref ref-type="bibr" rid="pone.0057592-Mokady1">[14]</xref>
,
<xref ref-type="bibr" rid="pone.0057592-Mokady2">[15]</xref>
,
<xref ref-type="bibr" rid="pone.0057592-Tsang1">[16]</xref>
). On the other hand, if the selection pressure is more gentle (i.e. sub-lethal), reproductive isolation between populations could not be achieved. The species could either adapt by differential divergence within genome of which genetic divergence is only observed across loci under selection while genetic homogeneity in other neutral loci is maintained by continuous gene flow
<xref ref-type="bibr" rid="pone.0057592-Schmidt1">[17]</xref>
,
<xref ref-type="bibr" rid="pone.0057592-Schmidt2">[18]</xref>
, or by phenotypic plasticity in response to different environmental settings
<xref ref-type="bibr" rid="pone.0057592-Lively1">[19]</xref>
. In either of the latter two circumstances, reproductive barrier is absent between the two “species”. The morphological differences are determined by a few loci under selection or induced by environmental cues, and they should be considered conspecific. Which of the routes the organisms is selected towards depends on various factors, such as the strength of selection, the cost of development of adaptive divergence and level of gene flow. For instance, phenotypic plasticity is favored when the environmental changes are rapid and/or environments are spatially or temporally heterogeneous
<xref ref-type="bibr" rid="pone.0057592-Alpert1">[20]</xref>
,
<xref ref-type="bibr" rid="pone.0057592-Crispo1">[21]</xref>
. Which form of adaptation has developed in the two
<italic>Chelonibia</italic>
species adapting to the different hosts remains unclear.</p>
<p>To understand whether
<italic>Chelonibia testudinaria</italic>
and
<italic>C. patula</italic>
exhibit host specific adaptation through speciation, differential divergence in genome or phenotypic plasticity, investigation on the genetic divergence pattern between the two species is the prerequisite. Here, we attempted to determine the mode of adaptation in the two taxa using an integrated genetic (three genes COI, 12S and 16S rRNA in the mitochondrial genome plus AFLP) and morphological (shell, opercular plates and arthropodal characters) analyses on
<italic>Chenolibia testudinaria</italic>
and
<italic>C. patula</italic>
populations from different hosts and geographic locations.</p>
<p>Mitochondrial markers, on one hand, have been proven to be useful tools to delineate barnacle species due to their fast evolving nature and are commonly applied in barnacle phylogenetic and population genetic studies
<xref ref-type="bibr" rid="pone.0057592-Chan1">[22]</xref>
,
<xref ref-type="bibr" rid="pone.0057592-Chan2">[23]</xref>
,
<xref ref-type="bibr" rid="pone.0057592-Tsang2">[24]</xref>
. AFLP, on the other hand, is a genome scanning technique that not only assesses the genome wide differentiation but also identifies any outlier loci under selection pressure
<xref ref-type="bibr" rid="pone.0057592-Sanford1">[25]</xref>
and this technique has been applied in barnacle population studies previously
<xref ref-type="bibr" rid="pone.0057592-Tsang3">[26]</xref>
. Moreover, by comparing the genetic profile with a quantitative morphological assessment of the two species, we can determine correlation between genetic and morphological divergence and thus, identify the possible mode of adaptation
<xref ref-type="bibr" rid="pone.0057592-Johannesson1">[27]</xref>
,
<xref ref-type="bibr" rid="pone.0057592-Ge1">[28]</xref>
. Coherence between divergence of the genetic profile and the morphology of the two species would suggest occurrence of adaptive divergence, whilst the disassociation of the two measurements may reflect the predominance of phenotypic plasticity (i.e. morphological difference with no distinctive genomic difference). Together, these data provide invaluable information on genetic and morphological responses of marine animals in adapting to spatially heterogeneous environments, i.e. different epibiotic hosts, in nature.</p>
</sec>
<sec id="s2">
<title>Results</title>
<sec id="s2a">
<title>Morphological Investigation</title>
<p>The external shell of
<italic>C. patula</italic>
is conical and with smooth surface (
<xref ref-type="fig" rid="pone-0057592-g001">Figure 1E, G</xref>
). Small sized individuals which are dwarf males often attached randomly on the shell surface and orifice openings (
<xref ref-type="fig" rid="pone-0057592-g001">Figure 1G</xref>
).
<italic>Chelonibia testudinaria</italic>
was lower in profile instead of conical, with oval depressions on the radii, which are the junctions between the shell plates. Small dwarf males were often found settled in those oval depressions (
<xref ref-type="fig" rid="pone-0057592-g001">Figure 1H</xref>
). From multivariate nMDS plots on shell and arthropodal characters, the ordinations of
<italic>C. testudinaria</italic>
and
<italic>C. patula</italic>
were separated into two distinct clusters (
<xref ref-type="fig" rid="pone-0057592-g002">Figure 2A</xref>
). The nMDS plot with low 2D stress value of 0.06 indicated that the clusters were well separated (
<xref ref-type="fig" rid="pone-0057592-g002">Figure 2A</xref>
). From ANOSIM analysis, the morphological characters of
<italic>C. patula</italic>
and
<italic>C. testudinaria</italic>
were significantly different (R = 0.85,
<italic>P</italic>
<0.05). From SIMPER analysis, the most significant characters (>10% contributed differences) were the length of the cirri IV, V and VI and the opercular length.
<italic>Chelonibia patula</italic>
had a relatively larger orifice length and cirri IV, V and VI were almost twice as long as
<italic>C. testudinaria</italic>
(
<xref ref-type="fig" rid="pone-0057592-g002">Figure 2C</xref>
).</p>
<fig id="pone-0057592-g002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0057592.g002</object-id>
<label>Figure 2</label>
<caption>
<p>A. nMDS plots showing ordinations of the morphological characters of
<italic>Chelonibia patula</italic>
and
<italic>C. testudinaria</italic>
. B. nMDS plots showing the AFLP analysis of
<italic>C. patula</italic>
and
<italic>C. testudinaria</italic>
. Refer to
<xref ref-type="table" rid="pone-0057592-t002">table 2</xref>
for the acronyms of the population. C. Mean (± SD), of the shell parameters and cirrus length (relative to the total shell length) of
<italic>C. patula</italic>
and
<italic>C. testudinaria</italic>
.</p>
</caption>
<graphic xlink:href="pone.0057592.g002"></graphic>
</fig>
</sec>
<sec id="s2b">
<title>Arthropodal Characters</title>
<p>From SEM, the structure of mouth parts and setal types of the cirri were similar between
<italic>C. patula</italic>
and
<italic>C. testudinaria</italic>
. The maxilla was composed of fine serrulate setae (
<xref ref-type="fig" rid="pone-0057592-g003">Figure 3A, B</xref>
). The maxillule was not notched, with serrulate setae on the cutting edge (
<xref ref-type="fig" rid="pone-0057592-g003">Figure 3C, D, E</xref>
). The mandible consisted of five teeth, with second and third teeth bi-dentate. The lower margin was short and composed of several spines (
<xref ref-type="fig" rid="pone-0057592-g003">Figure 3F, G</xref>
). The mandibular palp consisted of two types of setae, with serrulate setae on the superior margin and simple setae on the inferior margin (
<xref ref-type="fig" rid="pone-0057592-g003">Figure 3H, I, J, K</xref>
). Mandibles were strongly notched, with an array of large sharp teeth (
<xref ref-type="fig" rid="pone-0057592-g003">Figure 3L, M</xref>
). In cirrus I, the posterior rami were longer than the anterior rami, both with densely pectinated serrulate setae (
<xref ref-type="fig" rid="pone-0057592-g003">Figure 3N, O, P, Q</xref>
). In cirrus II, the anterior and posterior rami were similar in length, both with fine serrulate setae (
<xref ref-type="fig" rid="pone-0057592-g003">Figure 3R, T</xref>
) and the basipod with pappose setae (
<xref ref-type="fig" rid="pone-0057592-g003">Figure 3S</xref>
). Both rami of cirrus III were equipped with serrulate type setae (
<xref ref-type="fig" rid="pone-0057592-g003">Figure 3U, V, W</xref>
). Cirri IV to VI were similar in length and morphology, with each segment having two pairs of long serrulate setae and two pairs of short simple setae (
<xref ref-type="fig" rid="pone-0057592-g003">Figure 3X, Y</xref>
).</p>
<fig id="pone-0057592-g003" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0057592.g003</object-id>
<label>Figure 3</label>
<caption>
<title>Scanning electron microscopy of mouth parts and cirri of
<italic>Chelonibia testudinaria</italic>
.</title>
<p>A. Maxilla, B. Serrulate setae on maxilla. C. Maxillule, D. Serrulate setae on maxillule. E. Setae on cutting edge of maxillule. F. Mandibles, G. 3
<sup>rd</sup>
–5
<sup>th</sup>
teeth and the lower margin of mandible. H. Mandibular palp, showing simple type setae on the inferior margin (I, J) and serrulate setae on superior margin (K). L. Labrum showing enlarged view of teeth on cutting edge (M). N. cirrus I, showing densely pectinated serrulate setae (O) and serrulate setae on rami (P, Q). R. Cirrus II, with serrulate setae (T) and pappose setae (S). U. Cirrus III, with serrulate type setae (V, W) on rami. X. Cirrus VI, showing the intermediate segment (Y).</p>
</caption>
<graphic xlink:href="pone.0057592.g003"></graphic>
</fig>
</sec>
<sec id="s2c">
<title>Mitochondrial DNA Markers</title>
<p>
<italic>Chelonibia testudinaria</italic>
from the present study, together with those from the Pacific coast of Japan
<xref ref-type="bibr" rid="pone.0057592-Rawson1">[29]</xref>
, clustered with
<italic>C. patula</italic>
(
<xref ref-type="fig" rid="pone-0057592-g004">Figure 4</xref>
). The K2P distances between these three groups were between 0.0042 and 0.0065 (
<xref ref-type="table" rid="pone-0057592-t001">Table 1</xref>
). Populations of
<italic>C. testudinaria</italic>
in the Atlantic Ocean formed a sister clade to the western Pacific populations (
<xref ref-type="fig" rid="pone-0057592-g004">Figure 4</xref>
) and demonstrated K2P distances of 0.1057–0.1066 (
<xref ref-type="table" rid="pone-0057592-t001">Table 1</xref>
). The eastern Pacific is the most divergent population of
<italic>C. testudinaria</italic>
(
<xref ref-type="fig" rid="pone-0057592-g004">Figure 4</xref>
), with K2P distance up to 0.1210 from the other populations (
<xref ref-type="table" rid="pone-0057592-t001">Table 1</xref>
). Haplotypes within each of the three mitochondrial markers revealed by the TCS analysis did not group together according to species nor locality of populations (
<xref ref-type="fig" rid="pone-0057592-g005">Figure 5</xref>
). All dominant haplotypes could be found in both species as well as in different populations (
<xref ref-type="fig" rid="pone-0057592-g005">Figure 5</xref>
).</p>
<fig id="pone-0057592-g004" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0057592.g004</object-id>
<label>Figure 4</label>
<caption>
<title>Maximum likelihood (ML) tree of
<italic>Chelonibia testudinaria</italic>
and
<italic>C. patula</italic>
in this study with sequences of
<italic>C. testudinaria</italic>
from Rawson et al. (2003) (GenBank accession nos.: AY174312–16, 24–28, 34–8, 42–46, 58–62) and outgroup
<italic>C. caretta</italic>
(FJ385728-30).</title>
<p>ML and Bayesian inference (BI) analyses yield the same topology. Bootstrap (1,000 replicates) values for ML (normal) and the posterior probabilities for BI (bold) analyses are indicated at the nodes. (EP: eastern Pacific; WP: western Pacific; A: Atlantic).</p>
</caption>
<graphic xlink:href="pone.0057592.g004"></graphic>
</fig>
<fig id="pone-0057592-g005" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0057592.g005</object-id>
<label>Figure 5</label>
<caption>
<title>TCS network of
<italic>Chelonibia testudinaria</italic>
(white portion) and
<italic>C. patula</italic>
(black and hatched portions) based on mitochondrial COI, 12S and 16S rRNA markers.</title>
<p>Locality of populations of
<italic>C. patula</italic>
is indicated in respective black and hatched portions.</p>
</caption>
<graphic xlink:href="pone.0057592.g005"></graphic>
</fig>
<table-wrap id="pone-0057592-t001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0057592.t001</object-id>
<label>Table 1</label>
<caption>
<title>Kimura-2-parameter distance among outgroup
<italic>Chelonibia caretta</italic>
, the five populations of
<italic>C. testudinaria</italic>
in Rawson et al.
<italic>(</italic>
2003) as well as
<italic>C. testudinaria</italic>
and
<italic>C. patula</italic>
examined in this study based on COI.</title>
</caption>
<alternatives>
<graphic id="pone-0057592-t001-1" xlink:href="pone.0057592.t001"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">CP</td>
<td align="left" rowspan="1" colspan="1">CT</td>
<td align="left" rowspan="1" colspan="1">CT (WP)</td>
<td align="left" rowspan="1" colspan="1">CT (A)</td>
<td align="left" rowspan="1" colspan="1">CT (EP)</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">CP</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CT</td>
<td align="left" rowspan="1" colspan="1">0.0046</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CT (WP)</td>
<td align="left" rowspan="1" colspan="1">0.0055</td>
<td align="left" rowspan="1" colspan="1">0.0056</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CT (A)</td>
<td align="left" rowspan="1" colspan="1">0.1066</td>
<td align="left" rowspan="1" colspan="1">0.1057</td>
<td align="left" rowspan="1" colspan="1">0.1059</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CT (EP)</td>
<td align="left" rowspan="1" colspan="1">0.1225</td>
<td align="left" rowspan="1" colspan="1">0.1217</td>
<td align="left" rowspan="1" colspan="1">0.1216</td>
<td align="left" rowspan="1" colspan="1">0.121</td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CC</td>
<td align="left" rowspan="1" colspan="1">0.1932</td>
<td align="left" rowspan="1" colspan="1">0.1928</td>
<td align="left" rowspan="1" colspan="1">0.1925</td>
<td align="left" rowspan="1" colspan="1">0.1885</td>
<td align="left" rowspan="1" colspan="1">0.1997</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="nt101">
<label></label>
<p>Note: CC,
<italic>C. caretta</italic>
; CP,
<italic>C. patula</italic>
; CT,
<italic>C. testudinaria</italic>
; (A), Atlantic; (EP), eastern Pacific; (WP), western Pacific.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>Both Nei’s genetic and nucleotide diversities of
<italic>C. testudinaria</italic>
and
<italic>C. patula</italic>
were highest for the COI dataset (
<xref ref-type="table" rid="pone-0057592-t002">Table 2</xref>
), while those from 16S and 12S rRNA were relatively low (see values in
<xref ref-type="table" rid="pone-0057592-t002">Table 2</xref>
). The differences of the diversity indexes between the two species were not significant (unpaired t test;
<italic>P></italic>
0.05) for all three mitochondrial markers, except the Nei’s genetic diversity based on 16S rRNA (unpaired t test;
<italic>P<</italic>
0.05). The results of AMOVA demonstrated that the “between species” variances were, whether significant or not, small for all three markers. Most of the variance occurred at the “within population” level (
<xref ref-type="table" rid="pone-0057592-t003">Table 3</xref>
).</p>
<table-wrap id="pone-0057592-t002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0057592.t002</object-id>
<label>Table 2</label>
<caption>
<title>Genetic diversity (mean ± standard error) of
<italic>Chelonibia testudinaria</italic>
and
<italic>C. patula</italic>
based on mitochondrial COI, 16S, and 12S rRNA markers and AFLP.</title>
</caption>
<alternatives>
<graphic id="pone-0057592-t002-2" xlink:href="pone.0057592.t002"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td colspan="3" align="left" rowspan="1">COI (642 bp)</td>
<td colspan="3" align="left" rowspan="1">16S (503–506 bp)</td>
<td colspan="3" align="left" rowspan="1">12S (302–303 bp)</td>
<td colspan="2" align="left" rowspan="1">AFLP</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">n (n
<sub>h</sub>
)</td>
<td align="left" rowspan="1" colspan="1">
<italic>H</italic>
</td>
<td align="left" rowspan="1" colspan="1">π</td>
<td align="left" rowspan="1" colspan="1">n (n
<sub>h</sub>
)</td>
<td align="left" rowspan="1" colspan="1">
<italic>H</italic>
</td>
<td align="left" rowspan="1" colspan="1">π</td>
<td align="left" rowspan="1" colspan="1">n (n
<sub>h</sub>
)</td>
<td align="left" rowspan="1" colspan="1">
<italic>H</italic>
</td>
<td align="left" rowspan="1" colspan="1">π</td>
<td align="left" rowspan="1" colspan="1">n</td>
<td align="left" rowspan="1" colspan="1">
<italic>H</italic>
</td>
</tr>
</thead>
<tbody>
<tr>
<td colspan="12" align="left" rowspan="1">
<italic>C. testudinaria</italic>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Taiwan</td>
<td align="left" rowspan="1" colspan="1">25 (19)</td>
<td align="left" rowspan="1" colspan="1">0.98±0.02</td>
<td align="left" rowspan="1" colspan="1">0.0049±0.0029</td>
<td align="left" rowspan="1" colspan="1">24 (6)</td>
<td align="left" rowspan="1" colspan="1">0.74±0.06</td>
<td align="left" rowspan="1" colspan="1">0.0021±0.0016</td>
<td align="left" rowspan="1" colspan="1">25 (7)</td>
<td align="left" rowspan="1" colspan="1">0.63±0.10</td>
<td align="left" rowspan="1" colspan="1">0.0029±0.0024</td>
<td align="left" rowspan="1" colspan="1">15</td>
<td align="left" rowspan="1" colspan="1">0.336±0.008</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Whole species</td>
<td align="left" rowspan="1" colspan="1">25 (19)</td>
<td align="left" rowspan="1" colspan="1">0.98±0.02</td>
<td align="left" rowspan="1" colspan="1">0.0049±0.0029</td>
<td align="left" rowspan="1" colspan="1">24 (6)</td>
<td align="left" rowspan="1" colspan="1">0.74±0.06</td>
<td align="left" rowspan="1" colspan="1">0.0021±0.0016</td>
<td align="left" rowspan="1" colspan="1">25 (7)</td>
<td align="left" rowspan="1" colspan="1">0.63±0.10</td>
<td align="left" rowspan="1" colspan="1">0.0029±0.0024</td>
<td align="left" rowspan="1" colspan="1">15</td>
<td align="left" rowspan="1" colspan="1">0.336±0.008</td>
</tr>
<tr>
<td colspan="12" align="left" rowspan="1">
<italic>C. patula</italic>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Southern China(sc)</td>
<td align="left" rowspan="1" colspan="1">10 (7)</td>
<td align="left" rowspan="1" colspan="1">0.91±0.08</td>
<td align="left" rowspan="1" colspan="1">0.0029±0.0021</td>
<td align="left" rowspan="1" colspan="1">10 (3)</td>
<td align="left" rowspan="1" colspan="1">0.38±0.18</td>
<td align="left" rowspan="1" colspan="1">0.0008±0.0009</td>
<td align="left" rowspan="1" colspan="1">7 (2)</td>
<td align="left" rowspan="1" colspan="1">0.29±0.20</td>
<td align="left" rowspan="1" colspan="1">0.0009±0.0013</td>
<td align="left" rowspan="1" colspan="1">6</td>
<td align="left" rowspan="1" colspan="1">0.372±0.008</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Taiwan (tw)</td>
<td align="left" rowspan="1" colspan="1">6 (6)</td>
<td align="left" rowspan="1" colspan="1">1.00±0.10</td>
<td align="left" rowspan="1" colspan="1">0.0045±0.0031</td>
<td align="left" rowspan="1" colspan="1">6 (1)</td>
<td align="left" rowspan="1" colspan="1">0.00±0.00</td>
<td align="left" rowspan="1" colspan="1">0.0000±0.0000</td>
<td align="left" rowspan="1" colspan="1">6 (1)</td>
<td align="left" rowspan="1" colspan="1">0.00±0.00</td>
<td align="left" rowspan="1" colspan="1">0.0000±0.0000</td>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">0.365±0.009</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Malaysia (ma)</td>
<td align="left" rowspan="1" colspan="1">15 (14)</td>
<td align="left" rowspan="1" colspan="1">0.99±0.03</td>
<td align="left" rowspan="1" colspan="1">0.0046±0.0029</td>
<td align="left" rowspan="1" colspan="1">15 (4)</td>
<td align="left" rowspan="1" colspan="1">0.37±0.15</td>
<td align="left" rowspan="1" colspan="1">0.0008±0.0009</td>
<td align="left" rowspan="1" colspan="1">15 (4)</td>
<td align="left" rowspan="1" colspan="1">0.54±0.13</td>
<td align="left" rowspan="1" colspan="1">0.0020±0.0019</td>
<td align="left" rowspan="1" colspan="1">7</td>
<td align="left" rowspan="1" colspan="1">0.356±0.008</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Singapore (si)</td>
<td align="left" rowspan="1" colspan="1">47 (27)</td>
<td align="left" rowspan="1" colspan="1">0.95±0.02</td>
<td align="left" rowspan="1" colspan="1">0.0039±0.0024</td>
<td align="left" rowspan="1" colspan="1">47 (10)</td>
<td align="left" rowspan="1" colspan="1">0.50±0.09</td>
<td align="left" rowspan="1" colspan="1">0.0016±0.0013</td>
<td align="left" rowspan="1" colspan="1">48 (11)</td>
<td align="left" rowspan="1" colspan="1">0.52±0.08</td>
<td align="left" rowspan="1" colspan="1">0.0022±0.0019</td>
<td align="left" rowspan="1" colspan="1">45</td>
<td align="left" rowspan="1" colspan="1">0.330±0.008</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Whole species</td>
<td align="left" rowspan="1" colspan="1">78 (38)</td>
<td align="left" rowspan="1" colspan="1">0.95±0.01</td>
<td align="left" rowspan="1" colspan="1">0.0039±0.0024</td>
<td align="left" rowspan="1" colspan="1">78 (14)</td>
<td align="left" rowspan="1" colspan="1">0.42±0.07</td>
<td align="left" rowspan="1" colspan="1">0.0012±0.0011</td>
<td align="left" rowspan="1" colspan="1">76 (12)</td>
<td align="left" rowspan="1" colspan="1">0.47±0.07</td>
<td align="left" rowspan="1" colspan="1">0.0019±0.0017</td>
<td align="left" rowspan="1" colspan="1">61</td>
<td align="left" rowspan="1" colspan="1">0.332±0.008</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Total</td>
<td align="left" rowspan="1" colspan="1">103 (49)</td>
<td align="left" rowspan="1" colspan="1">0.95±0.01</td>
<td align="left" rowspan="1" colspan="1">0.0042±0.0025</td>
<td align="left" rowspan="1" colspan="1">102 (16)</td>
<td align="left" rowspan="1" colspan="1">0.42±0.06</td>
<td align="left" rowspan="1" colspan="1">0.0012±0.0011</td>
<td align="left" rowspan="1" colspan="1">101 (15)</td>
<td align="left" rowspan="1" colspan="1">0.51±0.06</td>
<td align="left" rowspan="1" colspan="1">0.0022±0.0019</td>
<td align="left" rowspan="1" colspan="1">76</td>
<td align="left" rowspan="1" colspan="1">0.334±0.003</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="nt102">
<label></label>
<p>Noted there is not statistical significance for all the diversities between the two species except with the Nei’s genetic diversity estimated for 16S rRNA. Acronyms are shown in brackets besides the respective populations.</p>
</fn>
<fn id="nt103">
<label></label>
<p>Note: n, number of samples; n
<sub>h</sub>
, number of haplotypes;
<italic>H</italic>
, Nei’s genetic diversity; π, nucleotide diversity.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="pone-0057592-t003" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0057592.t003</object-id>
<label>Table 3</label>
<caption>
<title>Global locus-by-locus analyses of molecular variance (AMOVA) results as weighted averages over loci.</title>
</caption>
<alternatives>
<graphic id="pone-0057592-t003-3" xlink:href="pone.0057592.t003"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1">Marker</td>
<td align="left" rowspan="1" colspan="1">Source of Variance</td>
<td align="left" rowspan="1" colspan="1">% of variation</td>
<td align="left" rowspan="1" colspan="1">Φ</td>
<td align="left" rowspan="1" colspan="1">
<italic>p</italic>
</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">COI</td>
<td align="left" rowspan="1" colspan="1">Between species</td>
<td align="left" rowspan="1" colspan="1">1.17</td>
<td align="left" rowspan="1" colspan="1">1.554</td>
<td align="left" rowspan="1" colspan="1">0.360
<sup>a</sup>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Within species, amongpopulations</td>
<td align="left" rowspan="1" colspan="1">−1.05</td>
<td align="left" rowspan="1" colspan="1">3.379</td>
<td align="left" rowspan="1" colspan="1">0.660
<sup>a</sup>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Within population</td>
<td align="left" rowspan="1" colspan="1">99.88</td>
<td align="left" rowspan="1" colspan="1">131.067</td>
<td align="left" rowspan="1" colspan="1">0.633
<xref ref-type="table-fn" rid="nt105">b</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">16S rRNA</td>
<td align="left" rowspan="1" colspan="1">Between species</td>
<td align="left" rowspan="1" colspan="1">12.62</td>
<td align="left" rowspan="1" colspan="1">1.994</td>
<td align="left" rowspan="1" colspan="1">0.010
<sup>a</sup>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Within species, amongpopulations</td>
<td align="left" rowspan="1" colspan="1">−2.46</td>
<td align="left" rowspan="1" colspan="1">0.647</td>
<td align="left" rowspan="1" colspan="1">0.887
<sup>a</sup>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Within population</td>
<td align="left" rowspan="1" colspan="1">89.84</td>
<td align="left" rowspan="1" colspan="1">35.535</td>
<td align="left" rowspan="1" colspan="1">0.011
<xref ref-type="table-fn" rid="nt105">b</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">12S rRNA</td>
<td align="left" rowspan="1" colspan="1">Between species</td>
<td align="left" rowspan="1" colspan="1">5.62</td>
<td align="left" rowspan="1" colspan="1">0.725</td>
<td align="left" rowspan="1" colspan="1">0.003
<sup>a</sup>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Within species, amongpopulations</td>
<td align="left" rowspan="1" colspan="1">−3.46</td>
<td align="left" rowspan="1" colspan="1">0.504</td>
<td align="left" rowspan="1" colspan="1">0.893
<sup>a</sup>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Within population</td>
<td align="left" rowspan="1" colspan="1">97.84</td>
<td align="left" rowspan="1" colspan="1">31.701</td>
<td align="left" rowspan="1" colspan="1">0.521
<xref ref-type="table-fn" rid="nt105">b</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">AFLP</td>
<td align="left" rowspan="1" colspan="1">Between species</td>
<td align="left" rowspan="1" colspan="1">−1.21</td>
<td align="left" rowspan="1" colspan="1">75.772</td>
<td align="left" rowspan="1" colspan="1">0.894
<sup>a</sup>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Within species, amongpopulations</td>
<td align="left" rowspan="1" colspan="1">3.10</td>
<td align="left" rowspan="1" colspan="1">223.297</td>
<td align="left" rowspan="1" colspan="1">>0.001
<sup>a</sup>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Within population</td>
<td align="left" rowspan="1" colspan="1">98.11</td>
<td align="left" rowspan="1" colspan="1">4140.206</td>
<td align="left" rowspan="1" colspan="1">>0.001
<xref ref-type="table-fn" rid="nt105">b</xref>
</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="nt104">
<label></label>
<p>Note:
<sup>a</sup>
Random value larger than or equal to the observed value;</p>
</fn>
<fn id="nt105">
<label>b</label>
<p>Random value smaller than or equal to the observed value.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</sec>
<sec id="s2d">
<title>AFLP Pattern</title>
<p>While 120 AFLP bands on average (<200 bands) were scored for each primer combination in the present study, the biases on the outlier identification introduced by size homoplasy of AFLP was assumed to be small (see
<xref ref-type="bibr" rid="pone.0057592-Caballero1">[30]</xref>
). A total of 340 polymorphic loci were detected from the AFLP pattern generated. The number of polymorphic loci for
<italic>C. testudinaria</italic>
and
<italic>C. patula</italic>
was 321 (94.4%) and 308 (90.6%) respectively. The Nei’s genetic distance (expected heterozygosity) estimate based on AFLP ranged from 0.33 to 0.37 (
<xref ref-type="table" rid="pone-0057592-t002">Table 2</xref>
). There was no significant difference between the two species in terms of both Nei’s genetic diversity (unpaired t test;
<italic>P></italic>
0.05) and pairwise distance calculated based on allelic frequency (permutation test in AFLPsurv; F
<sub>ST</sub>
 = 0.0012,
<italic>p</italic>
(high) >0.05; nMDS ordination
<xref ref-type="fig" rid="pone-0057592-g002">Figure 2C</xref>
). The results of AMOVA from the AFLP analysis were similar to those from the mitochondrial markers, showing a majority of “within population” variance (
<xref ref-type="table" rid="pone-0057592-t003">Table 3</xref>
). One locus (201 bp of combination E_ACC/M_CTT) out of 340 loci (0.29%) was identified to possess a F
<sub>ST</sub>
value significantly higher than that across all loci (F
<sub>ST</sub>
 = 0.06, Alpha = 0.66, Log
<sub>10</sub>
(PO) = 0.31), when the FDR was set at 0.05 (
<xref ref-type="fig" rid="pone-0057592-g006">Figure 6</xref>
). This locus was inferred to be under selection pressure.</p>
<fig id="pone-0057592-g006" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0057592.g006</object-id>
<label>Figure 6</label>
<caption>
<title>F
<sub>ST</sub>
value for each of the AFLP loci and their associated posterior odds (PO).</title>
<p>Solid vertical line represents the threshold value (false discovery rate of 0.05) of PO; loci with PO larger than the threshold regarded as outliers. Note that PO is equivalent to Bayes Factors when the prior odds are set to 1 (refer to text for details).</p>
</caption>
<graphic xlink:href="pone.0057592.g006"></graphic>
</fig>
</sec>
</sec>
<sec id="s3">
<title>Discussion</title>
<sec id="s3a">
<title>Phylogenetic Relationship and Host Specificity of
<italic>Chelonibia testudinaria</italic>
/
<italic>C</italic>
.
<italic>patula</italic>
</title>
<p>
<italic>Chelonibia patula</italic>
and
<italic>C. testudinaria</italic>
exhibit distinct morphological differences in external shell characters and length of cirri. However, the arthropodal characters, which are important characters in species identification, are indistinguishable between the two species. Furthermore, the two species do not exhibit significant differentiation in mitochondrial gene sequences nor AFLP genotypes. We found little evidence to support the species separation of the two taxa and we therefore, propose that
<italic>Chelonibia patula</italic>
(Ranzani, 1818) is a junior synonym to
<italic>C. testudinaria</italic>
(Linnaeus, 1758).
<italic>C. testudinaria</italic>
/
<italic>C. patula</italic>
should be regarded as a host generalist live broadly on sea turtles, decapods, gastropods and even sea snakes
<xref ref-type="bibr" rid="pone.0057592-Ross1">[1]</xref>
,
<xref ref-type="bibr" rid="pone.0057592-Darwin1">[8]</xref>
, instead of an obligate epibiont previously believed.</p>
<p>
<italic>C. testudinaria</italic>
constitutes of three major lineages in the world’s oceans, the eastern Pacific, western Pacific and Atlantic (including the Mediterranean) based on the divergence pattern in mitochondrial COI
<xref ref-type="bibr" rid="pone.0057592-Rawson1">[29]</xref>
. In the present study, all
<italic>C. testudinaria</italic>
and
<italic>C. patula</italic>
collected in SE Asia and Taiwan belong to the western Pacific group (collected from Japan in
<xref ref-type="bibr" rid="pone.0057592-Rawson1">[29]</xref>
). High gene flow was observed among populations collected from different locations and hosts despite that
<italic>C. testudinaria</italic>
completes its larval development in only about nine days (six naupliar and one cypris stages
<xref ref-type="bibr" rid="pone.0057592-Zardus1">[31]</xref>
). Provided the species could survive and settle on such a broad range of animals, dispersal of any of these hosts on which the barnacles attach could result in transport of barnacles and homogenize the genetic composition among populations. This corroborates previous finding that host migration facilitates long distance dispersal of
<italic>Chenobia</italic>
, while phylogeographic structure only occurs across ocean basins that impact host migration
<xref ref-type="bibr" rid="pone.0057592-Rawson1">[29]</xref>
.</p>
</sec>
<sec id="s3b">
<title>Host Specific Adaptation via Phenotypic Plasticity</title>
<p>The lack of genetic differentiation between the
<italic>Chelonibia</italic>
populations on turtles and benthic crustaceans rejects the hypothesis that shell morphology differentiation is a result of host associated speciation. Hence, the subsequent question is whether the observed differences in shell morphology is a result of differential selection on some of the loci that are responsible for shell development in spite of high homogeneity in neutral loci in the genome genotypes, or phenotypic plasticity in development, i.e. genotype by environmental interactions
<xref ref-type="bibr" rid="pone.0057592-Mather1">[32]</xref>
.</p>
<p>In the present study, only one out of the >300 AFLP loci (0.29% of total) is significantly deviated from neutral expectation. This value appears to be significantly smaller than those reported in other studies using similar approaches
<xref ref-type="bibr" rid="pone.0057592-Zardus1">[31]</xref>
,
<xref ref-type="bibr" rid="pone.0057592-Mather1">[32]</xref>
. For instance, the best investigated case of differential selection on genome between two morphs of the periwinkle
<italic>Littorina saxatilis</italic>
(Olivi, 1792), induced by physical environments and predation pressure, revealed ∼5% of AFLP loci exhibiting significantly higher level of differentiation than expected under a neutral model
<xref ref-type="bibr" rid="pone.0057592-Wood1">[33]</xref>
,
<xref ref-type="bibr" rid="pone.0057592-Wilding1">[34]</xref>
. Recent study on the killifish
<italic>Fundulus heteroclitus</italic>
(Linnaeus, 1766) detected a smaller number of SNP loci, 1.4–2.5%, that are possibly influenced by selection in the population inhabiting polluted areas
<xref ref-type="bibr" rid="pone.0057592-Williams1">[35]</xref>
. Therefore, the role of selection in generating the shell morphology divergence among the barnacles inhabiting turtle and other hosts is insignificant, if any. Definitely, we cannot eliminate the possibilities that genotypes controlling differential preference in settlement on certain host (e.g. turtle vs. crab) remain unidentified; or the single outlier locus could represent a mutation on a gene responsible for host selection or transcriptional regulation could cause the critical differences between two species in adapting the environment based on the present data. It is a more parsimonious explanation that the distinct shell morphology represents phenotypic response, instead of selection for particular genotypes.</p>
<p>Phenotypic plasticity may allow the organisms to rapidly adapt to new environment of which adaptive divergence is usually too slow to develop
<xref ref-type="bibr" rid="pone.0057592-Crispo1">[21]</xref>
,
<xref ref-type="bibr" rid="pone.0057592-Ghalambor1">[36]</xref>
. Hence, phenotypic plasticity is expected to allow the turtle barnacles to switch from host to host in a single generation, i.e. the larvae of a barnacle living on turtle can possibly recruit on decapods, and vice versa. This would be more beneficial for adopting phenotypic plasticity over adaptive divergence in such a variable environmental setting, in particular the gene flow is inferred to be high that would hamper divergence as well. Moreover, the high genetic diversity in the species shown in the present study also provides plenty of raw materials for the development of phenotypic plasticity. It is widely acknowledged that intertidal acorn barnacles experiencing variation in predation pressure and wave action develop different shell forms and lengths of cirri
<xref ref-type="bibr" rid="pone.0057592-Lively2">[37]</xref>
,
<xref ref-type="bibr" rid="pone.0057592-Marchinko1">[38]</xref>
,
<xref ref-type="bibr" rid="pone.0057592-Marchinko2">[39]</xref>
,
<xref ref-type="bibr" rid="pone.0057592-Li1">[40]</xref>
,
<xref ref-type="bibr" rid="pone.0057592-Chan3">[41]</xref>
. Thus the development of barnacle shell is apparently rather plastic in nature.
<italic>Chelonibia testudinaria</italic>
on turtles examined in the present study have a much depressed shell, and the radii between the shell plates have oval-shaped depressions that can house dwarf males
<xref ref-type="bibr" rid="pone.0057592-Zardus1">[31]</xref>
. Most of barnacle species are hermaphroditic, especially the intertidal species which live in dense population. In some species where the mating group size is small and patchy, these species often have dwarf males attached on the large hermaphrodites or females to facilitate mating success.
<italic>C. testudinaria</italic>
living on marine turtle are patchily and sparely distributed. The presence of dwarf males in those oval-shaped depressions of external shells can increase the mating success. On the contrary,
<italic>Chelonibia</italic>
living on benthic crustaceans have a higher shell with larger orifice and the radii between the shell plates are smooth. In general,
<italic>Chelonibia</italic>
barnacles on turtles are relatively larger than those on benthic crustaceans. Such difference in size is likely due to moulting of the host crustaceans. After moulting the epibiotic barnacles would be removed together with the old exoskeleton. Adult
<italic>Portunus pelagicus</italic>
(Linnaeus, 1758), for example, moults every 2–3 weeks
<xref ref-type="bibr" rid="pone.0057592-Josileen1">[42]</xref>
. The carapace scutes of marine turtles probably shed at a much slower rate as their growth rate is very slow (1–2 cm in carapace length per year;
<xref ref-type="bibr" rid="pone.0057592-Chaloupka1">[43]</xref>
), allowing the barnacles to grow larger. As a result, the size difference between the
<italic>Chelonibia</italic>
populations on turtles and crustaceans may be related to age rather than phenotypic responses. In contrast, morphological characters such as the pits on the shell plates, are found on specimens from the turtles and crustaceans of similar size (see
<xref ref-type="fig" rid="pone-0057592-g001">Figure 1</xref>
) and hence unlikely to be size or age dependent.</p>
<p>Differences in the substratum and physical stress on the surfaces of marine turtles and benthic crustaceans may also be responsible for phenotypic responses. The carapace of crustaceans is chitinous in nature
<xref ref-type="bibr" rid="pone.0057592-Chen1">[44]</xref>
whilst the scutes on marine turtles are made up of keratin
<xref ref-type="bibr" rid="pone.0057592-Espinoza1">[45]</xref>
. Benthic marine crustaceans stay consistently at a depth of 20–40 m (see
<xref ref-type="bibr" rid="pone.0057592-Dai1">[46]</xref>
). Marine turtles such as
<italic>Chelonia mydas</italic>
(Linnaeus, 1758) can dive to depth of 10 m or more and can stay submerged for about 20 minutes before swimming back to the surface for a short breath
<xref ref-type="bibr" rid="pone.0057592-Glen1">[47]</xref>
. Barnacles living on marine turtles may experience frequent hydrostatic pressure changes due to the ascending and descending movements of the turtles. Other than frequent changes in hydrostatic pressure and exposure to air, the major environmental difference between the surface of marine turtles and benthic crustaceans is flow velocity, as turtles exhibit much higher swimming speed (about 0.5 m s
<sup>−1</sup>
for
<italic>Chelonia mydas</italic>
<xref ref-type="bibr" rid="pone.0057592-Glen1">[47]</xref>
) than benthic crustaceans. A barnacle shell of lower profile in
<italic>Chelonibia</italic>
living on marine turtles can reduce drag under strong currents. The pits in the shell radii may facilitate the settlement of cyprids and development of dwarf males in a rapid flow environment (
<xref ref-type="fig" rid="pone-0057592-g001">Figure 1H</xref>
). This may also explain the shorter cirri IV to VI of
<italic>Chelonibia</italic>
on turtles compared to the cirri of those on benthic crustaceans as the cirral lengths are usually negatively correlated to wave action and water flow in surrounding environment (see
<xref ref-type="bibr" rid="pone.0057592-Marchinko2">[39]</xref>
,
<xref ref-type="bibr" rid="pone.0057592-Chan3">[41]</xref>
). Admittedly, these potential explanations remain speculative without further evidence from laboratory experiments or field observation. “Common garden”
<xref ref-type="bibr" rid="pone.0057592-Parsons1">[48]</xref>
or reciprocal transplant experiments
<xref ref-type="bibr" rid="pone.0057592-Espinoza2">[49]</xref>
are needed to determine the actual environmental factors that shape the shell morphology of the turtle barnacles. However, larval culture, induced settlement and long term cultivation of these barnacles, in particular on a marine turtle shell, remain challenging. This precludes the conduction of further manipulative experiments in the laboratory.</p>
<p>Nevertheless, a generalist approach can be beneficial for a marine biofouler in successful settlement on various hosts as in the
<italic>Chelonibia</italic>
barnacles. We postulate that the fitness/survival of
<italic>C. testudinaria</italic>
/
<italic>C. patula</italic>
is increases by the generalist approach as sea turtles are most likely not commonly encountered, and phenotypic plasticity can likely facilitate adaptations of the life on different hosts with contrasting life-styles. The observed morphological divergence is driven by environmental response at the present stage. Whether genetic assimilation (or genetic accommodation, see review of Waddington’s theory in
<xref ref-type="bibr" rid="pone.0057592-Crispo2">[50]</xref>
) would occur would depend on the interplay of various environmental factors, and thereby the relative cost of phenotypic plasticity and adaptive divergence. It might be possible that the single outlier locus detected represents early genetic changes following the initial adaptation by phenotypic plasticity. Hence speciation remains at early phase in the case of
<italic>Chelonibia.</italic>
Surely, these are just some possible outcomes in the future and phenotypic plasticity is the main player in the adaptation of
<italic>Chelonibia</italic>
in the current stage. Future study in transcriptomic profile during the development of different morphs settling on distinct hosts and more detailed outlier loci mining would be fruitful to explore the genetic basis of the observed plasticity and the potential of speciation, which would enhance our understanding in the interplay between phenotypic plasticity and adaptive divergence in the nature.</p>
</sec>
<sec id="s3c">
<title>Conclusion</title>
<p>Based on both morphological and molecular evidence, we propose that
<italic>Chelonibia testudinaria</italic>
and
<italic>C. patula</italic>
from SE Asia and Taiwan are conspecific and belong to the western Pacific population of
<italic>C. testudinaria</italic>
identified by Rawson et al
<xref ref-type="bibr" rid="pone.0057592-Rawson1">[29]</xref>
. The two taxa possess significant differentiation in shell morphology, and differential selection on the genome is inferred to be insignificant. Accordingly, the different shell morphs are believed to adapt to different hosts through developmental phenotypic plasticity. The survival of
<italic>C. testudinaria</italic>
/
<italic>C. patula</italic>
is postulated to be increased through the generalist approach. On the other hand, the high plasticity in morphology possibly improves the fitness of the species toward optimal in heterogeneous environments imposed by the broad host range and enables it to be a successful epibiotic biofouler. The present study provides valuable knowledge about adaptation and evolution of symbiotic fauna in the marine realm.</p>
</sec>
</sec>
<sec sec-type="materials|methods" id="s4">
<title>Materials and Methods</title>
<sec id="s4a">
<title>Sample Collection and Morphological Investigation</title>
<p>A total of 79 individuals of
<italic>Chelonibia patula</italic>
from various benthic crustaceans (
<italic>C. patula</italic>
are mainly found on crustaceans, see
<xref ref-type="bibr" rid="pone.0057592-Hayashi2">[10]</xref>
) in Taiwan, Hong Kong, Singapore and Kuching in Malaysian Borneo and 25
<italic>Chelonibia testudinaria</italic>
from marine turtles in Taiwan were collected (
<xref ref-type="fig" rid="pone-0057592-g001">Figure 1D</xref>
,
<xref ref-type="supplementary-material" rid="pone.0057592.s001">Appendix S1</xref>
). Barnacles on crustaceans are collected from local live seafood markets selling local catches of the fishermen from nearby waters and the species collected are not under protection nor need permit for collection. Barnacles on marine turtles are collected by Prof. I-Jiunn Cheng in Taiwan under the permit offered by the Taitung County Government, Republic of China. All
<italic>Chelonibia patula</italic>
and
<italic>C. testudinaria</italic>
collected were dissected for morphological analysis. Shell parameters including shell length and orifice length along the rostral-carinal axis, maximum shell thickness, maximum shell height, length of all margins in the scutum and tergum (
<xref ref-type="fig" rid="pone-0057592-g001">Figure 1E</xref>
) and the total length of the exopods of the left cirri IV, V and VI (from first segment after the basipod to the terminal segment;
<xref ref-type="fig" rid="pone-0057592-g001">Figure 1F</xref>
) were measured using digital vernier calipers (±0.1 mm). Since the size of
<italic>C. testudinaria</italic>
and
<italic>C. patula</italic>
collected were different (mean shell length
<italic>C. patula</italic>
: 9.4±3.8 mm,
<italic>C. testudinaria</italic>
: 38±17 mm), all the morphological parameters measured (except shell length) was divided by the shell length before subsequent analysis to reduce the error due to size differences between samples. Due to great size differences in body sizes between the barnacles on crustaceans and on turtles, absolute value on morphological parameters was not used for statistical analysis as the resulted variations between the two species may merely due to size but not on the morphological differences of the species. Variations in the morphological parameters were analyzed using multivariate analysis (PRIMER 6, Plymouth Routine in Multivariate Analysis;
<xref ref-type="bibr" rid="pone.0057592-Clarke1">[51]</xref>
). A similarity matrix was calculated between the
<italic>Chelonibia</italic>
samples using Euclidean distance. Non-metric multidimensional scaling (nMDS) was conducted to generate two dimensional plots of the scutum and tergum geometry between species from different geographical locations. Analysis of similarity (ANOSIM) was conducted to test the differences in opercular dimension between species and SIMPER (Similarity Percentage) analysis was used to detect the significant discriminating opercular diameters.</p>
<p>The somatic body was dissected and the arthropodal characters (mouth parts and the setal types in cirri I-VI, which are important taxonomic characters) were examined under scanning electron microscopy (SEM, preparation of samples for SEM following
<xref ref-type="bibr" rid="pone.0057592-Chan1">[22]</xref>
). Setal definition followed
<xref ref-type="bibr" rid="pone.0057592-Chan4">[52]</xref>
.</p>
</sec>
<sec id="s4b">
<title>DNA Extraction and Sequencing of the Mitochondrial Markers</title>
<p>Isolation and purification of genomic DNA were conducted according to
<xref ref-type="bibr" rid="pone.0057592-Chan1">[22]</xref>
. All the specimens were subjected to PCR for the mitochondrial COI, 12S and 16S rRNA gene segments. The PCR profile was as follows: initial 2.5 min denaturation at 95°C, 30 cycles of 30 s at 96°C, 30 s at various annealing temperatures (COI: 48°C, 12S and 16S: 52°C), 1 min at 72°C and final 3 min extension at 72°C. The primers used were LCO1490/HCO2198 for COI
<xref ref-type="bibr" rid="pone.0057592-Folmer1">[53]</xref>
, those of
<xref ref-type="bibr" rid="pone.0057592-Mokady3">[54]</xref>
for 12S rRNA, and 1471/1472 for 16S rRNA
<xref ref-type="bibr" rid="pone.0057592-Crandall1">[55]</xref>
. The amplicons were sent to a commercial company (Genomics BioSci. and Tech., Taiwan) for purification and automated sequencing. Sequences obtained (refer to
<xref ref-type="supplementary-material" rid="pone.0057592.s001">Appendix S1</xref>
for GenBank accession nos.) were visually edited and aligned using MEGA version 4
<xref ref-type="bibr" rid="pone.0057592-Tamura1">[56]</xref>
. Both missing data and gaps were treated as missing data and excluded from analysis.</p>
</sec>
<sec id="s4c">
<title>Statistical Analysis on Mitochondrial Markers</title>
<p>To compare the COI sequences obtained from this study with those of
<italic>Chelonibia testudinaria</italic>
from the world’s oceans reported by
<xref ref-type="bibr" rid="pone.0057592-Rawson1">[29]</xref>
, a maximum likelihood (ML) tree was constructed using RA
<sc>x</sc>
ML-HPC B
<sc>lackbox</sc>
<xref ref-type="bibr" rid="pone.0057592-Stamatakis1">[57]</xref>
through the online server Cyberinfrastructure for Phylogenetic Research (CIPRES;
<ext-link ext-link-type="uri" xlink:href="http://www.phylo.org">http://www.phylo.org</ext-link>
; conducted on 9 Mar. 2011), while a Bayesian inference (BI) tree was inferred by the program M
<sc>r</sc>
B
<sc>ayes</sc>
v.3.12
<xref ref-type="bibr" rid="pone.0057592-Ronquist1">[58]</xref>
. Default options (1000 bootstrap replicates for significance of branching) were used for ML tree construction. Transversional model (TVM) with proportion of invariable site (+I) and rate variation among site (+G) was estimated to be the optimal substitution model from Akaike information criterion by
<sc>j</sc>
M
<sc>odel</sc>
T
<sc>est</sc>
version 0.1.1
<xref ref-type="bibr" rid="pone.0057592-Posada1">[59]</xref>
. This information was used to specify the
<italic>a priori</italic>
parameters in BI analysis, in which two Markov-chain-Monte-Carlo (MCMC) searches with random starting points were conducted in 10,000,000 generations; trees were sampled every 10,000 generations. The burn-in value was set to retain the last three-quarter of the sampling trees, from which the posterior possibility was calculated to illustrate the statistical support for nodes. Five haphazardly chosen sequences from each of the five sampling populations of
<italic>C. testudinaria</italic>
in
<xref ref-type="bibr" rid="pone.0057592-Rawson1">[29]</xref>
(GenBank accession nos.: AY174312-16, 24-28, 34-8, 42-46, 58-62) were added for tree construction, with three sequences of
<italic>C. caretta</italic>
(FJ385728-30) used as the outgroup. The sequences were trimmed to fit the shortest sequence length (
<italic>C. caretta</italic>
; 525 bp) analyzed in the alignment.</p>
<p>To infer the intraspecific population structure, haplotype networks of the three mitochondrial markers were generated by TCS version1.13
<xref ref-type="bibr" rid="pone.0057592-Clement1">[60]</xref>
. The haplotype and nucleotide diversities, as well as the Kimura’s two-parameter (K2P) distance
<xref ref-type="bibr" rid="pone.0057592-Kimura1">[61]</xref>
, were calculated for the three markers using A
<sc>rlequin</sc>
version 3.1
<xref ref-type="bibr" rid="pone.0057592-Excoffier1">[62]</xref>
and MEGA, respectively. Unpaired t-test (
<ext-link ext-link-type="uri" xlink:href="http://www.graphpad.com/quickcalcs/ttest1.cfm?Format=SD">http://www.graphpad.com/quickcalcs/ttest1.cfm?Format=SD</ext-link>
) was used to test whether the diversities between the two species were significantly different. Locus-by-locus analysis of molecular variance (AMOVA), which was suggested to better accommodate any effect of missing data, was performed to demonstrate the partitioning of genetic variance among populations and between the two species, and to test if the partition is statistically significant through 10,000 permutations using A
<sc>rlequin</sc>
.</p>
</sec>
<sec id="s4d">
<title>Genotyping Using Amplified Fragment Length Polymorphism (AFLP)</title>
<p>Other than mitochondrial genealogical markers, the genome-wide genotyping method amplified fragment length polymorphism (AFLP) was used to elucidate the relationship between
<italic>C. patula</italic>
and
<italic>C. testudinaria</italic>
and determine whether there are loci under selection.</p>
<p>The quality of the genomic DNA of each specimen was first checked using agarose gel electrophoresis to ensure there was a clear, intact band (nuclear genome) near the wells. The AFLP profile of specimens with good DNA quality (76 samples) was generated according to
<xref ref-type="bibr" rid="pone.0057592-Tsang3">[26]</xref>
. Based on preliminary result, selective amplifications were conducted with the three primer combinations E_AGA/M_CTA, E_ACC/M_CTT and E_AAG/M_CTT, in which the M (Mse) primers were 5′ labeled with florescent FAM5, NED and VIC respectively. The products of the selective PCR were then sent to a commercial company (Techdragon, Hong Kong) for Genscan (fragment sizing), using florescent ROX-500 as the internal size standard.</p>
<p>Banding profiles of the specimens were visualized and scored using G
<sc>enographer</sc>
version 2.1.4 (
<ext-link ext-link-type="uri" xlink:href="http://sourceforge.net/projects/genographer">http://sourceforge.net/projects/genographer</ext-link>
). Viewing the gel under the intensity of 5, we scored the bands falling within 100 to 500 bp. The scoring threshold was set to 0.5 and the band width one (bp). A matrix of presence/absence binary data was then obtained. As recommended by
<xref ref-type="bibr" rid="pone.0057592-Bonin1">[63]</xref>
to have >5–10% subsamples to calculate the genotyping error rate
<xref ref-type="bibr" rid="pone.0057592-Pompanon1">[64]</xref>
, over 26% of samples (20 out of 76) was haphazardly chosen and genotyped twice in the present study. The average genotyping error rate of the loci estimated was 0.1, which was at the acceptable level (0.1) suggested by
<xref ref-type="bibr" rid="pone.0057592-Bonin1">[63]</xref>
.</p>
</sec>
<sec id="s4e">
<title>Statistical Analysis on AFLP Dataset</title>
<p>AFLP
<sc>surv</sc>
version 1.0
<xref ref-type="bibr" rid="pone.0057592-Vekemans1">[65]</xref>
, which is an allelic-frequency-based method that utilizes the unbiased estimator of allelic frequency to assess genetic diversity (i.e. expected heterozygosity)
<xref ref-type="bibr" rid="pone.0057592-Lynch1">[66]</xref>
, was used to estimate the pairwise relatedness coefficients between individuals of
<italic>C. patula</italic>
and
<italic>C. testudinaria</italic>
, and to test whether there is significant population differentiation between the species through 10,000 permutations, assuming Hardy-Weinberg genotypic proportion. The pairwise distances (i.e. 1- relatedness coefficients) among each genotyped specimen were graphically visualized through nMDS generated by PRIMER.</p>
<p>The AFLP candidate loci under selection pressure, which are the outlier loci demonstrating F
<sub>ST</sub>
values significantly higher than overall mean values across the loci, were identified by B
<sc>aye</sc>
S
<sc>can</sc>
version 2.01
<xref ref-type="bibr" rid="pone.0057592-Foll1">[67]</xref>
. The false discovery rate (FDR) of this program was shown to be much lower than the other commonly used programs in detecting loci under selection and the multinomial Dirichlet model adopted in the program that allows for differential effective size and migration rate among populations was believed to be more ecologically realistic
<xref ref-type="bibr" rid="pone.0057592-Foll1">[67]</xref>
. A locus-specific statistic, alpha, which is decomposed from the F
<sub>ST</sub>
values that reflect the locus-wise difference of allele frequency, was used to infer the selection
<xref ref-type="bibr" rid="pone.0057592-Foll1">[67]</xref>
. Departure from neutrality is assumed for the loci when alpha is significantly different from 0, whereas positive and negative alpha values indicate balancing or diversifying selection, respectively. This program adopts a Bayesian approach and uses reversible-jump MCMC to estimate the posterior probability of alpha, which was expressed as posterior odds (PO; the ratio of posterior probability of alpha in neutrality compared to that under selection). We carried out pilot runs, as default, to estimate the prior parameters and then ran 10 million iterations with thinning intervals of 1,000. The prior odds was set to 1 (the probability for the neutral model to happen is equal to that of the model with selection) so that the posterior odds generated could be directly interpreted as Bayes Factors. The first-quarter sampled data (2.5 million iterations) were discarded as burnin, and the remaining data were then used for the calculation of posterior odds. Graphical illustrations of the results were done using R-
<sc>package</sc>
<xref ref-type="bibr" rid="pone.0057592-RDevelopmentCoreTeam1">[68]</xref>
as described in the user manual
<xref ref-type="bibr" rid="pone.0057592-Foll2">[69]</xref>
.</p>
</sec>
</sec>
<sec sec-type="supplementary-material" id="s5">
<title>Supporting Information</title>
<supplementary-material content-type="local-data" id="pone.0057592.s001">
<label>Appendix S1</label>
<caption>
<p>Detail information of
<italic>Chelonibia patula</italic>
and
<italic>C. testudinaria</italic>
specimens and their respective GenBank accession nos. Refer to
<xref ref-type="table" rid="pone-0057592-t002">table 2</xref>
for the acronyms of the populations.</p>
<p>(DOC)</p>
</caption>
<media xlink:href="pone.0057592.s001.doc" mimetype="application" mime-subtype="msword">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<p>The authors would like to acknowledge the Taitung County Government, Republic of China for offering the permit for research in marine turtles and its epibionts. The authors would like to thank I-Han Chen (Academia Sinica) and Su Cheng-Ming (National Taiwan Ocean University) for providing photos of sea turtles for use in Fig. 1B and Fig. 1C respectively.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="pone.0057592-Ross1">
<label>1</label>
<mixed-citation publication-type="book">Ross A, Newman WA (1967) Eocene Balanidae of Florida, including a new genus and species with a unique plan of “turtle-barnacle” organization. New York, USA: American Museum of Natural History.</mixed-citation>
</ref>
<ref id="pone.0057592-Newman1">
<label>2</label>
<mixed-citation publication-type="book">Newman WA, Ross A (1976) Revision of the balanomorph barnacles, including a catalog of the species. San Diego, USA: San Diego Society of Natural History.</mixed-citation>
</ref>
<ref id="pone.0057592-Hayashi1">
<label>3</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hayashi</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Tsuji</surname>
<given-names>K</given-names>
</name>
(
<year>2008</year>
)
<article-title>Spatial distribution of turtle barnacles on the green sea turtle,
<italic>Chelonia mydas</italic>
</article-title>
.
<source>Ecol Res</source>
<volume>23</volume>
:
<fpage>121</fpage>
<lpage>125</lpage>
</mixed-citation>
</ref>
<ref id="pone.0057592-Frick1">
<label>4</label>
<mixed-citation publication-type="journal">
<name>
<surname>Frick</surname>
<given-names>MG</given-names>
</name>
,
<name>
<surname>Ross</surname>
<given-names>A</given-names>
</name>
(
<year>2001</year>
)
<article-title>Will the real
<italic>Chelonibia testudinaria</italic>
please come forward: an appeal</article-title>
.
<source>Marine Turtle Newsletter</source>
<volume>94</volume>
:
<fpage>16</fpage>
<lpage>17</lpage>
</mixed-citation>
</ref>
<ref id="pone.0057592-Monroe1">
<label>5</label>
<mixed-citation publication-type="journal">
<name>
<surname>Monroe</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Garrett</surname>
<given-names>R</given-names>
</name>
(
<year>1979</year>
)
<article-title>
<italic>Chelonibia testudinaria</italic>
(L.) (Cirripedia, Coronulidae) on
<italic>Crocodylus porosus</italic>
Schneider, a new host record</article-title>
.
<source>Crustaceana</source>
<volume>36</volume>
:
<fpage>108</fpage>
</mixed-citation>
</ref>
<ref id="pone.0057592-Seigel1">
<label>6</label>
<mixed-citation publication-type="journal">
<name>
<surname>Seigel</surname>
<given-names>RA</given-names>
</name>
(
<year>1983</year>
)
<article-title>Occurrence and effects of barnacle infestations on diamondback terrapins (
<italic>Malaclemys terrapin</italic>
)</article-title>
.
<source>Am Midl Nat</source>
<volume>109</volume>
:
<fpage>34</fpage>
<lpage>39</lpage>
</mixed-citation>
</ref>
<ref id="pone.0057592-Frazier1">
<label>7</label>
<mixed-citation publication-type="journal">
<name>
<surname>Frazier</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Margaritoulis</surname>
<given-names>D</given-names>
</name>
(
<year>1990</year>
)
<article-title>The occurrence of the barnacle,
<italic>Chelonibia patula</italic>
(Ranzani, 1818), on an inamimate substratum (Cirripedia, Thoracica)</article-title>
.
<source>Crustaceana</source>
<volume>59</volume>
:
<fpage>213</fpage>
<lpage>218</lpage>
</mixed-citation>
</ref>
<ref id="pone.0057592-Darwin1">
<label>8</label>
<mixed-citation publication-type="book">Darwin C (1854) A monograph on the sub-class Cirripedia, with figures of all the species.The Balanidae (or sessile Cirripedes); the Verrucidae, etc. London, UK: Ray Society.</mixed-citation>
</ref>
<ref id="pone.0057592-Kitsos1">
<label>9</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kitsos</surname>
<given-names>MS</given-names>
</name>
,
<name>
<surname>Christodoulou</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Kalpakis</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Noidou</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Koukouras</surname>
<given-names>A</given-names>
</name>
(
<year>2003</year>
)
<article-title>Cirripedia Thoracica associated with
<italic>Caretta caretta</italic>
(Linnaeus, 1758) in the northern Aegean Sea</article-title>
.
<source>Crustaceana</source>
<volume>76</volume>
:
<fpage>403</fpage>
<lpage>409</lpage>
</mixed-citation>
</ref>
<ref id="pone.0057592-Hayashi2">
<label>10</label>
<mixed-citation publication-type="book">Hayashi R (2012) A checklist of turtle and whale barnacles (Cirripedia: Thoracica: Coronuloidea). J Mar Biol Assoc UK.</mixed-citation>
</ref>
<ref id="pone.0057592-Schluter1">
<label>11</label>
<mixed-citation publication-type="journal">
<name>
<surname>Schluter</surname>
<given-names>D</given-names>
</name>
(
<year>2001</year>
)
<article-title>Ecology and the origin of species</article-title>
.
<source>Trends Ecol Evol</source>
<volume>16</volume>
:
<fpage>372</fpage>
<lpage>380</lpage>
<pub-id pub-id-type="pmid">11403870</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0057592-Turellia1">
<label>12</label>
<mixed-citation publication-type="journal">
<name>
<surname>Turellia</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Bartonb</surname>
<given-names>NH</given-names>
</name>
,
<name>
<surname>Coyne</surname>
<given-names>JA</given-names>
</name>
(
<year>2001</year>
)
<article-title>Theory and speciation</article-title>
.
<source>Trends Ecol Evol</source>
<volume>16</volume>
:
<fpage>330</fpage>
<lpage>343</lpage>
<pub-id pub-id-type="pmid">11403865</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0057592-Via1">
<label>13</label>
<mixed-citation publication-type="journal">
<name>
<surname>Via</surname>
<given-names>S</given-names>
</name>
(
<year>2001</year>
)
<article-title>Sympatric speciation in animals: the ugly duckling grows up</article-title>
.
<source>Trends Ecol Evol</source>
<volume>16</volume>
:
<fpage>381</fpage>
<lpage>390</lpage>
<pub-id pub-id-type="pmid">11403871</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0057592-Mokady1">
<label>14</label>
<mixed-citation publication-type="journal">
<name>
<surname>Mokady</surname>
<given-names>O</given-names>
</name>
,
<name>
<surname>Loya</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Achituv</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Geffen</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Graur</surname>
<given-names>D</given-names>
</name>
,
<etal>et al</etal>
(
<year>1999</year>
)
<article-title>Speciation versus phenotypic plasticity in coral inhabiting barnacles: Darwin’s observations in an ecological context</article-title>
.
<source>J Mol Evol</source>
<volume>49</volume>
:
<fpage>367</fpage>
<lpage>375</lpage>
<pub-id pub-id-type="pmid">10473778</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0057592-Mokady2">
<label>15</label>
<mixed-citation publication-type="journal">
<name>
<surname>Mokady</surname>
<given-names>O</given-names>
</name>
,
<name>
<surname>Brickner</surname>
<given-names>I</given-names>
</name>
(
<year>2001</year>
)
<article-title>Host-associated speciation in a coral-inhabiting barnacle</article-title>
.
<source>Mol Biol Evol</source>
<volume>18</volume>
:
<fpage>975</fpage>
<lpage>981</lpage>
<pub-id pub-id-type="pmid">11371585</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0057592-Tsang1">
<label>16</label>
<mixed-citation publication-type="journal">
<name>
<surname>Tsang</surname>
<given-names>LM</given-names>
</name>
,
<name>
<surname>Chan</surname>
<given-names>BKK</given-names>
</name>
,
<name>
<surname>Shih</surname>
<given-names>FL</given-names>
</name>
,
<name>
<surname>Chu</surname>
<given-names>KH</given-names>
</name>
,
<name>
<surname>Chen</surname>
<given-names>CA</given-names>
</name>
(
<year>2009</year>
)
<article-title>Host-associated speciation in the coral barnacle
<italic>Wanella milleporae</italic>
(Cirripedia: Pyrgomatidae) inhabiting the
<italic>Millepora</italic>
coral</article-title>
.
<source>Mol Ecol</source>
<volume>18</volume>
:
<fpage>1463</fpage>
<lpage>1475</lpage>
<pub-id pub-id-type="pmid">19368648</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0057592-Schmidt1">
<label>17</label>
<mixed-citation publication-type="journal">
<name>
<surname>Schmidt</surname>
<given-names>PS</given-names>
</name>
,
<name>
<surname>Rand</surname>
<given-names>DM</given-names>
</name>
(
<year>1999</year>
)
<article-title>Intertidal microhabitat and selection at MPI: Interlocus contrasts in the northern acorn barnacle,
<italic>Semibalanus balanoides</italic>
</article-title>
.
<source>Evolution</source>
<volume>53</volume>
:
<fpage>135</fpage>
<lpage>146</lpage>
</mixed-citation>
</ref>
<ref id="pone.0057592-Schmidt2">
<label>18</label>
<mixed-citation publication-type="journal">
<name>
<surname>Schmidt</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Bertness</surname>
<given-names>MD</given-names>
</name>
,
<name>
<surname>Rand</surname>
<given-names>DM</given-names>
</name>
(
<year>2000</year>
)
<article-title>Environmental heterogeneity and balancing selection in the acorn barnacle
<italic>Semibalanus balanoides</italic>
</article-title>
.
<source>Proc R Soc Lond B</source>
<volume>267</volume>
:
<fpage>379</fpage>
<lpage>384</lpage>
</mixed-citation>
</ref>
<ref id="pone.0057592-Lively1">
<label>19</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lively</surname>
<given-names>C</given-names>
</name>
(
<year>1986</year>
)
<article-title>Predator-indced shell dimorphism in the acorn barnacle
<italic>Chthamalus anisopoma</italic>
</article-title>
.
<source>Evolution</source>
<volume>40</volume>
:
<fpage>232</fpage>
<lpage>242</lpage>
</mixed-citation>
</ref>
<ref id="pone.0057592-Alpert1">
<label>20</label>
<mixed-citation publication-type="journal">
<name>
<surname>Alpert</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Simms</surname>
<given-names>EL</given-names>
</name>
(
<year>2002</year>
)
<article-title>The relative advantages of plasticity and fixity in different environments: when is it good for a plant to adjust?</article-title>
<source>Evol Ecol</source>
<volume>16</volume>
:
<fpage>285</fpage>
<lpage>297</lpage>
</mixed-citation>
</ref>
<ref id="pone.0057592-Crispo1">
<label>21</label>
<mixed-citation publication-type="journal">
<name>
<surname>Crispo</surname>
<given-names>E</given-names>
</name>
(
<year>2008</year>
)
<article-title>Modifying effects of phenotypic plasticity on interactions among natural selection, adaptation and gene flow</article-title>
.
<source>J Evol Biol</source>
<volume>21</volume>
:
<fpage>1460</fpage>
<lpage>1469</lpage>
<pub-id pub-id-type="pmid">18681916</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0057592-Chan1">
<label>22</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chan</surname>
<given-names>BKK</given-names>
</name>
,
<name>
<surname>Tsang</surname>
<given-names>LM</given-names>
</name>
,
<name>
<surname>Chu</surname>
<given-names>KH</given-names>
</name>
(
<year>2007a</year>
)
<article-title>Cryptic diversity of
<italic>Tetraclita squamosa</italic>
complex (Crustacea, Cirripedia) in Asia: description of a new species from Singapore</article-title>
.
<source>Zool Stud</source>
<volume>46</volume>
:
<fpage>46</fpage>
<lpage>56</lpage>
</mixed-citation>
</ref>
<ref id="pone.0057592-Chan2">
<label>23</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chan</surname>
<given-names>BKK</given-names>
</name>
,
<name>
<surname>Tsang</surname>
<given-names>LM</given-names>
</name>
,
<name>
<surname>Ma</surname>
<given-names>KY</given-names>
</name>
,
<name>
<surname>Hsu</surname>
<given-names>CH</given-names>
</name>
,
<etal>et al</etal>
(
<year>2007b</year>
)
<article-title>Taxonomic revision of the acorn barnacles
<italic>Tetraclita japonica</italic>
and
<italic>Tetraclita formosana</italic>
(Crustacea: Cirripedia) in East Asia based on molecular and morphological analyses</article-title>
.
<source>Bull Mar Sci</source>
<volume>81</volume>
:
<fpage>101</fpage>
<lpage>113</lpage>
</mixed-citation>
</ref>
<ref id="pone.0057592-Tsang2">
<label>24</label>
<mixed-citation publication-type="journal">
<name>
<surname>Tsang</surname>
<given-names>LM</given-names>
</name>
,
<name>
<surname>Chan</surname>
<given-names>BKK</given-names>
</name>
,
<name>
<surname>Wu</surname>
<given-names>TH</given-names>
</name>
,
<name>
<surname>Ng</surname>
<given-names>WC</given-names>
</name>
,
<name>
<surname>Chatterjee</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>et</surname>
<given-names>al</given-names>
</name>
(
<year>2008a</year>
)
<article-title>Population differentiation in the barnacle
<italic>Chthamalus malayensis</italic>
: Postglacial colonization and recent connectivity across the Pacific and Indian Oceans</article-title>
.
<source>Mar Ecol-Prog Ser</source>
<volume>364</volume>
:
<fpage>107</fpage>
<lpage>118</lpage>
</mixed-citation>
</ref>
<ref id="pone.0057592-Sanford1">
<label>25</label>
<mixed-citation publication-type="journal">
<name>
<surname>Sanford</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Kelly</surname>
<given-names>MW</given-names>
</name>
(
<year>2011</year>
)
<article-title>Local adaptation in marine invertebrates</article-title>
.
<source>Ann Rev Mar Sci</source>
<volume>3</volume>
:
<fpage>509</fpage>
<lpage>535</lpage>
</mixed-citation>
</ref>
<ref id="pone.0057592-Tsang3">
<label>26</label>
<mixed-citation publication-type="journal">
<name>
<surname>Tsang</surname>
<given-names>LM</given-names>
</name>
,
<name>
<surname>Chan</surname>
<given-names>BKK</given-names>
</name>
,
<name>
<surname>Ma</surname>
<given-names>KY</given-names>
</name>
,
<name>
<surname>Chu</surname>
<given-names>KH</given-names>
</name>
(
<year>2008b</year>
)
<article-title>Genetic differentiation, hybridization and adaptive divergence in two subspecies of the acorn barnacle
<italic>Tetraclita japonica</italic>
in the northwestern Pacific</article-title>
.
<source>Mol Ecol</source>
<volume>17</volume>
:
<fpage>4151</fpage>
<lpage>4163</lpage>
<pub-id pub-id-type="pmid">19238711</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0057592-Johannesson1">
<label>27</label>
<mixed-citation publication-type="journal">
<name>
<surname>Johannesson</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Johannesson</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Rolán-Alvarez</surname>
<given-names>E</given-names>
</name>
(
<year>1993</year>
)
<article-title>Morphological differentiation and genetic cohesiveness over a microenvironmental gradient in the marine snail
<italic>Littorina saxatilis</italic>
</article-title>
.
<source>Evolution</source>
<volume>47</volume>
:
<fpage>1770</fpage>
<lpage>1787</lpage>
</mixed-citation>
</ref>
<ref id="pone.0057592-Ge1">
<label>28</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ge</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Chesters</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Gómez-Zurita</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Yang</surname>
<given-names>X</given-names>
</name>
,
<etal>et al</etal>
(
<year>2011</year>
)
<article-title>Anti-predator defence drives parallel morphological evolution in flea beetles</article-title>
.
<source>Proc Roy Soc B-Biol Sci</source>
<volume>278</volume>
:
<fpage>2133</fpage>
<lpage>2141</lpage>
</mixed-citation>
</ref>
<ref id="pone.0057592-Rawson1">
<label>29</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rawson</surname>
<given-names>PD</given-names>
</name>
,
<name>
<surname>Macnamee</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Frick</surname>
<given-names>MG</given-names>
</name>
,
<name>
<surname>Williams</surname>
<given-names>KL</given-names>
</name>
(
<year>2003</year>
)
<article-title>Phylogeography of the coronulid barnacle,
<italic>Chelonibia testudinaria</italic>
, from loggerhead sea turtles,
<italic>Caretta caretta</italic>
</article-title>
.
<source>Mol Ecol</source>
<volume>12</volume>
:
<fpage>2697</fpage>
<lpage>2706</lpage>
<pub-id pub-id-type="pmid">12969473</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0057592-Caballero1">
<label>30</label>
<mixed-citation publication-type="journal">
<name>
<surname>Caballero</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Quesada</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Rolán-Alvarez</surname>
<given-names>E</given-names>
</name>
(
<year>2008</year>
)
<article-title>Impact of amplified fragment length polymorphism size homoplasy on the estimation of population genetic diversity and the detection of selective loci</article-title>
.
<source>Genetics</source>
<volume>179</volume>
:
<fpage>539</fpage>
<lpage>554</lpage>
<pub-id pub-id-type="pmid">18493070</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0057592-Zardus1">
<label>31</label>
<mixed-citation publication-type="journal">
<name>
<surname>Zardus</surname>
<given-names>JD</given-names>
</name>
,
<name>
<surname>Hadfield</surname>
<given-names>MG</given-names>
</name>
(
<year>2004</year>
)
<article-title>Larval development and complemental males in
<italic>Chelonibia testudinaria</italic>
, a barnacle commensal with sea turtles</article-title>
.
<source>J Crust Biol</source>
<volume>24</volume>
:
<fpage>409</fpage>
<lpage>421</lpage>
</mixed-citation>
</ref>
<ref id="pone.0057592-Mather1">
<label>32</label>
<mixed-citation publication-type="journal">
<name>
<surname>Mather</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Caligari</surname>
<given-names>PDS</given-names>
</name>
(
<year>1976</year>
)
<article-title>Genotype.times.environment.interactions. IV. The effect of the background.genotype</article-title>
.
<source>Heredity</source>
<volume>36</volume>
:
<fpage>41</fpage>
<lpage>48</lpage>
<pub-id pub-id-type="pmid">815225</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0057592-Wood1">
<label>33</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wood</surname>
<given-names>HM</given-names>
</name>
,
<name>
<surname>Grahame</surname>
<given-names>JW</given-names>
</name>
,
<name>
<surname>Humphray</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Rogers</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Butlin</surname>
<given-names>RK</given-names>
</name>
(
<year>2008</year>
)
<article-title>Sequence differentiation in regions identified by a genome scan for local adaptation</article-title>
.
<source>Mol Ecol</source>
<volume>17</volume>
:
<fpage>3123</fpage>
<lpage>3135</lpage>
<pub-id pub-id-type="pmid">18510587</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0057592-Wilding1">
<label>34</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wilding</surname>
<given-names>CS</given-names>
</name>
,
<name>
<surname>Butlin</surname>
<given-names>RK</given-names>
</name>
,
<name>
<surname>Grahame</surname>
<given-names>J</given-names>
</name>
(
<year>2001</year>
)
<article-title>Differential gene exchange between parapatric morphs of
<italic>Littorina saxatilis</italic>
detected using AFLP markers</article-title>
.
<source>J Evol Biol</source>
<volume>14</volume>
:
<fpage>611</fpage>
<lpage>619</lpage>
</mixed-citation>
</ref>
<ref id="pone.0057592-Williams1">
<label>35</label>
<mixed-citation publication-type="journal">
<name>
<surname>Williams</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Oleksiak</surname>
<given-names>MF</given-names>
</name>
(
<year>2011</year>
)
<article-title>Ecologically and evolutionarily important SNPs identified in natural populations</article-title>
.
<source>Mol Biol Evol</source>
<volume>28</volume>
:
<fpage>1817</fpage>
<lpage>1826</lpage>
<pub-id pub-id-type="pmid">21220761</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0057592-Ghalambor1">
<label>36</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ghalambor</surname>
<given-names>CK</given-names>
</name>
,
<name>
<surname>McKay</surname>
<given-names>JK</given-names>
</name>
,
<name>
<surname>Carroll</surname>
<given-names>SP</given-names>
</name>
,
<name>
<surname>Reznick</surname>
<given-names>DN</given-names>
</name>
(
<year>2007</year>
)
<article-title>Adpative versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments</article-title>
.
<source>Funct Ecol</source>
<volume>21</volume>
:
<fpage>394</fpage>
<lpage>407</lpage>
</mixed-citation>
</ref>
<ref id="pone.0057592-Lively2">
<label>37</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lively</surname>
<given-names>CM</given-names>
</name>
,
<name>
<surname>Hazel</surname>
<given-names>WN</given-names>
</name>
,
<name>
<surname>Schellenberger</surname>
<given-names>MJ</given-names>
</name>
,
<name>
<surname>Michelson</surname>
<given-names>KS</given-names>
</name>
(
<year>2000</year>
)
<article-title>Predator-induced defense: variation for inducibility in an intertidal barnacle</article-title>
.
<source>Ecology</source>
<volume>81</volume>
:
<fpage>1240</fpage>
<lpage>1247</lpage>
</mixed-citation>
</ref>
<ref id="pone.0057592-Marchinko1">
<label>38</label>
<mixed-citation publication-type="journal">
<name>
<surname>Marchinko</surname>
<given-names>KB</given-names>
</name>
(
<year>2003</year>
)
<article-title>Dramatic phenotypic plasticity in barnacle legs (
<italic>Balanus glandula</italic>
Darwin): Magnitude, age dependence, and speed of response</article-title>
.
<source>Evolution</source>
<volume>57</volume>
:
<fpage>1281</fpage>
<lpage>1290</lpage>
<pub-id pub-id-type="pmid">12894936</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0057592-Marchinko2">
<label>39</label>
<mixed-citation publication-type="journal">
<name>
<surname>Marchinko</surname>
<given-names>KB</given-names>
</name>
,
<name>
<surname>Palmer</surname>
<given-names>AR</given-names>
</name>
(
<year>2003</year>
)
<article-title>Feeding in flow extremes: Dependence of cirrus form on wave-exposure in four barnacle species</article-title>
.
<source>Zoology</source>
<volume>106</volume>
:
<fpage>127</fpage>
<lpage>141</lpage>
<pub-id pub-id-type="pmid">16351898</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0057592-Li1">
<label>40</label>
<mixed-citation publication-type="journal">
<name>
<surname>Li</surname>
<given-names>NK</given-names>
</name>
,
<name>
<surname>Denny</surname>
<given-names>MW</given-names>
</name>
(
<year>2004</year>
)
<article-title>Limits to phenotypic plasticity: Flow effects on barnacle feeding appendages</article-title>
.
<source>Biol Bull</source>
<volume>206</volume>
:
<fpage>121</fpage>
<lpage>124</lpage>
<pub-id pub-id-type="pmid">15198937</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0057592-Chan3">
<label>41</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chan</surname>
<given-names>BKK</given-names>
</name>
,
<name>
<surname>Hung</surname>
<given-names>OS</given-names>
</name>
(
<year>2005</year>
)
<article-title>Cirral length of the acorn barnacle
<italic>Tetraclita japonica</italic>
(Cirripedia: Balanomorpha) in Hong Kong: effect of wave exposure and tidal height</article-title>
.
<source>J Crust Biol</source>
<volume>25</volume>
:
<fpage>329</fpage>
<lpage>332</lpage>
</mixed-citation>
</ref>
<ref id="pone.0057592-Josileen1">
<label>42</label>
<mixed-citation publication-type="journal">
<name>
<surname>Josileen</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Menon</surname>
<given-names>NG</given-names>
</name>
(
<year>2005</year>
)
<article-title>Growth of the blue swimming crab,
<italic>Portunus pelagicus</italic>
(Linnaeus, 1758) (Decapod, Brachyura) in captivity</article-title>
.
<source>Crustaceana</source>
<volume>78</volume>
:
<fpage>1</fpage>
<lpage>18</lpage>
</mixed-citation>
</ref>
<ref id="pone.0057592-Chaloupka1">
<label>43</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chaloupka</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Limpus</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Miller</surname>
<given-names>J</given-names>
</name>
(
<year>2004</year>
)
<article-title>Green turtle somatic growth dynamics in a spatially disjunct Great Barrier Reef metapopulation</article-title>
.
<source>Coral Reefs</source>
<volume>23</volume>
:
<fpage>325</fpage>
<lpage>335</lpage>
</mixed-citation>
</ref>
<ref id="pone.0057592-Chen1">
<label>44</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chen</surname>
<given-names>P-Y</given-names>
</name>
,
<name>
<surname>Lin</surname>
<given-names>AY-M</given-names>
</name>
,
<name>
<surname>McKittrick</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Meyers</surname>
<given-names>MA</given-names>
</name>
(
<year>2008</year>
)
<article-title>Structure and mechanical properties of crab exoskeletons</article-title>
.
<source>Acta Biomater</source>
<volume>4</volume>
:
<fpage>587</fpage>
<lpage>596</lpage>
<pub-id pub-id-type="pmid">18299257</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0057592-Espinoza1">
<label>45</label>
<mixed-citation publication-type="journal">
<name>
<surname>Espinoza</surname>
<given-names>EO</given-names>
</name>
,
<name>
<surname>Baker</surname>
<given-names>BW</given-names>
</name>
,
<name>
<surname>Berry</surname>
<given-names>CA</given-names>
</name>
(
<year>2007</year>
)
<article-title>The analysis of sea turtle and bovid keratin artifacts using drift spectroscopy and discriminant analysis</article-title>
.
<source>Archaeometry</source>
<volume>49</volume>
:
<fpage>685</fpage>
<lpage>698</lpage>
</mixed-citation>
</ref>
<ref id="pone.0057592-Dai1">
<label>46</label>
<mixed-citation publication-type="book">Dai A, Yang S (1991) Crabs of the China Seas. Beijing, China: China Ocean Press.</mixed-citation>
</ref>
<ref id="pone.0057592-Glen1">
<label>47</label>
<mixed-citation publication-type="journal">
<name>
<surname>Glen</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Broderick</surname>
<given-names>AC</given-names>
</name>
,
<name>
<surname>Godley</surname>
<given-names>BJ</given-names>
</name>
,
<name>
<surname>Metcalife</surname>
<given-names>JD</given-names>
</name>
,
<name>
<surname>Hays</surname>
<given-names>GC</given-names>
</name>
(
<year>2001</year>
)
<article-title>Dive angles for a green turtle (
<italic>Chelonia mydas</italic>
)</article-title>
.
<source>J Mar Biol Assoc UK</source>
<volume>81</volume>
:
<fpage>683</fpage>
<lpage>686</lpage>
</mixed-citation>
</ref>
<ref id="pone.0057592-Parsons1">
<label>48</label>
<mixed-citation publication-type="journal">
<name>
<surname>Parsons</surname>
<given-names>KE</given-names>
</name>
(
<year>1997</year>
)
<article-title>Role of dispersal ability in the phenotypic differentiation and plasticity of two marine gastropods. I. Shape</article-title>
.
<source>Oecologia</source>
<volume>110</volume>
:
<fpage>461</fpage>
<lpage>471</lpage>
</mixed-citation>
</ref>
<ref id="pone.0057592-Espinoza2">
<label>49</label>
<mixed-citation publication-type="journal">
<name>
<surname>Espinoza</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Rodriguez</surname>
<given-names>H</given-names>
</name>
(
<year>1987</year>
)
<article-title>Seasonal phenology and reciprocal transplantation of
<italic>Sargassum sinicola</italic>
Setchell et Gardner in the southern Gulf of California</article-title>
.
<source>J Exp Mar Biol Ecol</source>
<volume>110</volume>
:
<fpage>183</fpage>
<lpage>195</lpage>
</mixed-citation>
</ref>
<ref id="pone.0057592-Crispo2">
<label>50</label>
<mixed-citation publication-type="journal">
<name>
<surname>Crispo</surname>
<given-names>E</given-names>
</name>
(
<year>2007</year>
)
<article-title>The Baldin effect and genetic assimilation: revisiting two mechanisms of evolutionary change mediated by phenotypic plasticity</article-title>
.
<source>Evolution</source>
<volume>61</volume>
:
<fpage>2469</fpage>
<lpage>2479</lpage>
<pub-id pub-id-type="pmid">17714500</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0057592-Clarke1">
<label>51</label>
<mixed-citation publication-type="journal">
<name>
<surname>Clarke</surname>
<given-names>KR</given-names>
</name>
(
<year>1993</year>
)
<article-title>Non-parametric multivariate analyses of changes in community structure</article-title>
.
<source>Aust J Ecol</source>
<volume>18</volume>
:
<fpage>117</fpage>
<lpage>143</lpage>
</mixed-citation>
</ref>
<ref id="pone.0057592-Chan4">
<label>52</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chan</surname>
<given-names>BKK</given-names>
</name>
,
<name>
<surname>Garm</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Høeg</surname>
<given-names>JT</given-names>
</name>
(
<year>2008</year>
)
<article-title>Setal morphology and cirral setation of thoracican barnacle cirri: adaptations and implications for thoracican evolution</article-title>
.
<source>J Zool</source>
<volume>275</volume>
:
<fpage>294</fpage>
<lpage>306</lpage>
</mixed-citation>
</ref>
<ref id="pone.0057592-Folmer1">
<label>53</label>
<mixed-citation publication-type="journal">
<name>
<surname>Folmer</surname>
<given-names>O</given-names>
</name>
,
<name>
<surname>Black</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Hoeh</surname>
<given-names>W</given-names>
</name>
,
<name>
<surname>Lutz</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Vrijenhoek</surname>
<given-names>R</given-names>
</name>
(
<year>1994</year>
)
<article-title>DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates</article-title>
.
<source>Mol Mar Biol Biotech</source>
<volume>3</volume>
:
<fpage>294</fpage>
<lpage>299</lpage>
</mixed-citation>
</ref>
<ref id="pone.0057592-Mokady3">
<label>54</label>
<mixed-citation publication-type="journal">
<name>
<surname>Mokady</surname>
<given-names>O</given-names>
</name>
,
<name>
<surname>Rozenblatt</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Graur</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Loya</surname>
<given-names>Y</given-names>
</name>
(
<year>1994</year>
)
<article-title>Coral-host specificity of Red Sea
<italic>Lithophaga</italic>
bivalves: interspecific and intraspecific variation in 12S mitochondrial ribosomal RNA</article-title>
.
<source>Mol Mar Biol Biotech</source>
<volume>3</volume>
:
<fpage>158</fpage>
<lpage>164</lpage>
</mixed-citation>
</ref>
<ref id="pone.0057592-Crandall1">
<label>55</label>
<mixed-citation publication-type="journal">
<name>
<surname>Crandall</surname>
<given-names>KA</given-names>
</name>
,
<name>
<surname>Fitzpatrick, J</surname>
<given-names>F</given-names>
</name>
(
<year>1996</year>
)
<article-title>Crayfish molecular systematics: Using a combination of procedures to estimate phylogeny</article-title>
.
<source>Syst Biol</source>
<volume>45</volume>
:
<fpage>1</fpage>
<lpage>26</lpage>
</mixed-citation>
</ref>
<ref id="pone.0057592-Tamura1">
<label>56</label>
<mixed-citation publication-type="journal">
<name>
<surname>Tamura</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Dudley</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Nei</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Kumar</surname>
<given-names>S</given-names>
</name>
(
<year>2007</year>
)
<article-title>MEGA4: Molecular evolutionary genetics analysis (MEGA) Software version 4.0</article-title>
.
<source>Mol Biol Evol</source>
<volume>24</volume>
:
<fpage>1596</fpage>
<lpage>1599</lpage>
<pub-id pub-id-type="pmid">17488738</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0057592-Stamatakis1">
<label>57</label>
<mixed-citation publication-type="book">Stamatakis A, Ott M, Ludwig T (2005) RAxML-OMP: An efficient program for phylogenetic inference on SMPs: Springer-Verlag.</mixed-citation>
</ref>
<ref id="pone.0057592-Ronquist1">
<label>58</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ronquist</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Huelsenbeck</surname>
<given-names>JP</given-names>
</name>
(
<year>2003</year>
)
<article-title>MrBayes 3: Bayesian phylogenetic inference under mixed models</article-title>
.
<source>Bioinformatics</source>
<volume>19</volume>
:
<fpage>1572</fpage>
<lpage>1574</lpage>
<pub-id pub-id-type="pmid">12912839</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0057592-Posada1">
<label>59</label>
<mixed-citation publication-type="journal">
<name>
<surname>Posada</surname>
<given-names>D</given-names>
</name>
(
<year>2008</year>
)
<article-title>jModelTest: Phylogenetic model averaging</article-title>
.
<source>Mol Biol Evol</source>
<volume>25</volume>
:
<fpage>1253</fpage>
<lpage>1256</lpage>
<pub-id pub-id-type="pmid">18397919</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0057592-Clement1">
<label>60</label>
<mixed-citation publication-type="journal">
<name>
<surname>Clement</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Posada</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Crandall</surname>
<given-names>KA</given-names>
</name>
(
<year>2000</year>
)
<article-title>TCS: a computer program to estimate gene genealogies</article-title>
.
<source>Mol Ecol</source>
<volume>9</volume>
:
<fpage>1657</fpage>
<lpage>1659</lpage>
<pub-id pub-id-type="pmid">11050560</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0057592-Kimura1">
<label>61</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kimura</surname>
<given-names>M</given-names>
</name>
(
<year>1980</year>
)
<article-title>A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences</article-title>
.
<source>J Mol Evol</source>
<volume>16</volume>
:
<fpage>111</fpage>
<lpage>120</lpage>
<pub-id pub-id-type="pmid">7463489</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0057592-Excoffier1">
<label>62</label>
<mixed-citation publication-type="journal">
<name>
<surname>Excoffier</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Laval</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Schneider</surname>
<given-names>S</given-names>
</name>
(
<year>2005</year>
)
<article-title>Arlequin ver. 3.0: An integrated software package for population genetics data analysis</article-title>
.
<source>Evol Bioinform</source>
<volume>1</volume>
:
<fpage>47</fpage>
<lpage>50</lpage>
</mixed-citation>
</ref>
<ref id="pone.0057592-Bonin1">
<label>63</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bonin</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Ehrich</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Manel</surname>
<given-names>S</given-names>
</name>
(
<year>2007</year>
)
<article-title>Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists</article-title>
.
<source>Mol Ecol</source>
<volume>16</volume>
:
<fpage>3737</fpage>
<lpage>3758</lpage>
<pub-id pub-id-type="pmid">17850542</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0057592-Pompanon1">
<label>64</label>
<mixed-citation publication-type="journal">
<name>
<surname>Pompanon</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Bonin</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Bellemain</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Taberlet</surname>
<given-names>P</given-names>
</name>
(
<year>2005</year>
)
<article-title>Genotyping errors: causes, consequences and solutions</article-title>
.
<source>Nat Rev Genet</source>
<volume>6</volume>
:
<fpage>847</fpage>
<lpage>859</lpage>
<pub-id pub-id-type="pmid">16304600</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0057592-Vekemans1">
<label>65</label>
<mixed-citation publication-type="book">Vekemans X (2002) AFLP-SURV, Version 1.0, Laboratoire de Génétique et Ecologie Végétale. xelles, Belgium: Université Libre de Bruxelles.</mixed-citation>
</ref>
<ref id="pone.0057592-Lynch1">
<label>66</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lynch</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Milligan</surname>
<given-names>BG</given-names>
</name>
(
<year>1994</year>
)
<article-title>Analysis of population genetic structure with RAPD markers</article-title>
.
<source>Mol Ecol</source>
<volume>3</volume>
:
<fpage>91</fpage>
<lpage>99</lpage>
<pub-id pub-id-type="pmid">8019690</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0057592-Foll1">
<label>67</label>
<mixed-citation publication-type="journal">
<name>
<surname>Foll</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Gaggiotti</surname>
<given-names>OE</given-names>
</name>
(
<year>2008</year>
)
<article-title>A genome scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective</article-title>
.
<source>Genetics</source>
<volume>108</volume>
:
<fpage>977</fpage>
<lpage>993</lpage>
<pub-id pub-id-type="pmid">18780740</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0057592-RDevelopmentCoreTeam1">
<label>68</label>
<mixed-citation publication-type="other">R-Development-Core-Team (2009) R: A language and environment for statistical computing. Available:
<ext-link ext-link-type="uri" xlink:href="http://www.R-project.org">http://www.R-project.org</ext-link>
Accessed 2013 Feb 1.</mixed-citation>
</ref>
<ref id="pone.0057592-Foll2">
<label>69</label>
<mixed-citation publication-type="book">Foll M (2010) BayeScan v2.0 user manual. Switzerland: Bern.</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/CyberinfraV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000619 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000619 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    CyberinfraV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:3585910
   |texte=   Host-Specific Phenotypic Plasticity of the Turtle Barnacle Chelonibia testudinaria: A Widespread Generalist Rather than a Specialist
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:23469208" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CyberinfraV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Thu Oct 27 09:30:58 2016. Site generation: Sun Mar 10 23:08:40 2024