Serveur d'exploration Cyberinfrastructure

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0003579 ( Pmc/Corpus ); précédent : 0003578; suivant : 0003580 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transport by Populations of Fast and Slow Kinesins Uncovers Novel Family-Dependent Motor Characteristics Important for In Vivo Function</title>
<author>
<name sortKey="Arpa, Goker" sort="Arpa, Goker" uniqKey="Arpa G" first="Göker" last="Arpa">Göker Arpa</name>
<affiliation>
<nlm:aff id="aff1">Department of Physics, Worcester Polytechnic Institute, Worcester, Massachusetts</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Shastry, Shankar" sort="Shastry, Shankar" uniqKey="Shastry S" first="Shankar" last="Shastry">Shankar Shastry</name>
<affiliation>
<nlm:aff id="aff2">Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hancock, William O" sort="Hancock, William O" uniqKey="Hancock W" first="William O." last="Hancock">William O. Hancock</name>
<affiliation>
<nlm:aff id="aff2">Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tuzel, Erkan" sort="Tuzel, Erkan" uniqKey="Tuzel E" first="Erkan" last="Tüzel">Erkan Tüzel</name>
<affiliation>
<nlm:aff id="aff1">Department of Physics, Worcester Polytechnic Institute, Worcester, Massachusetts</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25418170</idno>
<idno type="pmc">4213720</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4213720</idno>
<idno type="RBID">PMC:4213720</idno>
<idno type="doi">10.1016/j.bpj.2014.09.009</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">000357</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Transport by Populations of Fast and Slow Kinesins Uncovers Novel Family-Dependent Motor Characteristics Important for In Vivo Function</title>
<author>
<name sortKey="Arpa, Goker" sort="Arpa, Goker" uniqKey="Arpa G" first="Göker" last="Arpa">Göker Arpa</name>
<affiliation>
<nlm:aff id="aff1">Department of Physics, Worcester Polytechnic Institute, Worcester, Massachusetts</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Shastry, Shankar" sort="Shastry, Shankar" uniqKey="Shastry S" first="Shankar" last="Shastry">Shankar Shastry</name>
<affiliation>
<nlm:aff id="aff2">Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hancock, William O" sort="Hancock, William O" uniqKey="Hancock W" first="William O." last="Hancock">William O. Hancock</name>
<affiliation>
<nlm:aff id="aff2">Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tuzel, Erkan" sort="Tuzel, Erkan" uniqKey="Tuzel E" first="Erkan" last="Tüzel">Erkan Tüzel</name>
<affiliation>
<nlm:aff id="aff1">Department of Physics, Worcester Polytechnic Institute, Worcester, Massachusetts</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biophysical Journal</title>
<idno type="ISSN">0006-3495</idno>
<idno type="eISSN">1542-0086</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Intracellular cargo transport frequently involves multiple motor types, either having opposite directionality or having the same directionality but different speeds. Although significant progress has been made in characterizing kinesin motors at the single-molecule level, predicting their ensemble behavior is challenging and requires tight coupling between experiments and modeling to uncover the underlying motor behavior. To understand how diverse kinesins attached to the same cargo coordinate their movement, we carried out microtubule gliding assays using pairwise mixtures of motors from the kinesin-1, -2, -3, -5, and -7 families engineered to have identical run lengths and surface attachments. Uniform motor densities were used and microtubule gliding speeds were measured for varying proportions of fast and slow motors. A coarse-grained computational model of gliding assays was developed and found to recapitulate the experiments. Simulations incorporated published force-dependent velocities and run lengths, along with mechanical interactions between motors bound to the same microtubule. The simulations show that the force-dependence of detachment is the key parameter that determines gliding speed in multimotor assays, while motor compliance, surface density, and stall force all play minimal roles. Simulations also provide estimates for force-dependent dissociation rates, suggesting that kinesin-1 and the mitotic motors kinesin-5 and -7 maintain microtubule association against loads, whereas kinesin-2 and -3 readily detach. This work uncovers unexpected motor behavior in multimotor ensembles and clarifies functional differences between kinesins that carry out distinct mechanical tasks in cells.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Biophys J</journal-id>
<journal-id journal-id-type="iso-abbrev">Biophys. J</journal-id>
<journal-title-group>
<journal-title>Biophysical Journal</journal-title>
</journal-title-group>
<issn pub-type="ppub">0006-3495</issn>
<issn pub-type="epub">1542-0086</issn>
<publisher>
<publisher-name>The Biophysical Society</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25418170</article-id>
<article-id pub-id-type="pmc">4213720</article-id>
<article-id pub-id-type="publisher-id">S0006-3495(14)00947-3</article-id>
<article-id pub-id-type="doi">10.1016/j.bpj.2014.09.009</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Molecular Machines, Motors and Nanoscale Biophysics</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Transport by Populations of Fast and Slow Kinesins Uncovers Novel Family-Dependent Motor Characteristics Important for In Vivo Function</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Arpağ</surname>
<given-names>Göker</given-names>
</name>
<xref rid="aff1" ref-type="aff">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Shastry</surname>
<given-names>Shankar</given-names>
</name>
<xref rid="aff2" ref-type="aff">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hancock</surname>
<given-names>William O.</given-names>
</name>
<email>wohbio@engr.psu.edu</email>
<xref rid="aff2" ref-type="aff">2</xref>
<xref rid="cor2" ref-type="corresp">∗∗</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Tüzel</surname>
<given-names>Erkan</given-names>
</name>
<email>tuzel@mailaps.org</email>
<xref rid="aff1" ref-type="aff">1</xref>
<xref rid="cor1" ref-type="corresp"></xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
Department of Physics, Worcester Polytechnic Institute, Worcester, Massachusetts</aff>
<aff id="aff2">
<label>2</label>
Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania</aff>
<author-notes>
<corresp id="cor1">
<label></label>
Corresponding author
<email>tuzel@mailaps.org</email>
</corresp>
<corresp id="cor2">
<label>∗∗</label>
Corresponding author
<email>wohbio@engr.psu.edu</email>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<day>21</day>
<month>10</month>
<year>2014</year>
</pub-date>
<volume>107</volume>
<issue>8</issue>
<fpage>1896</fpage>
<lpage>1904</lpage>
<history>
<date date-type="received">
<day>2</day>
<month>5</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>9</day>
<month>9</month>
<year>2014</year>
</date>
</history>
<permissions>
<copyright-statement>© 2014 by the Biophysical Society.</copyright-statement>
<copyright-year>2014</copyright-year>
<copyright-holder>Biophysical Society</copyright-holder>
</permissions>
<abstract>
<p>Intracellular cargo transport frequently involves multiple motor types, either having opposite directionality or having the same directionality but different speeds. Although significant progress has been made in characterizing kinesin motors at the single-molecule level, predicting their ensemble behavior is challenging and requires tight coupling between experiments and modeling to uncover the underlying motor behavior. To understand how diverse kinesins attached to the same cargo coordinate their movement, we carried out microtubule gliding assays using pairwise mixtures of motors from the kinesin-1, -2, -3, -5, and -7 families engineered to have identical run lengths and surface attachments. Uniform motor densities were used and microtubule gliding speeds were measured for varying proportions of fast and slow motors. A coarse-grained computational model of gliding assays was developed and found to recapitulate the experiments. Simulations incorporated published force-dependent velocities and run lengths, along with mechanical interactions between motors bound to the same microtubule. The simulations show that the force-dependence of detachment is the key parameter that determines gliding speed in multimotor assays, while motor compliance, surface density, and stall force all play minimal roles. Simulations also provide estimates for force-dependent dissociation rates, suggesting that kinesin-1 and the mitotic motors kinesin-5 and -7 maintain microtubule association against loads, whereas kinesin-2 and -3 readily detach. This work uncovers unexpected motor behavior in multimotor ensembles and clarifies functional differences between kinesins that carry out distinct mechanical tasks in cells.</p>
</abstract>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/CyberinfraV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0003579 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0003579 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    CyberinfraV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Thu Oct 27 09:30:58 2016. Site generation: Sun Mar 10 23:08:40 2024