Serveur d'exploration Stress et Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection.

Identifieur interne : 000545 ( PubMed/Curation ); précédent : 000544; suivant : 000546

Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection.

Auteurs : Benjamin Petsch [Allemagne] ; Margit Schnee ; Annette B. Vogel ; Elke Lange ; Bernd Hoffmann ; Daniel Voss ; Thomas Schlake ; Andreas Thess ; Karl-Josef Kallen ; Lothar Stitz ; Thomas Kramps

Source :

RBID : pubmed:23159882

Descripteurs français

English descriptors

Abstract

Despite substantial improvements, influenza vaccine production-and availability-remain suboptimal. Influenza vaccines based on mRNA may offer a solution as sequence-matched, clinical-grade material could be produced reliably and rapidly in a scalable process, allowing quick response to the emergence of pandemic strains. Here we show that mRNA vaccines induce balanced, long-lived and protective immunity to influenza A virus infections in even very young and very old mice and that the vaccine remains protective upon thermal stress. This vaccine format elicits B and T cell-dependent protection and targets multiple antigens, including the highly conserved viral nucleoprotein, indicating its usefulness as a cross-protective vaccine. In ferrets and pigs, mRNA vaccines induce immunological correlates of protection and protective effects similar to those of a licensed influenza vaccine in pigs. Thus, mRNA vaccines could address substantial medical need in the area of influenza prophylaxis and the broader realm of anti-infective vaccinology.

DOI: 10.1038/nbt.2436
PubMed: 23159882

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:23159882

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection.</title>
<author>
<name sortKey="Petsch, Benjamin" sort="Petsch, Benjamin" uniqKey="Petsch B" first="Benjamin" last="Petsch">Benjamin Petsch</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Immunology, Friedrich-Loeffler-Institut, Tübingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Immunology, Friedrich-Loeffler-Institut, Tübingen</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Schnee, Margit" sort="Schnee, Margit" uniqKey="Schnee M" first="Margit" last="Schnee">Margit Schnee</name>
</author>
<author>
<name sortKey="Vogel, Annette B" sort="Vogel, Annette B" uniqKey="Vogel A" first="Annette B" last="Vogel">Annette B. Vogel</name>
</author>
<author>
<name sortKey="Lange, Elke" sort="Lange, Elke" uniqKey="Lange E" first="Elke" last="Lange">Elke Lange</name>
</author>
<author>
<name sortKey="Hoffmann, Bernd" sort="Hoffmann, Bernd" uniqKey="Hoffmann B" first="Bernd" last="Hoffmann">Bernd Hoffmann</name>
</author>
<author>
<name sortKey="Voss, Daniel" sort="Voss, Daniel" uniqKey="Voss D" first="Daniel" last="Voss">Daniel Voss</name>
</author>
<author>
<name sortKey="Schlake, Thomas" sort="Schlake, Thomas" uniqKey="Schlake T" first="Thomas" last="Schlake">Thomas Schlake</name>
</author>
<author>
<name sortKey="Thess, Andreas" sort="Thess, Andreas" uniqKey="Thess A" first="Andreas" last="Thess">Andreas Thess</name>
</author>
<author>
<name sortKey="Kallen, Karl Josef" sort="Kallen, Karl Josef" uniqKey="Kallen K" first="Karl-Josef" last="Kallen">Karl-Josef Kallen</name>
</author>
<author>
<name sortKey="Stitz, Lothar" sort="Stitz, Lothar" uniqKey="Stitz L" first="Lothar" last="Stitz">Lothar Stitz</name>
</author>
<author>
<name sortKey="Kramps, Thomas" sort="Kramps, Thomas" uniqKey="Kramps T" first="Thomas" last="Kramps">Thomas Kramps</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:23159882</idno>
<idno type="pmid">23159882</idno>
<idno type="doi">10.1038/nbt.2436</idno>
<idno type="wicri:Area/PubMed/Corpus">000547</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000547</idno>
<idno type="wicri:Area/PubMed/Curation">000545</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000545</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection.</title>
<author>
<name sortKey="Petsch, Benjamin" sort="Petsch, Benjamin" uniqKey="Petsch B" first="Benjamin" last="Petsch">Benjamin Petsch</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Immunology, Friedrich-Loeffler-Institut, Tübingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Immunology, Friedrich-Loeffler-Institut, Tübingen</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Schnee, Margit" sort="Schnee, Margit" uniqKey="Schnee M" first="Margit" last="Schnee">Margit Schnee</name>
</author>
<author>
<name sortKey="Vogel, Annette B" sort="Vogel, Annette B" uniqKey="Vogel A" first="Annette B" last="Vogel">Annette B. Vogel</name>
</author>
<author>
<name sortKey="Lange, Elke" sort="Lange, Elke" uniqKey="Lange E" first="Elke" last="Lange">Elke Lange</name>
</author>
<author>
<name sortKey="Hoffmann, Bernd" sort="Hoffmann, Bernd" uniqKey="Hoffmann B" first="Bernd" last="Hoffmann">Bernd Hoffmann</name>
</author>
<author>
<name sortKey="Voss, Daniel" sort="Voss, Daniel" uniqKey="Voss D" first="Daniel" last="Voss">Daniel Voss</name>
</author>
<author>
<name sortKey="Schlake, Thomas" sort="Schlake, Thomas" uniqKey="Schlake T" first="Thomas" last="Schlake">Thomas Schlake</name>
</author>
<author>
<name sortKey="Thess, Andreas" sort="Thess, Andreas" uniqKey="Thess A" first="Andreas" last="Thess">Andreas Thess</name>
</author>
<author>
<name sortKey="Kallen, Karl Josef" sort="Kallen, Karl Josef" uniqKey="Kallen K" first="Karl-Josef" last="Kallen">Karl-Josef Kallen</name>
</author>
<author>
<name sortKey="Stitz, Lothar" sort="Stitz, Lothar" uniqKey="Stitz L" first="Lothar" last="Stitz">Lothar Stitz</name>
</author>
<author>
<name sortKey="Kramps, Thomas" sort="Kramps, Thomas" uniqKey="Kramps T" first="Thomas" last="Kramps">Thomas Kramps</name>
</author>
</analytic>
<series>
<title level="j">Nature biotechnology</title>
<idno type="eISSN">1546-1696</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aging (immunology)</term>
<term>Animals</term>
<term>Animals, Newborn</term>
<term>B-Lymphocytes (immunology)</term>
<term>Biotechnology</term>
<term>Cross Protection</term>
<term>Female</term>
<term>Ferrets</term>
<term>Humans</term>
<term>Influenza A virus (genetics)</term>
<term>Influenza A virus (immunology)</term>
<term>Influenza Vaccines (genetics)</term>
<term>Influenza Vaccines (immunology)</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Mice, Inbred C57BL</term>
<term>Mice, Inbred DBA</term>
<term>Molecular Sequence Data</term>
<term>Orthomyxoviridae Infections (immunology)</term>
<term>Orthomyxoviridae Infections (prevention & control)</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Messenger (immunology)</term>
<term>RNA, Viral (genetics)</term>
<term>RNA, Viral (immunology)</term>
<term>Rats</term>
<term>Rats, Inbred Lew</term>
<term>Sus scrofa</term>
<term>T-Lymphocytes (immunology)</term>
<term>Vaccines, Synthetic (genetics)</term>
<term>Vaccines, Synthetic (immunology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (génétique)</term>
<term>ARN messager (immunologie)</term>
<term>ARN viral (génétique)</term>
<term>ARN viral (immunologie)</term>
<term>Animaux</term>
<term>Animaux nouveau-nés</term>
<term>Biotechnologie</term>
<term>Données de séquences moléculaires</term>
<term>Femelle</term>
<term>Furets</term>
<term>Humains</term>
<term>Infections à Orthomyxoviridae ()</term>
<term>Infections à Orthomyxoviridae (immunologie)</term>
<term>Lymphocytes B (immunologie)</term>
<term>Lymphocytes T (immunologie)</term>
<term>Protection croisée</term>
<term>Rats</term>
<term>Rats de lignée LEW</term>
<term>Souris</term>
<term>Souris de lignée BALB C</term>
<term>Souris de lignée C57BL</term>
<term>Souris de lignée DBA</term>
<term>Sus scrofa</term>
<term>Vaccins antigrippaux (génétique)</term>
<term>Vaccins antigrippaux (immunologie)</term>
<term>Vaccins synthétiques (génétique)</term>
<term>Vaccins synthétiques (immunologie)</term>
<term>Vieillissement (immunologie)</term>
<term>Virus de la grippe A (génétique)</term>
<term>Virus de la grippe A (immunologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Influenza Vaccines</term>
<term>RNA, Messenger</term>
<term>RNA, Viral</term>
<term>Vaccines, Synthetic</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Influenza A virus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>ARN viral</term>
<term>Vaccins antigrippaux</term>
<term>Vaccins synthétiques</term>
<term>Virus de la grippe A</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>ARN messager</term>
<term>ARN viral</term>
<term>Infections à Orthomyxoviridae</term>
<term>Lymphocytes B</term>
<term>Lymphocytes T</term>
<term>Vaccins antigrippaux</term>
<term>Vaccins synthétiques</term>
<term>Vieillissement</term>
<term>Virus de la grippe A</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Aging</term>
<term>B-Lymphocytes</term>
<term>Influenza A virus</term>
<term>Influenza Vaccines</term>
<term>Orthomyxoviridae Infections</term>
<term>RNA, Messenger</term>
<term>RNA, Viral</term>
<term>T-Lymphocytes</term>
<term>Vaccines, Synthetic</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Orthomyxoviridae Infections</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Animals, Newborn</term>
<term>Biotechnology</term>
<term>Cross Protection</term>
<term>Female</term>
<term>Ferrets</term>
<term>Humans</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Mice, Inbred C57BL</term>
<term>Mice, Inbred DBA</term>
<term>Molecular Sequence Data</term>
<term>Rats</term>
<term>Rats, Inbred Lew</term>
<term>Sus scrofa</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Animaux nouveau-nés</term>
<term>Biotechnologie</term>
<term>Données de séquences moléculaires</term>
<term>Femelle</term>
<term>Furets</term>
<term>Humains</term>
<term>Infections à Orthomyxoviridae</term>
<term>Protection croisée</term>
<term>Rats</term>
<term>Rats de lignée LEW</term>
<term>Souris</term>
<term>Souris de lignée BALB C</term>
<term>Souris de lignée C57BL</term>
<term>Souris de lignée DBA</term>
<term>Sus scrofa</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Despite substantial improvements, influenza vaccine production-and availability-remain suboptimal. Influenza vaccines based on mRNA may offer a solution as sequence-matched, clinical-grade material could be produced reliably and rapidly in a scalable process, allowing quick response to the emergence of pandemic strains. Here we show that mRNA vaccines induce balanced, long-lived and protective immunity to influenza A virus infections in even very young and very old mice and that the vaccine remains protective upon thermal stress. This vaccine format elicits B and T cell-dependent protection and targets multiple antigens, including the highly conserved viral nucleoprotein, indicating its usefulness as a cross-protective vaccine. In ferrets and pigs, mRNA vaccines induce immunological correlates of protection and protective effects similar to those of a licensed influenza vaccine in pigs. Thus, mRNA vaccines could address substantial medical need in the area of influenza prophylaxis and the broader realm of anti-infective vaccinology.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23159882</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>05</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1546-1696</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>30</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2012</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Nature biotechnology</Title>
<ISOAbbreviation>Nat. Biotechnol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection.</ArticleTitle>
<Pagination>
<MedlinePgn>1210-6</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/nbt.2436</ELocationID>
<Abstract>
<AbstractText>Despite substantial improvements, influenza vaccine production-and availability-remain suboptimal. Influenza vaccines based on mRNA may offer a solution as sequence-matched, clinical-grade material could be produced reliably and rapidly in a scalable process, allowing quick response to the emergence of pandemic strains. Here we show that mRNA vaccines induce balanced, long-lived and protective immunity to influenza A virus infections in even very young and very old mice and that the vaccine remains protective upon thermal stress. This vaccine format elicits B and T cell-dependent protection and targets multiple antigens, including the highly conserved viral nucleoprotein, indicating its usefulness as a cross-protective vaccine. In ferrets and pigs, mRNA vaccines induce immunological correlates of protection and protective effects similar to those of a licensed influenza vaccine in pigs. Thus, mRNA vaccines could address substantial medical need in the area of influenza prophylaxis and the broader realm of anti-infective vaccinology.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Petsch</LastName>
<ForeName>Benjamin</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Institute of Immunology, Friedrich-Loeffler-Institut, Tübingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schnee</LastName>
<ForeName>Margit</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Vogel</LastName>
<ForeName>Annette B</ForeName>
<Initials>AB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lange</LastName>
<ForeName>Elke</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hoffmann</LastName>
<ForeName>Bernd</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Voss</LastName>
<ForeName>Daniel</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schlake</LastName>
<ForeName>Thomas</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Thess</LastName>
<ForeName>Andreas</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kallen</LastName>
<ForeName>Karl-Josef</ForeName>
<Initials>KJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Stitz</LastName>
<ForeName>Lothar</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kramps</LastName>
<ForeName>Thomas</ForeName>
<Initials>T</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>ABD95991</AccessionNumber>
<AccessionNumber>ABO21709</AccessionNumber>
<AccessionNumber>ABO21710</AccessionNumber>
<AccessionNumber>ABO21711</AccessionNumber>
<AccessionNumber>ACU65077</AccessionNumber>
<AccessionNumber>ACV82259</AccessionNumber>
<AccessionNumber>CAZ65588</AccessionNumber>
<AccessionNumber>CAZ65589</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>11</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Nat Biotechnol</MedlineTA>
<NlmUniqueID>9604648</NlmUniqueID>
<ISSNLinking>1087-0156</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007252">Influenza Vaccines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012367">RNA, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014614">Vaccines, Synthetic</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Nat Biotechnol. 2012 Dec;30(12):1202-4</RefSource>
<PMID Version="1">23222788</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000375" MajorTopicYN="N">Aging</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000831" MajorTopicYN="N">Animals, Newborn</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001402" MajorTopicYN="N">B-Lymphocytes</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001709" MajorTopicYN="N">Biotechnology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056738" MajorTopicYN="N">Cross Protection</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005289" MajorTopicYN="N">Ferrets</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009980" MajorTopicYN="N">Influenza A virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007252" MajorTopicYN="N">Influenza Vaccines</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008807" MajorTopicYN="N">Mice, Inbred BALB C</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008811" MajorTopicYN="N">Mice, Inbred DBA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009976" MajorTopicYN="N">Orthomyxoviridae Infections</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012367" MajorTopicYN="N">RNA, Viral</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051381" MajorTopicYN="N">Rats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011917" MajorTopicYN="N">Rats, Inbred Lew</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034421" MajorTopicYN="N">Sus scrofa</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013601" MajorTopicYN="N">T-Lymphocytes</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014614" MajorTopicYN="N">Vaccines, Synthetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>07</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>10</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>11</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>11</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>5</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23159882</ArticleId>
<ArticleId IdType="pii">nbt.2436</ArticleId>
<ArticleId IdType="doi">10.1038/nbt.2436</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Clin Pharmacol Ther. 2007 Dec;82(6):745-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17971813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Med. 2006;127:23-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16988444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2006 Nov;24(11):1377-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17093488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):3877-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19237568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Berl Munch Tierarztl Wochenschr. 2010 Jul-Aug;123(7-8):286-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20690540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2012 Jan 29;18(2):274-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22286307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Handb Exp Pharmacol. 2008;(183):221-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18071662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2001 Aug 14;19(31):4479-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11483274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Aug;84(15):7662-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20484500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2008 Aug 1;47(3):401-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18558875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(1):e29732</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22238645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gene Med. 2012 Jun;14(6):428-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22262664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(3):e32400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22427834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2009 Sep;90(Pt 9):2119-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19592456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Clin Microbiol Infect Dis. 1996 Feb;15(2):121-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8801083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2007 Dec;18(6):529-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18083548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 1983 Jul 7;309(1):13-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6602294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Feb 23;5(2):e9349</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20186321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1984 Dec 6-12;312(5994):548-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6150440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1993 Mar 19;259(5102):1745-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8456302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2005 Sep;23(9):1059-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16151391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Vaccines. 2008 Aug;7(6):783-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18665776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2007 Dec 17;25(52):8833-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18023942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br Med Bull. 1979 Jan;35(1):69-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">367490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2012 Feb 8;30(7):1297-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22207090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 May;84(9):4442-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20181699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunother. 2011 Jan;34(1):1-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21150709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2008 Dec;26(12):659-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18977045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2006 May;7(5):449-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16622432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Immunol. 2000 Jan;30(1):1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10602021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Feb 6;136(3):402-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19203576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2010 Nov 18;363(21):2036-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21083388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4269-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22371588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2006 Sep 1;177(5):2888-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16920924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2010 Dec;16(12):1389-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21135852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2010 Oct 29;33(4):504-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21029961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2009 Mar 15;182(6):3469-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19265125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 1997 Feb 15;158(4):1507-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9029084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2000 May;61(1):94-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10745239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MMWR Recomm Rep. 2010 Aug 6;59(RR-8):1-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20689501</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/StressCovidV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000545 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000545 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    StressCovidV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:23159882
   |texte=   Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:23159882" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a StressCovidV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed May 6 16:44:09 2020. Site generation: Sun Mar 28 08:26:57 2021