Serveur d'exploration Stress et Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nox1 oxidase suppresses influenza a virus-induced lung inflammation and oxidative stress.

Identifieur interne : 000529 ( PubMed/Curation ); précédent : 000528; suivant : 000530

Nox1 oxidase suppresses influenza a virus-induced lung inflammation and oxidative stress.

Auteurs : Stavros Selemidis [Australie] ; Huei Jiunn Seow ; Brad R S. Broughton ; Antony Vinh ; Steven Bozinovski ; Christopher G. Sobey ; Grant R. Drummond ; Ross Vlahos

Source :

RBID : pubmed:23577160

Descripteurs français

English descriptors

Abstract

Influenza A virus infection is an ongoing clinical problem and thus, there is an urgent need to understand the mechanisms that regulate the lung inflammation in order to unravel novel generic pharmacological strategies. Evidence indicates that the Nox2-containing NADPH oxidase enzyme promotes influenza A virus-induced lung oxidative stress, inflammation and dysfunction via ROS generation. In addition, lung epithelial and endothelial cells express the Nox1 isoform of NADPH oxidase, placing this enzyme at key sites to regulate influenza A virus-induced lung inflammation. The aim of this study was to investigate whether Nox1 oxidase regulates the inflammatory response and the oxidative stress to influenza infection in vivo in mice. Male WT and Nox1-deficient (Nox1(-/y)) mice were infected with the moderately pathogenic HkX-31 (H3N2, 1×10(4) PFU) influenza A virus for analysis of bodyweight, airways inflammation, oxidative stress, viral titre, lung histopathology, and cytokine/chemokine expression at 3 and 7 days post infection. HkX-31 virus infection of Nox1(-/y) mice resulted in significantly greater: loss of bodyweight (Day 3); BALF neutrophilia, peri-bronchial, peri-vascular and alveolar inflammation; Nox2-dependent inflammatory cell ROS production and peri-bronchial, epithelial and endothelial oxidative stress. The expression of pro-inflammatory cytokines including CCL2, CCL3, CXCL2, IL-1β, IL-6, GM-CSF and TNF-α was higher in Nox1(-/y) lungs compared to WT mice at Day 3, however, the expression of CCL2, CCL3, CXCL2, IFN-γ and the anti-inflammatory cytokine IL-10 were lower in lungs of Nox1(-/y) mice vs. WT mice at Day 7. Lung viral titre, and airways infiltration of active CD8(+) and CD4(+) T lymphocytes, and of Tregs were similar between WT and Nox1(-/y) mice. In conclusion, Nox1 oxidase suppresses influenza A virus induced lung inflammation and oxidative stress in mice particularly at the early phases of the infection. Nox1 and Nox2 oxidases appear to have opposing roles in the regulation of inflammation caused by influenza A viruses.

DOI: 10.1371/journal.pone.0060792
PubMed: 23577160

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:23577160

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Nox1 oxidase suppresses influenza a virus-induced lung inflammation and oxidative stress.</title>
<author>
<name sortKey="Selemidis, Stavros" sort="Selemidis, Stavros" uniqKey="Selemidis S" first="Stavros" last="Selemidis">Stavros Selemidis</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pharmacology, Monash University, Clayton, Victoria, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Pharmacology, Monash University, Clayton, Victoria</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Seow, Huei Jiunn" sort="Seow, Huei Jiunn" uniqKey="Seow H" first="Huei Jiunn" last="Seow">Huei Jiunn Seow</name>
</author>
<author>
<name sortKey="Broughton, Brad R S" sort="Broughton, Brad R S" uniqKey="Broughton B" first="Brad R S" last="Broughton">Brad R S. Broughton</name>
</author>
<author>
<name sortKey="Vinh, Antony" sort="Vinh, Antony" uniqKey="Vinh A" first="Antony" last="Vinh">Antony Vinh</name>
</author>
<author>
<name sortKey="Bozinovski, Steven" sort="Bozinovski, Steven" uniqKey="Bozinovski S" first="Steven" last="Bozinovski">Steven Bozinovski</name>
</author>
<author>
<name sortKey="Sobey, Christopher G" sort="Sobey, Christopher G" uniqKey="Sobey C" first="Christopher G" last="Sobey">Christopher G. Sobey</name>
</author>
<author>
<name sortKey="Drummond, Grant R" sort="Drummond, Grant R" uniqKey="Drummond G" first="Grant R" last="Drummond">Grant R. Drummond</name>
</author>
<author>
<name sortKey="Vlahos, Ross" sort="Vlahos, Ross" uniqKey="Vlahos R" first="Ross" last="Vlahos">Ross Vlahos</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23577160</idno>
<idno type="pmid">23577160</idno>
<idno type="doi">10.1371/journal.pone.0060792</idno>
<idno type="wicri:Area/PubMed/Corpus">000531</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000531</idno>
<idno type="wicri:Area/PubMed/Curation">000529</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000529</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Nox1 oxidase suppresses influenza a virus-induced lung inflammation and oxidative stress.</title>
<author>
<name sortKey="Selemidis, Stavros" sort="Selemidis, Stavros" uniqKey="Selemidis S" first="Stavros" last="Selemidis">Stavros Selemidis</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pharmacology, Monash University, Clayton, Victoria, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Pharmacology, Monash University, Clayton, Victoria</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Seow, Huei Jiunn" sort="Seow, Huei Jiunn" uniqKey="Seow H" first="Huei Jiunn" last="Seow">Huei Jiunn Seow</name>
</author>
<author>
<name sortKey="Broughton, Brad R S" sort="Broughton, Brad R S" uniqKey="Broughton B" first="Brad R S" last="Broughton">Brad R S. Broughton</name>
</author>
<author>
<name sortKey="Vinh, Antony" sort="Vinh, Antony" uniqKey="Vinh A" first="Antony" last="Vinh">Antony Vinh</name>
</author>
<author>
<name sortKey="Bozinovski, Steven" sort="Bozinovski, Steven" uniqKey="Bozinovski S" first="Steven" last="Bozinovski">Steven Bozinovski</name>
</author>
<author>
<name sortKey="Sobey, Christopher G" sort="Sobey, Christopher G" uniqKey="Sobey C" first="Christopher G" last="Sobey">Christopher G. Sobey</name>
</author>
<author>
<name sortKey="Drummond, Grant R" sort="Drummond, Grant R" uniqKey="Drummond G" first="Grant R" last="Drummond">Grant R. Drummond</name>
</author>
<author>
<name sortKey="Vlahos, Ross" sort="Vlahos, Ross" uniqKey="Vlahos R" first="Ross" last="Vlahos">Ross Vlahos</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Body Weight</term>
<term>Bronchoalveolar Lavage Fluid (virology)</term>
<term>Chemokines (metabolism)</term>
<term>Gene Deletion</term>
<term>Inflammation (enzymology)</term>
<term>Inflammation (immunology)</term>
<term>Inflammation (metabolism)</term>
<term>Inflammation (virology)</term>
<term>Influenza A virus (physiology)</term>
<term>Lung (enzymology)</term>
<term>Lung (immunology)</term>
<term>Lung (metabolism)</term>
<term>Lung (virology)</term>
<term>Male</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>NADH, NADPH Oxidoreductases (deficiency)</term>
<term>NADH, NADPH Oxidoreductases (genetics)</term>
<term>NADH, NADPH Oxidoreductases (metabolism)</term>
<term>NADPH Oxidase 1</term>
<term>Oxidative Stress</term>
<term>Peroxynitrous Acid (biosynthesis)</term>
<term>Peroxynitrous Acid (metabolism)</term>
<term>Phenotype</term>
<term>Superoxides (metabolism)</term>
<term>T-Lymphocyte Subsets (immunology)</term>
<term>Viral Load</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide peroxynitreux (biosynthèse)</term>
<term>Acide peroxynitreux (métabolisme)</term>
<term>Animaux</term>
<term>Charge virale</term>
<term>Chimiokines (métabolisme)</term>
<term>Délétion de gène</term>
<term>Inflammation (enzymologie)</term>
<term>Inflammation (immunologie)</term>
<term>Inflammation (métabolisme)</term>
<term>Inflammation (virologie)</term>
<term>Liquide de lavage bronchoalvéolaire (virologie)</term>
<term>Mâle</term>
<term>NADH, NADPH oxidoreductases (déficit)</term>
<term>NADH, NADPH oxidoreductases (génétique)</term>
<term>NADH, NADPH oxidoreductases (métabolisme)</term>
<term>Phénotype</term>
<term>Poids du corps</term>
<term>Poumon (enzymologie)</term>
<term>Poumon (immunologie)</term>
<term>Poumon (métabolisme)</term>
<term>Poumon (virologie)</term>
<term>Souris</term>
<term>Souris de lignée C57BL</term>
<term>Sous-populations de lymphocytes T (immunologie)</term>
<term>Stress oxydatif</term>
<term>Superoxydes (métabolisme)</term>
<term>Virus de la grippe A (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Peroxynitrous Acid</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>NADH, NADPH Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>NADH, NADPH Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Chemokines</term>
<term>NADH, NADPH Oxidoreductases</term>
<term>Peroxynitrous Acid</term>
<term>Superoxides</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Acide peroxynitreux</term>
</keywords>
<keywords scheme="MESH" qualifier="déficit" xml:lang="fr">
<term>NADH, NADPH oxidoreductases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Inflammation</term>
<term>Poumon</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Inflammation</term>
<term>Lung</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>NADH, NADPH oxidoreductases</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Inflammation</term>
<term>Poumon</term>
<term>Sous-populations de lymphocytes T</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Inflammation</term>
<term>Lung</term>
<term>T-Lymphocyte Subsets</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Inflammation</term>
<term>Lung</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide peroxynitreux</term>
<term>Chimiokines</term>
<term>Inflammation</term>
<term>NADH, NADPH oxidoreductases</term>
<term>Poumon</term>
<term>Superoxydes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Virus de la grippe A</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Influenza A virus</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Inflammation</term>
<term>Liquide de lavage bronchoalvéolaire</term>
<term>Poumon</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Bronchoalveolar Lavage Fluid</term>
<term>Inflammation</term>
<term>Lung</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Body Weight</term>
<term>Gene Deletion</term>
<term>Male</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>NADPH Oxidase 1</term>
<term>Oxidative Stress</term>
<term>Phenotype</term>
<term>Viral Load</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Charge virale</term>
<term>Délétion de gène</term>
<term>Mâle</term>
<term>Phénotype</term>
<term>Poids du corps</term>
<term>Souris</term>
<term>Souris de lignée C57BL</term>
<term>Stress oxydatif</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Influenza A virus infection is an ongoing clinical problem and thus, there is an urgent need to understand the mechanisms that regulate the lung inflammation in order to unravel novel generic pharmacological strategies. Evidence indicates that the Nox2-containing NADPH oxidase enzyme promotes influenza A virus-induced lung oxidative stress, inflammation and dysfunction via ROS generation. In addition, lung epithelial and endothelial cells express the Nox1 isoform of NADPH oxidase, placing this enzyme at key sites to regulate influenza A virus-induced lung inflammation. The aim of this study was to investigate whether Nox1 oxidase regulates the inflammatory response and the oxidative stress to influenza infection in vivo in mice. Male WT and Nox1-deficient (Nox1(-/y)) mice were infected with the moderately pathogenic HkX-31 (H3N2, 1×10(4) PFU) influenza A virus for analysis of bodyweight, airways inflammation, oxidative stress, viral titre, lung histopathology, and cytokine/chemokine expression at 3 and 7 days post infection. HkX-31 virus infection of Nox1(-/y) mice resulted in significantly greater: loss of bodyweight (Day 3); BALF neutrophilia, peri-bronchial, peri-vascular and alveolar inflammation; Nox2-dependent inflammatory cell ROS production and peri-bronchial, epithelial and endothelial oxidative stress. The expression of pro-inflammatory cytokines including CCL2, CCL3, CXCL2, IL-1β, IL-6, GM-CSF and TNF-α was higher in Nox1(-/y) lungs compared to WT mice at Day 3, however, the expression of CCL2, CCL3, CXCL2, IFN-γ and the anti-inflammatory cytokine IL-10 were lower in lungs of Nox1(-/y) mice vs. WT mice at Day 7. Lung viral titre, and airways infiltration of active CD8(+) and CD4(+) T lymphocytes, and of Tregs were similar between WT and Nox1(-/y) mice. In conclusion, Nox1 oxidase suppresses influenza A virus induced lung inflammation and oxidative stress in mice particularly at the early phases of the infection. Nox1 and Nox2 oxidases appear to have opposing roles in the regulation of inflammation caused by influenza A viruses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23577160</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>10</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Nox1 oxidase suppresses influenza a virus-induced lung inflammation and oxidative stress.</ArticleTitle>
<Pagination>
<MedlinePgn>e60792</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0060792</ELocationID>
<Abstract>
<AbstractText>Influenza A virus infection is an ongoing clinical problem and thus, there is an urgent need to understand the mechanisms that regulate the lung inflammation in order to unravel novel generic pharmacological strategies. Evidence indicates that the Nox2-containing NADPH oxidase enzyme promotes influenza A virus-induced lung oxidative stress, inflammation and dysfunction via ROS generation. In addition, lung epithelial and endothelial cells express the Nox1 isoform of NADPH oxidase, placing this enzyme at key sites to regulate influenza A virus-induced lung inflammation. The aim of this study was to investigate whether Nox1 oxidase regulates the inflammatory response and the oxidative stress to influenza infection in vivo in mice. Male WT and Nox1-deficient (Nox1(-/y)) mice were infected with the moderately pathogenic HkX-31 (H3N2, 1×10(4) PFU) influenza A virus for analysis of bodyweight, airways inflammation, oxidative stress, viral titre, lung histopathology, and cytokine/chemokine expression at 3 and 7 days post infection. HkX-31 virus infection of Nox1(-/y) mice resulted in significantly greater: loss of bodyweight (Day 3); BALF neutrophilia, peri-bronchial, peri-vascular and alveolar inflammation; Nox2-dependent inflammatory cell ROS production and peri-bronchial, epithelial and endothelial oxidative stress. The expression of pro-inflammatory cytokines including CCL2, CCL3, CXCL2, IL-1β, IL-6, GM-CSF and TNF-α was higher in Nox1(-/y) lungs compared to WT mice at Day 3, however, the expression of CCL2, CCL3, CXCL2, IFN-γ and the anti-inflammatory cytokine IL-10 were lower in lungs of Nox1(-/y) mice vs. WT mice at Day 7. Lung viral titre, and airways infiltration of active CD8(+) and CD4(+) T lymphocytes, and of Tregs were similar between WT and Nox1(-/y) mice. In conclusion, Nox1 oxidase suppresses influenza A virus induced lung inflammation and oxidative stress in mice particularly at the early phases of the infection. Nox1 and Nox2 oxidases appear to have opposing roles in the regulation of inflammation caused by influenza A viruses.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Selemidis</LastName>
<ForeName>Stavros</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology, Monash University, Clayton, Victoria, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Seow</LastName>
<ForeName>Huei Jiunn</ForeName>
<Initials>HJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Broughton</LastName>
<ForeName>Brad R S</ForeName>
<Initials>BR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Vinh</LastName>
<ForeName>Antony</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bozinovski</LastName>
<ForeName>Steven</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sobey</LastName>
<ForeName>Christopher G</ForeName>
<Initials>CG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Drummond</LastName>
<ForeName>Grant R</ForeName>
<Initials>GR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Vlahos</LastName>
<ForeName>Ross</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>04</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018925">Chemokines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>11062-77-4</RegistryNumber>
<NameOfSubstance UI="D013481">Superoxides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>14691-52-2</RegistryNumber>
<NameOfSubstance UI="D030421">Peroxynitrous Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.6.-</RegistryNumber>
<NameOfSubstance UI="D009247">NADH, NADPH Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.6.3.-</RegistryNumber>
<NameOfSubstance UI="D000074624">NADPH Oxidase 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.6.3.-</RegistryNumber>
<NameOfSubstance UI="C000614711">NOX1 protein, mouse</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001835" MajorTopicYN="N">Body Weight</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001992" MajorTopicYN="N">Bronchoalveolar Lavage Fluid</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018925" MajorTopicYN="N">Chemokines</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017353" MajorTopicYN="N">Gene Deletion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007249" MajorTopicYN="N">Inflammation</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009980" MajorTopicYN="N">Influenza A virus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008168" MajorTopicYN="N">Lung</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009247" MajorTopicYN="N">NADH, NADPH Oxidoreductases</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000074624" MajorTopicYN="N">NADPH Oxidase 1</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="Y">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030421" MajorTopicYN="N">Peroxynitrous Acid</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013481" MajorTopicYN="N">Superoxides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016176" MajorTopicYN="N">T-Lymphocyte Subsets</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019562" MajorTopicYN="N">Viral Load</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>10</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>03</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>4</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>4</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>10</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23577160</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0060792</ArticleId>
<ArticleId IdType="pii">PONE-D-12-32501</ArticleId>
<ArticleId IdType="pmc">PMC3620107</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2006 May;290(5):L931-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16361358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2448-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8637894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Immunol. 2006 Jun;36(6):1364-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16703568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Jan 18;445(7125):319-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17230189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Cell Biol. 2007 Feb-Mar;85(2):85-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17213831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cardiovasc Res. 2007 Jul 15;75(2):349-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17568572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Drug Discov. 2007 Aug;6(8):662-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17667957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Endocrinol Metab. 2007 Dec;293(6):E1564-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17940214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 May;82(9):4265-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18287245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Apr 18;133(2):235-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18423196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Ther. 2008 Dec;120(3):254-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18804121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pulm Pharmacol Ther. 2009 Jun;22(3):199-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19121406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Naunyn Schmiedebergs Arch Pharmacol. 2009 Aug;380(2):193-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19337723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 Jun;11(6):1313-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19072143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 2009 Nov 15;180(10):972-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19661248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2009 Dec 1;183(11):7441-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19917678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Heart Circ Physiol. 2010 Jan;298(1):H24-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19837950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Care. 2009;13(6):R201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20003352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Mar 1;12(5):583-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19737091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Exp Pharmacol Physiol. 2010 Apr;37(4):429-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19843095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2010 Jun 15;48(12):1626-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20347035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 2010 Jul 1;182(1):34-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20203243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011;7(2):e1001271</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21304882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(3):e17618</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21423798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Drug Discov. 2011 Jun;10(6):453-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21629295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Sep 16;146(6):980-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21925319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Pharmacol Sci. 2012 Jan;33(1):3-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21962460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(10):e48326</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23118986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2013 Jan;48(1):17-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23002098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2001 Jul;64(3):262-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11424113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Oct 7;431(7009):703-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15470432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 1984 Feb;43(2):457-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6693167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1989 May 26;244(4907):974-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2543070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2006 May;7(5):449-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16622432</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/StressCovidV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000529 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000529 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    StressCovidV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:23577160
   |texte=   Nox1 oxidase suppresses influenza a virus-induced lung inflammation and oxidative stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:23577160" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a StressCovidV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed May 6 16:44:09 2020. Site generation: Sun Mar 28 08:26:57 2021