Serveur d'exploration Stress et Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification of 23-(s)-2-amino-3-phenylpropanoyl-silybin as an antiviral agent for influenza A virus infection in vitro and in vivo.

Identifieur interne : 000515 ( PubMed/Curation ); précédent : 000514; suivant : 000516

Identification of 23-(s)-2-amino-3-phenylpropanoyl-silybin as an antiviral agent for influenza A virus infection in vitro and in vivo.

Auteurs : Jian-Ping Dai [République populaire de Chine] ; Li-Qi Wu ; Rui Li ; Xiang-Feng Zhao ; Qian-Ying Wan ; Xiao-Xuan Chen ; Wei-Zhong Li ; Ge-Fei Wang ; Kang-Sheng Li

Source :

RBID : pubmed:23836164

Descripteurs français

English descriptors

Abstract

It has been reported that autophagy is involved in the replication of many viruses. In this study, we screened 89 medicinal plants, using an assay based on the inhibition of the formation of the Atg12-Atg5/Atg16 heterotrimer, an important regulator of autophagy, and selected Silybum marianum L. for further study. An antiviral assay indicated that silybin (S0), the major active compound of S. marianum L., can inhibit influenza A virus (IAV) infection. We later synthesized 5 silybin derivatives (S1 through S5) and found that 23-(S)-2-amino-3-phenylpropanoyl-silybin (S3) had the best activity. When we compared the polarities of the substituent groups, we found that the hydrophobicity of the substituent groups was positively correlated with their activities. We further studied the mechanisms of action of these compounds and determined that S0 and S3 also inhibited both the formation of the Atg12-Atg5/Atg16 heterotrimer and the elevated autophagy induced by IAV infection. In addition, we found that S0 and S3 could inhibit several components induced by IAV infection, including oxidative stress, the activation of extracellular signal-regulated kinase (ERK)/p38 mitogen-activated protein kinase (MAPK) and IκB kinase (IKK) pathways, and the expression of autophagic genes, especially Atg7 and Atg3. All of these components have been reported to be related to the formation of the Atg12-Atg5/Atg16 heterotrimer, which might validate our screening strategy. Finally, we demonstrated that S3 can significantly reduce influenza virus replication and the associated mortality in infected mice. In conclusion, we identified 23-(S)-2-amino-3-phenylpropanoyl-silybin as a promising inhibitor of IAV infection.

DOI: 10.1128/AAC.00759-13
PubMed: 23836164

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:23836164

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identification of 23-(s)-2-amino-3-phenylpropanoyl-silybin as an antiviral agent for influenza A virus infection in vitro and in vivo.</title>
<author>
<name sortKey="Dai, Jian Ping" sort="Dai, Jian Ping" uniqKey="Dai J" first="Jian-Ping" last="Dai">Jian-Ping Dai</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wu, Li Qi" sort="Wu, Li Qi" uniqKey="Wu L" first="Li-Qi" last="Wu">Li-Qi Wu</name>
</author>
<author>
<name sortKey="Li, Rui" sort="Li, Rui" uniqKey="Li R" first="Rui" last="Li">Rui Li</name>
</author>
<author>
<name sortKey="Zhao, Xiang Feng" sort="Zhao, Xiang Feng" uniqKey="Zhao X" first="Xiang-Feng" last="Zhao">Xiang-Feng Zhao</name>
</author>
<author>
<name sortKey="Wan, Qian Ying" sort="Wan, Qian Ying" uniqKey="Wan Q" first="Qian-Ying" last="Wan">Qian-Ying Wan</name>
</author>
<author>
<name sortKey="Chen, Xiao Xuan" sort="Chen, Xiao Xuan" uniqKey="Chen X" first="Xiao-Xuan" last="Chen">Xiao-Xuan Chen</name>
</author>
<author>
<name sortKey="Li, Wei Zhong" sort="Li, Wei Zhong" uniqKey="Li W" first="Wei-Zhong" last="Li">Wei-Zhong Li</name>
</author>
<author>
<name sortKey="Wang, Ge Fei" sort="Wang, Ge Fei" uniqKey="Wang G" first="Ge-Fei" last="Wang">Ge-Fei Wang</name>
</author>
<author>
<name sortKey="Li, Kang Sheng" sort="Li, Kang Sheng" uniqKey="Li K" first="Kang-Sheng" last="Li">Kang-Sheng Li</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23836164</idno>
<idno type="pmid">23836164</idno>
<idno type="doi">10.1128/AAC.00759-13</idno>
<idno type="wicri:Area/PubMed/Corpus">000517</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000517</idno>
<idno type="wicri:Area/PubMed/Curation">000515</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000515</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Identification of 23-(s)-2-amino-3-phenylpropanoyl-silybin as an antiviral agent for influenza A virus infection in vitro and in vivo.</title>
<author>
<name sortKey="Dai, Jian Ping" sort="Dai, Jian Ping" uniqKey="Dai J" first="Jian-Ping" last="Dai">Jian-Ping Dai</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wu, Li Qi" sort="Wu, Li Qi" uniqKey="Wu L" first="Li-Qi" last="Wu">Li-Qi Wu</name>
</author>
<author>
<name sortKey="Li, Rui" sort="Li, Rui" uniqKey="Li R" first="Rui" last="Li">Rui Li</name>
</author>
<author>
<name sortKey="Zhao, Xiang Feng" sort="Zhao, Xiang Feng" uniqKey="Zhao X" first="Xiang-Feng" last="Zhao">Xiang-Feng Zhao</name>
</author>
<author>
<name sortKey="Wan, Qian Ying" sort="Wan, Qian Ying" uniqKey="Wan Q" first="Qian-Ying" last="Wan">Qian-Ying Wan</name>
</author>
<author>
<name sortKey="Chen, Xiao Xuan" sort="Chen, Xiao Xuan" uniqKey="Chen X" first="Xiao-Xuan" last="Chen">Xiao-Xuan Chen</name>
</author>
<author>
<name sortKey="Li, Wei Zhong" sort="Li, Wei Zhong" uniqKey="Li W" first="Wei-Zhong" last="Li">Wei-Zhong Li</name>
</author>
<author>
<name sortKey="Wang, Ge Fei" sort="Wang, Ge Fei" uniqKey="Wang G" first="Ge-Fei" last="Wang">Ge-Fei Wang</name>
</author>
<author>
<name sortKey="Li, Kang Sheng" sort="Li, Kang Sheng" uniqKey="Li K" first="Kang-Sheng" last="Li">Kang-Sheng Li</name>
</author>
</analytic>
<series>
<title level="j">Antimicrobial agents and chemotherapy</title>
<idno type="eISSN">1098-6596</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Antiviral Agents (chemical synthesis)</term>
<term>Antiviral Agents (isolation & purification)</term>
<term>Antiviral Agents (pharmacology)</term>
<term>Autophagy (drug effects)</term>
<term>Autophagy-Related Protein 12</term>
<term>Autophagy-Related Protein 5</term>
<term>Autophagy-Related Proteins</term>
<term>Carrier Proteins (antagonists & inhibitors)</term>
<term>Carrier Proteins (genetics)</term>
<term>Carrier Proteins (metabolism)</term>
<term>Chlorocebus aethiops</term>
<term>Dogs</term>
<term>Gene Expression Regulation</term>
<term>High-Throughput Screening Assays</term>
<term>Humans</term>
<term>Influenza A Virus, H1N1 Subtype (drug effects)</term>
<term>Influenza A Virus, H1N1 Subtype (growth & development)</term>
<term>Madin Darby Canine Kidney Cells</term>
<term>Microtubule-Associated Proteins (antagonists & inhibitors)</term>
<term>Microtubule-Associated Proteins (genetics)</term>
<term>Microtubule-Associated Proteins (metabolism)</term>
<term>Milk Thistle (chemistry)</term>
<term>Mitogen-Activated Protein Kinases (antagonists & inhibitors)</term>
<term>Mitogen-Activated Protein Kinases (genetics)</term>
<term>Mitogen-Activated Protein Kinases (metabolism)</term>
<term>Oxidative Stress (drug effects)</term>
<term>Plant Extracts (chemistry)</term>
<term>Plasmids</term>
<term>Protein Multimerization (drug effects)</term>
<term>RNA, Small Interfering (genetics)</term>
<term>RNA, Small Interfering (metabolism)</term>
<term>Signal Transduction</term>
<term>Silymarin (analogs & derivatives)</term>
<term>Silymarin (chemical synthesis)</term>
<term>Silymarin (isolation & purification)</term>
<term>Silymarin (pharmacology)</term>
<term>Small Ubiquitin-Related Modifier Proteins (antagonists & inhibitors)</term>
<term>Small Ubiquitin-Related Modifier Proteins (genetics)</term>
<term>Small Ubiquitin-Related Modifier Proteins (metabolism)</term>
<term>Vero Cells</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Antiviraux (isolement et purification)</term>
<term>Antiviraux (pharmacologie)</term>
<term>Antiviraux (synthèse chimique)</term>
<term>Autophagie ()</term>
<term>Cellules Vero</term>
<term>Cellules rénales canines Madin-Darby</term>
<term>Chardon-Marie ()</term>
<term>Chiens</term>
<term>Extraits de plantes ()</term>
<term>Humains</term>
<term>Mitogen-Activated Protein Kinases (antagonistes et inhibiteurs)</term>
<term>Mitogen-Activated Protein Kinases (génétique)</term>
<term>Mitogen-Activated Protein Kinases (métabolisme)</term>
<term>Multimérisation de protéines ()</term>
<term>Petit ARN interférent (génétique)</term>
<term>Petit ARN interférent (métabolisme)</term>
<term>Petites protéines modificatrices apparentées à l'ubiquitine (antagonistes et inhibiteurs)</term>
<term>Petites protéines modificatrices apparentées à l'ubiquitine (génétique)</term>
<term>Petites protéines modificatrices apparentées à l'ubiquitine (métabolisme)</term>
<term>Plasmides</term>
<term>Protéine-12 associée à l'autophagie</term>
<term>Protéine-5 associée à l'autophagie</term>
<term>Protéines associées aux microtubules (antagonistes et inhibiteurs)</term>
<term>Protéines associées aux microtubules (génétique)</term>
<term>Protéines associées aux microtubules (métabolisme)</term>
<term>Protéines associées à l'autophagie</term>
<term>Protéines de transport (antagonistes et inhibiteurs)</term>
<term>Protéines de transport (génétique)</term>
<term>Protéines de transport (métabolisme)</term>
<term>Régulation de l'expression des gènes</term>
<term>Silibinine (analogues et dérivés)</term>
<term>Silibinine (isolement et purification)</term>
<term>Silibinine (pharmacologie)</term>
<term>Silibinine (synthèse chimique)</term>
<term>Sous-type H1N1 du virus de la grippe A ()</term>
<term>Sous-type H1N1 du virus de la grippe A (croissance et développement)</term>
<term>Stress oxydatif ()</term>
<term>Tests de criblage à haut débit</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Silymarin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Carrier Proteins</term>
<term>Microtubule-Associated Proteins</term>
<term>Mitogen-Activated Protein Kinases</term>
<term>Small Ubiquitin-Related Modifier Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemical synthesis" xml:lang="en">
<term>Antiviral Agents</term>
<term>Silymarin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Plant Extracts</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Carrier Proteins</term>
<term>Microtubule-Associated Proteins</term>
<term>Mitogen-Activated Protein Kinases</term>
<term>RNA, Small Interfering</term>
<term>Small Ubiquitin-Related Modifier Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Antiviral Agents</term>
<term>Silymarin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carrier Proteins</term>
<term>Microtubule-Associated Proteins</term>
<term>Mitogen-Activated Protein Kinases</term>
<term>RNA, Small Interfering</term>
<term>Small Ubiquitin-Related Modifier Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antiviral Agents</term>
<term>Silymarin</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Silibinine</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Mitogen-Activated Protein Kinases</term>
<term>Petites protéines modificatrices apparentées à l'ubiquitine</term>
<term>Protéines associées aux microtubules</term>
<term>Protéines de transport</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Milk Thistle</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Sous-type H1N1 du virus de la grippe A</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Autophagy</term>
<term>Influenza A Virus, H1N1 Subtype</term>
<term>Oxidative Stress</term>
<term>Protein Multimerization</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Influenza A Virus, H1N1 Subtype</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Mitogen-Activated Protein Kinases</term>
<term>Petit ARN interférent</term>
<term>Petites protéines modificatrices apparentées à l'ubiquitine</term>
<term>Protéines associées aux microtubules</term>
<term>Protéines de transport</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Antiviraux</term>
<term>Silibinine</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Mitogen-Activated Protein Kinases</term>
<term>Petit ARN interférent</term>
<term>Petites protéines modificatrices apparentées à l'ubiquitine</term>
<term>Protéines associées aux microtubules</term>
<term>Protéines de transport</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antiviraux</term>
<term>Silibinine</term>
</keywords>
<keywords scheme="MESH" qualifier="synthèse chimique" xml:lang="fr">
<term>Antiviraux</term>
<term>Silibinine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Autophagy-Related Protein 12</term>
<term>Autophagy-Related Protein 5</term>
<term>Autophagy-Related Proteins</term>
<term>Chlorocebus aethiops</term>
<term>Dogs</term>
<term>Gene Expression Regulation</term>
<term>High-Throughput Screening Assays</term>
<term>Humans</term>
<term>Madin Darby Canine Kidney Cells</term>
<term>Plasmids</term>
<term>Signal Transduction</term>
<term>Vero Cells</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Autophagie</term>
<term>Cellules Vero</term>
<term>Cellules rénales canines Madin-Darby</term>
<term>Chardon-Marie</term>
<term>Chiens</term>
<term>Extraits de plantes</term>
<term>Humains</term>
<term>Multimérisation de protéines</term>
<term>Plasmides</term>
<term>Protéine-12 associée à l'autophagie</term>
<term>Protéine-5 associée à l'autophagie</term>
<term>Protéines associées à l'autophagie</term>
<term>Régulation de l'expression des gènes</term>
<term>Sous-type H1N1 du virus de la grippe A</term>
<term>Stress oxydatif</term>
<term>Tests de criblage à haut débit</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">It has been reported that autophagy is involved in the replication of many viruses. In this study, we screened 89 medicinal plants, using an assay based on the inhibition of the formation of the Atg12-Atg5/Atg16 heterotrimer, an important regulator of autophagy, and selected Silybum marianum L. for further study. An antiviral assay indicated that silybin (S0), the major active compound of S. marianum L., can inhibit influenza A virus (IAV) infection. We later synthesized 5 silybin derivatives (S1 through S5) and found that 23-(S)-2-amino-3-phenylpropanoyl-silybin (S3) had the best activity. When we compared the polarities of the substituent groups, we found that the hydrophobicity of the substituent groups was positively correlated with their activities. We further studied the mechanisms of action of these compounds and determined that S0 and S3 also inhibited both the formation of the Atg12-Atg5/Atg16 heterotrimer and the elevated autophagy induced by IAV infection. In addition, we found that S0 and S3 could inhibit several components induced by IAV infection, including oxidative stress, the activation of extracellular signal-regulated kinase (ERK)/p38 mitogen-activated protein kinase (MAPK) and IκB kinase (IKK) pathways, and the expression of autophagic genes, especially Atg7 and Atg3. All of these components have been reported to be related to the formation of the Atg12-Atg5/Atg16 heterotrimer, which might validate our screening strategy. Finally, we demonstrated that S3 can significantly reduce influenza virus replication and the associated mortality in infected mice. In conclusion, we identified 23-(S)-2-amino-3-phenylpropanoyl-silybin as a promising inhibitor of IAV infection. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23836164</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>04</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-6596</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>57</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2013</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Antimicrobial agents and chemotherapy</Title>
<ISOAbbreviation>Antimicrob. Agents Chemother.</ISOAbbreviation>
</Journal>
<ArticleTitle>Identification of 23-(s)-2-amino-3-phenylpropanoyl-silybin as an antiviral agent for influenza A virus infection in vitro and in vivo.</ArticleTitle>
<Pagination>
<MedlinePgn>4433-43</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/AAC.00759-13</ELocationID>
<Abstract>
<AbstractText>It has been reported that autophagy is involved in the replication of many viruses. In this study, we screened 89 medicinal plants, using an assay based on the inhibition of the formation of the Atg12-Atg5/Atg16 heterotrimer, an important regulator of autophagy, and selected Silybum marianum L. for further study. An antiviral assay indicated that silybin (S0), the major active compound of S. marianum L., can inhibit influenza A virus (IAV) infection. We later synthesized 5 silybin derivatives (S1 through S5) and found that 23-(S)-2-amino-3-phenylpropanoyl-silybin (S3) had the best activity. When we compared the polarities of the substituent groups, we found that the hydrophobicity of the substituent groups was positively correlated with their activities. We further studied the mechanisms of action of these compounds and determined that S0 and S3 also inhibited both the formation of the Atg12-Atg5/Atg16 heterotrimer and the elevated autophagy induced by IAV infection. In addition, we found that S0 and S3 could inhibit several components induced by IAV infection, including oxidative stress, the activation of extracellular signal-regulated kinase (ERK)/p38 mitogen-activated protein kinase (MAPK) and IκB kinase (IKK) pathways, and the expression of autophagic genes, especially Atg7 and Atg3. All of these components have been reported to be related to the formation of the Atg12-Atg5/Atg16 heterotrimer, which might validate our screening strategy. Finally, we demonstrated that S3 can significantly reduce influenza virus replication and the associated mortality in infected mice. In conclusion, we identified 23-(S)-2-amino-3-phenylpropanoyl-silybin as a promising inhibitor of IAV infection. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Dai</LastName>
<ForeName>Jian-Ping</ForeName>
<Initials>JP</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Li-Qi</ForeName>
<Initials>LQ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Rui</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Xiang-Feng</ForeName>
<Initials>XF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wan</LastName>
<ForeName>Qian-Ying</ForeName>
<Initials>QY</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Xiao-Xuan</ForeName>
<Initials>XX</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Wei-Zhong</ForeName>
<Initials>WZ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Ge-Fei</ForeName>
<Initials>GF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Kang-Sheng</ForeName>
<Initials>KS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>07</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Antimicrob Agents Chemother</MedlineTA>
<NlmUniqueID>0315061</NlmUniqueID>
<ISSNLinking>0066-4804</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C587548">23-(s)-2-amino-3-phenylpropanoylsilybin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C466624">ATG12 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C518959">ATG16L1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C502778">ATG5 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000071192">Autophagy-Related Protein 12</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000071187">Autophagy-Related Protein 5</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000071183">Autophagy-Related Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002352">Carrier Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008869">Microtubule-Associated Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010936">Plant Extracts</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D034741">RNA, Small Interfering</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012838">Silymarin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D025841">Small Ubiquitin-Related Modifier Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.24</RegistryNumber>
<NameOfSubstance UI="D020928">Mitogen-Activated Protein Kinases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000138" MajorTopicYN="N">chemical synthesis</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001343" MajorTopicYN="N">Autophagy</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000071192" MajorTopicYN="N">Autophagy-Related Protein 12</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000071187" MajorTopicYN="N">Autophagy-Related Protein 5</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000071183" MajorTopicYN="N">Autophagy-Related Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002352" MajorTopicYN="N">Carrier Proteins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002522" MajorTopicYN="N">Chlorocebus aethiops</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004285" MajorTopicYN="N">Dogs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="N">Gene Expression Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057166" MajorTopicYN="N">High-Throughput Screening Assays</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053118" MajorTopicYN="N">Influenza A Virus, H1N1 Subtype</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D061985" MajorTopicYN="N">Madin Darby Canine Kidney Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008869" MajorTopicYN="N">Microtubule-Associated Proteins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020944" MajorTopicYN="N">Milk Thistle</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020928" MajorTopicYN="N">Mitogen-Activated Protein Kinases</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010936" MajorTopicYN="N">Plant Extracts</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010957" MajorTopicYN="N">Plasmids</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055503" MajorTopicYN="N">Protein Multimerization</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034741" MajorTopicYN="N">RNA, Small Interfering</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012838" MajorTopicYN="N">Silymarin</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="Y">analogs & derivatives</QualifierName>
<QualifierName UI="Q000138" MajorTopicYN="N">chemical synthesis</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025841" MajorTopicYN="N">Small Ubiquitin-Related Modifier Proteins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014709" MajorTopicYN="N">Vero Cells</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>7</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>7</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>4</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23836164</ArticleId>
<ArticleId IdType="pii">AAC.00759-13</ArticleId>
<ArticleId IdType="doi">10.1128/AAC.00759-13</ArticleId>
<ArticleId IdType="pmc">PMC3754338</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Sci Signal. 2012 Feb 21;5(212):ra16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22355189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Pharmacol Sci. 2012 Jan;33(1):3-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21962460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Acad Orthop Surg. 2012 Apr;20(4):261-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22474097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol Screen. 2012 Jun;17(5):605-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22286278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(7):e41832</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22848626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2012 Sep;56(9):4718-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22733076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2012 Dec 26;60(51):12451-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23210512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mitochondrion. 2013 May;13(3):155-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22750269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2003 May;35(5):553-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12672448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 1996 Nov;40(11):2626-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8913477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2006 Oct;50(10):3330-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17005813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2007 Jan-Feb;3(1):10-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16963840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol Screen. 2007 Mar;12(2):229-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17218666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2008 Feb 29;367(1):47-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18158915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2008 Sep;9(9):859-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18704115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 Nov;19(11):4762-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18768753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Dec;82(23):11976-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18799585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2008 Dec;52(12):4331-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18824612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Handb Exp Pharmacol. 2009;(189):1-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19048195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytomedicine. 2009 Jan;16(1):35-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19097770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2009 Feb;53(2):748-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19015331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2009 Feb;53(2):728-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19064890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Oral Pathol Med. 2009 Mar;38(3):276-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19267840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2009 Apr;5(3):321-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19066474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2009 May;5(4):534-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19223761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hepatol. 2009 Jun;50(6):1102-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19398228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem. 2009 Sep 1;17(17):6380-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19660956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2009 Oct;53(10):4311-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19620334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2009 Oct 15;122(Pt 20):3589-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19812304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 2010 Feb 1;79(3):413-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19732754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carcinogenesis. 2009 Nov;30(11):1880-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19783847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2009 Nov;5(8):1224-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19844160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2009 Dec 10;52(23):7732-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19673490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2010 Jan;54(1):126-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19901093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2010 Jan;120(1):127-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20038797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2010 Jan;6(1):61-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19901552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2010 Mar;298(3):C542-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19955483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gastroenterology. 2010 Mar;138(3):1112-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19962982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mutagenesis. 2010 May;25(3):223-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20032005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2010 Jul;12(7):665-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20543840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Biochim Biophys Sin (Shanghai). 2010 Jul;42(7):489-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20705588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Leukemia. 2011 Jan;25(1):23-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20927132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2011 Feb;55(2):667-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21078930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2011 Feb;55(2):637-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21098237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2011 Apr 7;30(14):1727-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21151171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Apr 15;286(15):12924-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21300795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytomedicine. 2011 Jul 15;18(10):832-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21377857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Braz J Med Biol Res. 2011 Jul;44(7):652-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21755261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Physiol. 2011 Dec;226(12):3368-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21344392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2011 Dec;55(12):5553-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21930873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Genet Genomics. 2011 Nov 20;38(11):533-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22133684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2012 Feb 1;8(2):268-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22301997</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/StressCovidV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000515 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000515 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    StressCovidV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:23836164
   |texte=   Identification of 23-(s)-2-amino-3-phenylpropanoyl-silybin as an antiviral agent for influenza A virus infection in vitro and in vivo.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:23836164" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a StressCovidV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed May 6 16:44:09 2020. Site generation: Sun Mar 28 08:26:57 2021